

SEEJPH 2024 Posted: 10-09-2024

Exploring Dermatoglyphics as a Potential Indicator of Female Infertility: A **Review of Current Evidence and Future Directions**

Shyambabu P. Rauniyar¹, Vilas Chimurkar², Vaibhav P. Anjankar³, Akash More⁴

- ¹Tutor, Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe) Wardha, IND
- ²Professor & Head Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe) Wardha, IND
- ³Professor Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe) Wardha, IND
- ⁴Senior Embryologist Department of Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe) Wardha, IND

KEYWORDS

ABSTRACT

Fetus Development, Health, Female Infertility, Infertility, Dermatoglyphics

Female infertility remains a complex and multifaceted issue, impacting millions globally and necessitating a Female Reproductive nuanced understanding of its various underlying factors. Dermatoglyphics, the study of unique skin ridge patterns on fingers, palms, toes, and soles, has garnered attention for its potential in revealing embryonic development insights and genetic markers. This paper investigates the hypothetical associations between dermatoglyphics patterns and female infertility.

The literature review in this study synthesizes existing research exploring the potential correlations between dermatoglyphics and factors influencing female infertility. Studies suggest that certain dermatoglyphics patterns might be linked to genetic disorders affecting fertility, such as Turner syndrome and polycystic ovary syndrome (PCOS). The field lacks comprehensive studies that directly establish a causal relationship between dermatoglyphics patterns and female infertility. While intriguing correlations have been proposed, more rigorous research, employing larger sample sizes and advanced methodologies, is essential to substantiate these

Additionally, this study highlights the necessity of a comprehensive strategy for identifying and treating female infertility. Even though dermatologics may provide new information, it should only be considered one aspect of a thorough diagnostic process that also includes genetic testing, imaging studies, physical exams, medical histories, and hormonal assays.

1. Introduction

The enigma of female infertility encompasses a spectrum of physiological, genetic, and environmental factors, presenting a challenging landscape for researchers and healthcare professionals [1]. In recent years, the field of dermatoglyphics, examining unique patterns on the skin's ridges, has emerged as a potential avenue for exploring underlying genetic markers and developmental anomalies [2]. This paper delves into the intriguing intersection of dermatoglyphics patterns and female infertility, seeking to unravel potential correlations that may shed light on this complex reproductive health issue [3].

Female infertility, affecting millions worldwide, encompasses a myriad of conditions spanning hormonal imbalances, anatomical abnormalities, genetic predispositions, and lifestyle influences [4]. Amidst this multifaceted landscape, dermatoglyphics - a field initially studied for its forensic and genetic applications - has garnered attention for its potential to unveil embryonic developmental clues and genetic indicators [5]. While established diagnostic methods in infertility predominantly focus on hormonal assays, imaging studies, and genetic testing, the exploration of dermatoglyphics patterns offers a novel perspective [6].

Studies have suggested that certain dermatoglyphics configurations might be associated with genetic disorders that impact fertility, such as Turner syndrome or polycystic ovary syndrome (PCOS) [7]. Furthermore, investigations hint at a plausible link between hormonal irregularities observed in conditions like PCOS and distinct dermatoglyphics patterns [8]. However, the body of research concerning the relationship between dermatoglyphics patterns and female infertility remains nascent and fragmented [9].

SEEJPH 2024 Posted: 10-09-2024

This paper aims to consolidate existing literature and research endeavors, elucidating the current understanding and exploring the potential correlations between dermatoglyphics patterns and female infertility [10]. While acknowledging the preliminary nature of these findings, this exploration serves as a call for further interdisciplinary investigations to ascertain the validity and depth of these proposed associations [11]. Ultimately, unveiling potential correlations between dermatoglyphics patterns and female infertility holds promise not only for early identification of certain genetic or developmental conditions but also for broadening the diagnostic landscape [12]. Such insights could pave the way for a more holistic approach in comprehending and addressing the intricate web of factors contributing to female infertility [12].

Dermatoglyphics

Dermatoglyphics, a term derived from the Greek words "derma" (skin) and "glyph" (carving), refers to the intricate study of the unique patterns, ridges, and configurations present on the skin's surface, particularly on the fingertips, palms, toes, and soles of the feet [13]. These distinct patterns are formed during early fetal development and remain unchanged throughout a person's life. The three primary types of dermatoglyphics patterns are loops, arches, and whorls, each characterized by specific formations of ridges and their spatial arrangement [2]. They hold crucial information about embryonic development, genetic predispositions, and environmental influences during the prenatal period [14]. Loops involve ridges that enter and exit on the same side, arches display ridges entering from one side and exiting on the other, while whorls showcase circular or spiral formations of ridges [15].

Dermatoglyphics patterns are determined by a complex interplay of genetic factors and environmental conditions experienced during early pregnancy [16]. These patterns are considered highly heritable, passed down through generations, yet they also reflect minor variations due to intrauterine conditions, such as fetal movement, amniotic fluid levels, and gestational factors [17]. In medicine, it has implications for diagnosing certain genetic disorders or syndromes, such as Down syndrome, Turner syndrome, and others, based on specific deviations or anomalies in fingerprint patterns. Some studies suggest potential correlations between certain fingerprint patterns and specific personality traits, cognitive abilities, or learning styles [18]. The study of dermatoglyphics continues to evolve with advancements in technology, enabling more detailed and precise analysis of these intricate skin patterns [19].

Development

Around the 6th to 13th week of gestation, the development of the epidermal layer, known as the basal layer, initiates the formation of the dermal ridges [20]. These ridges are the foundation for the distinct patterns observed on the fingers, palms, toes, and soles of the feet. Simultaneously, the growth of the underlying connective tissue, influenced by genetic instructions, starts shaping these intricate patterns [21]. The primary factors contributing to the formation of dermatoglyphics patterns are genetic inheritance and intrauterine environmental conditions [16]. Genetic predispositions heavily influence the overall pattern formation, determining whether an individual will have loops, arches, whorls, or combinations [22]. The specific expression of genes dictates the arrangement, number, and complexity of these patterns.

Intrauterine environmental factors play a significant role in fine-tuning these patterns [23]. Factors such as fetal movement, the viscosity and pressure of the amniotic fluid surrounding the fetus, the overall health of the mother during pregnancy, and gestational conditions can subtly influence the development of dermatoglyphics [23]. Changes in these conditions may result in variations in the final patterns observed on the skin. For instance, certain developmental disorders or genetic anomalies affecting the developmental process during this timeframe might manifest as deviations or irregularities in dermatoglyphics patterns [24]. As the fetus grows, these dermatoglyphics patterns solidify and become relatively stable [20]. By the 24th week of gestation, these patterns are fully formed and remain unchanged throughout an individual's life, serving as a unique and permanent identification mark [25].

Exploring Dermatoglyphics as a Potential Indicator of Female Infertility: A Review of Current

Evidence and Future Directions. SEEJPH 2024 Posted: 10-09-2024

Types of dermatoglyphic patterns

Dermatoglyphic patterns, the distinct formations of ridges and lines on the skin's surface, exhibit remarkable diversity and uniqueness among individuals [16]. These patterns primarily fall into three main categories like loops, whorls, and arches, each characterized by specific ridge formations and spatial arrangements.

Loops

Loops make up between 60 and 65 percent of all dermatoglyphic patterns [26]. They are the most common type, this pattern has ridges that start on one side of the finger, curve or loop, and end on the same side. One or more ridges that recurve to produce a recognizable looping pattern are usually present in loops. The direction in which the loop opens with respect to the thumb further divides them into ulnar and radial loops [27]. Ulnar loops open up toward the hand's ulnar side, which is the side of the pinky finger [28]. Radial Loops open in the direction of the hand's thumb on the radial side [28].

Whorls

Whorls are characterized by circular or spiral ridge formations that create concentric patterns or circular whirls. They constitute about 30-35% of fingerprints [29]. Whorls can be further classified into four subtypes, Plain Whorls these exhibit a circular or spiral pattern with two deltas (triangular areas) and a consistent flow of ridges [30]. Central Pocket Loop Whorls have a smaller circle inside the main loop in a whorl pattern. Double Loop Whorls are made up of two distinct loop formations that usually have a "eight" shape to them. Accidental Whorls These do not fit into the defined categories and display a combination of patterns, such as a mix of loops and whorls.

Arches

Of all the dermatoglyphic patterns, arches are the least common, making up about 5% of fingerprints [15]. This pattern has ridges that start on one side of the finger, form a structure resembling a rise or wave, and end on the opposite side. Arches lack the recurving or circular pattern seen in loops and whorls and can be further divided into two subtypes [31-32]. Plain Arches have a consistent flow of ridges without any significant formations within the pattern. Tented Arches have a more prominent upward thrust in the centre, creating a tent-like structure [33].

Female infertility and its causes

The inability of a woman to conceive or carry a pregnancy to term after engaging in unprotected sexual activity for a prolonged period of time typically one year or longer is referred to as female infertility [34]. It's a complex and emotionally challenging condition that affects around 10-15% of couples worldwide. There are numerous factors contributing to female infertility, spanning various physiological, anatomical, hormonal, genetic, and lifestyle aspects [35]. Some of the primary causes include, Ovulatory Disorders which is irregular or absent ovulation stands as a prevalent cause. Hormone imbalances caused by disorders like Polycystic Ovary Syndrome (PCOS) can alter or completely stop ovulation [36]. Problems with the tubes means damage or obstructions in the fallopian tubes prevent eggs from traveling from the ovary to the uterus. The possibility of fertilization may be limited by causes such as endometriosis, infections, surgeries, or pelvic inflammatory disease (PID) [37]. Abnormalities of the Uterus or Cervix which leads obstetrics, polyps, adhesions, and cervical stenosis are examples of structural abnormalities that can obstruct sperm passage or interfere with implantation [38].

Age-related Factors, after the mid-30s or early-40s, women's eggs become less abundant and of lower quality, which lowers their potential for conception [39-40]. Hormonal Imbalances disruptions in hormone levels, arising from thyroid disorders, high prolactin levels, or issues with the hypothalamus

SEEJPH 2024 Posted: 10-09-2024

or pituitary gland, may disrupt regular ovulation and menstrual cycles [41]. Pelvic Inflammatory Disease (PID) Sexually transmitted infections (STIs) are a common cause of infections in the reproductive system that can damage or scar the fallopian tubes [40]. Unexplained Infertility in certain instances, despite extensive assessments, the exact cause of infertility is still unclear, making diagnosis and treatment difficult [41].

Lifestyle Factors by altering hormone levels or the function of the reproductive organs, smoking, binge drinking, obesity, poor nutrition, stress, and rigorous physical training can all have an adverse effect on fertility. Genetic Factors a person may be more susceptible to reproductive difficulties or have reduced fertility as a result of certain genetic conditions, such as Turner syndrome or chromosomal abnormalities. Environmental Factors exposure to toxins, pollutants, or certain chemicals in the environment or workplace might influence fertility adversely.

Treatment for female infertility

Medications to stimulate ovulation or regulate hormonal imbalances. Operations to remove endometrial polyps or fibroids, among other anatomical problems [42]. Technologies for assisted reproduction (ART), including egg donation, intrauterine insemination (IUI), and in vitro fertilization (IVF). Lifestyle changes, including diet modifications, weight management, and reducing stress, which can impact fertility. Psychological support and counselling often play a crucial role in assisting couples coping with the emotional toll of infertility. A thorough evaluation that includes the patient's medical history, physical examination, hormonal assays, imaging studies, and occasionally genetic testing is frequently required to diagnose female infertility [43]. Treatment strategies are customized according to the causes that have been found and may include ovulation-stimulating drugs, surgical procedures to address anatomical problems, assisted reproductive technologies such as IVF or IUI, or lifestyle changes.

Diagnostic techniques

Diagnostic techniques for female infertility encompass a spectrum of assessments aiming to identify underlying factors contributing to difficulties in conceiving. These techniques are crucial in tailoring appropriate treatments and interventions. Here's an exploration of some primary diagnostic methods likes Physical Examination and Medical History having a thorough medical history can help rule out conditions like irregular menstrual cycles, infections, past surgeries, or chronic illnesses as potential factors affecting fertility [43]. Physical examinations can identify structural irregularities such as pelvic adhesions or uterine fibroids. Hormonal Assays hormone levels, such as those of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, thyroid hormones, and prolactin, are assessed through blood tests. Hormonal imbalances or ovulatory disorders may be indicated by abnormal levels.

Ovulation tracking techniques to measure changes in cervical mucus and follicular growth to determine the timing and quality of ovulation include basal body temperature charting, ovulation predictor kits, and ultrasound monitoring [44]. Imaging Studies ultrasounds are used to check for endometriosis symptoms, cysts, fibroids, and structural abnormalities in the uterus, ovaries, and fallopian tubes. A specialized X-ray is used in hysterosalpingography (HSG) to evaluate the patency of the uterus and fallopian tubes. Ovarian Reserve Testing: Evaluations such as transvaginal ultrasound antral follicle count or anti-Müllerian hormone (AMH) levels aid in determining the quantity and quality of a woman's remaining eggs. Genetic testing or chromosomal analysis can be used to find genetic disorders or anomalies that could affect fertility.

Hysteroscopy and laparoscopy minimally invasive procedures involve inserting a thin camera through the cervix to view the uterine cavity (hysteroscopy) or the abdomen (laparoscopy) to identify and treat structural abnormalities, adhesions, or endometriosis. Endometrial biopsy procedure involves sampling the uterine lining to assess hormone levels and determine if it's suitable for implantation. Psychological

SEEJPH 2024 Posted: 10-09-2024

assessments is emotional well-being and stress levels can affect fertility. Psychological testing or counseling can help with the emotional toll that infertility takes on single people or couples.

Exploring the potential correlations between dermatoglyphics patterns and female infertility

The exploration of potential correlations between dermatoglyphics patterns and female infertility unveils an intriguing intersection between two seemingly unrelated fields skin ridge patterns and reproductive health [45]. Dermatoglyphics, the study of unique fingerprint patterns, offers a captivating avenue to explore embryonic development, genetic markers, and potential indicators of health conditions [31]. While the direct connection between dermatoglyphics and female infertility remains a subject of ongoing research, preliminary studies suggest intriguing associations that warrant further investigation [46]. Some investigations propose that certain dermatoglyphics patterns might exhibit correlations with genetic conditions known to impact fertility, such as Turner syndrome, polycystic ovary syndrome (PCOS), or chromosomal anomalies [47]. These unique fingerprint configurations might serve as potential markers for identifying underlying genetic predispositions related to infertility. Dermatoglyphics patterns, though relatively stable and heritable, can also exhibit variations influenced by intrauterine conditions, environmental factors, and minor genetic anomalies [16]. As such, establishing a direct causative relationship between specific fingerprint patterns and infertility requires meticulous and extensive research methodologies. The complexities of female infertility, involving a myriad of factors from hormonal imbalances to anatomical abnormalities, pose challenges in isolating dermatoglyphics as a singular diagnostic tool. Nonetheless, exploring these potential correlations may offer a unique perspective within the realm of fertility diagnostics. Dermatoglyphics, if proven to hold associations with infertility, could potentially serve as an adjunctive tool in early identification or risk assessment for certain genetic or developmental conditions impacting fertility [48].

Review of studies

The review of studies pertaining to the correlation between dermatoglyphics patterns and female infertility represents an intriguing endeavor delving into the intricate relationship between these two domains [49]. This examination aims to consolidate and scrutinize existing research findings, methodologies, and conclusions that explore the potential interplay between unique fingerprint patterns and challenges related to female fertility [50]. This comprehensive review navigates through a landscape of scientific inquiries encompassing embryonic development, genetic markers, and their potential links to reproductive health [51]. It navigates through a diverse array of studies, ranging from those proposing correlations between specific dermatoglyphics patterns and genetic disorders impacting fertility, such as Turner syndrome or PCOS, to investigations exploring subtle associations between fingerprint configurations and hormonal irregularities affecting ovulation [44].

The review scrutinizes methodologies employed in these studies, emphasizing the need for rigorous approaches to establish reliable correlations [52]. It assesses the strengths and limitations of various research methodologies, including imaging techniques, digital analysis of dermatoglyphics, and genetic assessments, acknowledging the complexity in isolating and defining direct causal relationships between fingerprint patterns and infertility. Furthermore, this review acknowledges the preliminary nature of the findings and the necessity for larger sample sizes, diverse populations, and longitudinal studies to fortify and generalize conclusions. It critically evaluates discrepancies or inconsistencies among studies, highlighting the need for standardization in methodologies and diagnostic criteria to ensure reliability and reproducibility of results across diverse populations [29]. The synthesis of these studies, while hinting at potential correlations between dermatoglyphics patterns and female infertility, emphasizes the need for cautious interpretation and avoidance of overgeneralization [53]. It underscores the multifaceted nature of infertility, urging researchers to adopt a comprehensive approach that integrates dermatoglyphics findings with established medical diagnostics for a more robust assessment.

Proposed mechanisms

SEEJPH 2024 Posted: 10-09-2024

The exploration of proposed mechanisms underlying potential correlations between dermatoglyphics patterns and female infertility represents a captivating avenue of scientific inquiry, aiming to decipher the intricate interconnections between these seemingly disparate fields [54]. The formation of dermatoglyphics patterns is predominantly governed by genetic factors and influenced by intrauterine environmental conditions during embryonic development [55]. Studies suggest that certain genetic disorders impacting fertility, such as Turner syndrome or conditions like PCOS, may manifest distinct dermatoglyphics patterns. Thus, deviations in fingerprint configurations might serve as potential markers or indicators of underlying genetic predispositions affecting fertility [56]. Hormonal irregularities, notably in conditions like PCOS, can disrupt ovulation and fertility. Some investigations propose subtle associations between specific dermatoglyphics patterns and hormonal imbalances during early development. It's hypothesized that variations in fingerprint configurations might indirectly reflect hormonal disruptions, offering potential clues to hormonal imbalances impacting fertility [57]. Disruptions or disturbances during embryonic development, including alterations in fetal movement, amniotic fluid levels, or gestational factors, might influence dermatoglyphics patterns. Certain developmental anomalies or genetic conditions linked to infertility might manifest as deviations or irregularities in fingerprint patterns. The interaction between genetic predispositions and environmental factors during fetal development might contribute to variations in dermatoglyphics patterns. These intricate interactions between genetic susceptibilities and intrauterine conditions could potentially shape unique fingerprint configurations associated with certain fertility-related conditions [58].

Clinical implications

Dermatoglyphics patterns could serve as adjunctive tools in fertility assessments, offering additional insights into genetic predispositions or potential hormonal irregularities affecting fertility. Integrating these unique fingerprint configurations with established diagnostic methodologies might aid in a more comprehensive assessment of female infertility [59].

Specific dermatoglyphics features associated with certain genetic conditions or hormonal imbalances might facilitate early identification or risk assessment. Identifying these patterns could potentially guide clinicians in offering targeted interventions or proactive measures for individuals at risk of fertility-related conditions. Incorporating dermatoglyphics findings into fertility assessments might enable personalized care strategies. Tailoring interventions based on specific fingerprint configurations associated with fertility challenges could potentially enhance the precision and efficacy of treatment approaches [60].

Future perspectives

Advancements in Technology continued advancements in imaging techniques, digital analysis, and genetic sequencing will refine the analysis and interpretation of dermatoglyphics patterns. Integrating cutting-edge technologies could enhance the accuracy and clinical relevance of dermatoglyphics in fertility assessments [60]. Large-Scale Longitudinal Studies: Conducting extensive longitudinal studies involving diverse populations and larger sample sizes is imperative. Long-term investigations tracking dermatoglyphics patterns from early gestation to adulthood could establish robust correlations and uncover dynamic associations with fertility outcomes [61].

Interdisciplinary Collaborations encouraging collaboration among dermatoglyphics experts, reproductive medicine specialists, geneticists, and statisticians is essential. Interdisciplinary approaches foster comprehensive investigations, integrating expertise from diverse fields for a holistic understanding [62]. Ethical Considerations and Clinical Translation addressing ethical considerations, patient confidentiality, and informed consent remains pivotal in translating dermatoglyphics research into clinical practice. Balancing the potential benefits with ethical standards is crucial in the ethical implementation of dermatoglyphics in reproductive medicine [62].

Clinical applications

SEEJPH 2024 Posted: 10-09-2024

The investigation of clinical applications concerning dermatoglyphics patterns and female infertility holds promise in potentially augmenting diagnostic approaches and offering novel insights into fertility assessments [63]. Dermatoglyphics patterns may serve as potential indicators or adjunctive tools in early identification of certain genetic conditions associated with female infertility [64]. Identifying distinctive fingerprint configurations linked to conditions like Turner syndrome or specific chromosomal anomalies might aid in early detection and intervention. Subtle associations between dermatoglyphics patterns and hormonal irregularities, especially in conditions like PCOS, propose the potential use of fingerprint configurations as predictive markers [65]. Specific fingerprint variations might offer indirect clues to hormonal imbalances, aiding in assessing predispositions to ovulatory disorders affecting fertility [47].

Integrating dermatoglyphics findings into fertility assessments might contribute to a more comprehensive risk assessment framework [66]. While not standalone diagnostic tools, unique fingerprint patterns might complement existing evaluations, enabling personalized care strategies for individuals with specific dermatoglyphics features associated with fertility challenges [67]. Dermatoglyphics studies offer avenues for further exploration in reproductive genetics. Understanding how certain genetic predispositions manifest as variations in fingerprint patterns could contribute to broader research in genetic markers for fertility-related conditions [68]. Variations in dermatoglyphics patterns can be influenced by numerous factors beyond fertility, limiting their specificity as standalone diagnostic markers. Current research in this area remains preliminary, lacking standardized methodologies and robust correlations to establish definitive clinical applications [68].

Future research

Conducting comprehensive, longitudinal studies involving diverse populations and larger sample sizes is imperative. Establishing standardized methodologies and diagnostic criteria across studies is crucial for consistency and comparability of findings [69]. Consensus on imaging techniques, digital analysis methods, and classification systems for dermatoglyphics patterns will enhance the reliability and reproducibility of results.

Exploration of Environmental Influences: Investigating the impact of environmental factors during prenatal development on dermatoglyphics patterns and subsequent fertility-related conditions warrants exploration. Understanding how external factors shape fingerprint configurations is essential.

2. Conclusion and future scope

In conclusion, the exploration of potential correlations between dermatoglyphics patterns and female infertility encapsulates a compelling intersection at the crossroads of embryonic development, genetics, and reproductive health. The reviewed literature and research endeavors have unveiled suggestive connections between unique fingerprint configurations and potential indicators of certain genetic conditions or hormonal irregularities impacting female fertility. To validate and strengthen these relationships, it is imperative to recognize the preliminary nature of these findings and to emphasize the need for strong research methodologies, larger-scale studies, and interdisciplinary collaborations. The synthesis of existing research findings accentuates the need for standardized methodologies, longitudinal studies, and advancements in technology to enhance the precision and clinical relevance of dermatoglyphics in fertility assessments. Moreover, ethical considerations, patient confidentiality, and informed consent should remain pivotal in the translational journey of dermatoglyphics research to clinical practice.

Reference

[1] Nixon B, Schjenken JE, Burke ND, et al.: New horizons in human sperm selection for assisted reproduction. Front Endocrinol. 2023, 10:114. 10.3389/fendo.2023.1145533

SEEJPH 2024 Posted: 10-09-2024

- [2] Santhosh Kumar MP: Dermatoglyphic pattern configurations: A review. Int J Dent Oral Sci. 2021, 25:2816-27. 10.19070/2377-8075-21000550
- [3] A case study of the lived experiences of West African immigrant women in Northern British Columbia. (2024). https://unbc.arcabc.ca/islandora/object/unbc%3A59263.
- [4] Barbieri CM.: Identification of genetic variants regulating female fertility. 2018. https://arts.units.it/handle/11368/2922615.
- [5] Principles of translational science in medicine. (2024). https://books.google.co.in/books.
- [6] Liu K, Zhang Y, Martin C, Ma X, Shen B: Examples, opportunities and challenges for a future reproductive medicine. Int J Mol Sci. 2024, 6:1422-0067. 10.3390/ijms24010004
- [7] Sekar N, Nair M, Francis G, et al.: Multi-parameter approach for evaluation of genomic instability in the polycystic ovary syndrome. Asian Pac J Cancer Prev. 2015, 16:7129-38. 10.7314/apjcp.2015.16.16.7129
- [8] Dare J, Adenowo T, Wada I: Digital dermatoglyphics distribution in fertile and infertile women. Coll Antropol. 2022, 30:87-96. 10.5671/ca.46.2.2
- [9] Amelie F, Richard OB, Dorien FO, Thomas D, Linda G: Update on biomarkers for the detection of endometriosis. Biomed Res Int. 2015, 10:1155. 10.1155/2015/130854
- [10] Fadi C: Unraveling the sperm transcriptome by next generation sequencing and the global epigenetic landscape in infertile men. Mol Bio. 2018, 6:195.
- [11] The information work of interdisciplinary humanities scholars: Exploration and translation. (2024). Accessed: Aug 6: https://www.journals.uchicago.edu/doi/abs/10.1086/603337.
- [12] Genetic incompatibility of the reproductive partners: an evolutionary perspective on infertility. (2024). https://academic.oup.com/humrep/article/36/12/3028/6377223.
- [13] Study of dermatoglyphics in vitiligo. (2024). https://www.proquest.com/openview/0302513b11f52bf47d5c475b0c72788a/1.
- [14] Prenatal and perinatal environmental influences on the human fetal and placental epigenome. (2024). Accessed: Aug 27: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1038/clpt.2012.141.
- [15] Schaumann B, Alter M: Dermatoglyphic pattern configurations. Hal Theses. 2024, 7:27-87. 10.1007/978-3-642-51620-7_3
- [16] Robert JM: Anthropological dermatoglyphics: A review. Am J Phys Anthropol. 1980, 10:1002. 10.1002/ajpa.1330230509
- [17] Genetic diagnosis in the fetus. (2024). Accessed: Aug 07: https://www.nature.com/articles/s41372-020-0627-z.
- [18] Emotional Experiences and Motivating Factors Associated with Fingerprint Analysis. 2010:2024.
- [19] Past, Present, and Future of the Forensic Use of Fingermarks. 2024, 10:1007/978. 10.1007/978-3-030-69337-4_1
- [20] Wertheim K. Embryology and morphology of friction ridge skin. https://theses.hal.science/tel-01958881/.
- [21] Mechanical control of tissue morphogenesis during embryological development [Internet]. [cited. (20247). https://dash.harvard.edu/handle/1/41467389.
- [22] Bose A, Debnath S, Mondal N: An anthropological approach to study dermatoglyphics through historical perspectives. ANTROCOM. 2022, 18: 121-137.
- [23] Yu V, Stamoulis Z, Chen K, et al.: Genomic imprinting and developmental physiology: intrauterine growth and postnatal period. Perinatal and developmental epigenetics. Academic Press. 2023, 32:115-36.

SEEJPH 2024 Posted: 10-09-2024

- [24] Comparison of Clinical Assessment of Nutritional Status Score with Other Methods in the Assessment of Fetal Malnutrition ProQuest [Internet]. [cited. 2024, 8:
- [25] Golembo-Smith S, Walder DJ, Daly MP, et al.: The presentation of dermatoglyphic abnormalities in schizophrenia: A meta-analytic review. Schizophr Res. 2012, 1:1-11. 10.1016/j.schres.2012.10.002.
- [26] Early life events and their consequences for later disease: A life history and evolutionary perspective Gluckman PD, Hanson MA, Beedle AS. 2007, 1:1-19. 10.1002/ajhb.20590
- [27] Sam G, Singh A, Mushtaq S, et al.: Evaluation of dermatoglyphic patterns between two different ethnic populations: A comparative study. World J Dent. 2024, 15:150-154. 10.5005/jp-journals-10015-2383
- [28] Bonnevie K: Studies on papillary patterns of human fingers. J Genet. 1924, 15:1-111. 10.1353/lm.2008.001
- [29] Classification and developmental biology. JBJS. 2024, 8:7-12.
- [30] Mavalwala J: A methodology for dermatoglyphics fingers and palms. In: A methodology for dermatoglyphics fingers and palms. De Gruyter Mouton. 2011, 6:19-54. 10.1515/9783110800005.19
- [31] Morphodynamic modeling of river-dominated deltas: A review and future perspectives. 2024, 8:10. 10.1002/essoar.10507512.1
- [32] A correlative study of dermatoglyphic patterns with class I and III skeletal malocclusions. ProQuest . 2024, 8:21-79.
- [33] Neotectonic mountain uplift and geomorphology Ollier Geomorphology RAS. (2016). Accessed: July: https://journals.eco-vector.com/0435-4281/article/view/17655.
- [34] Sharma S, Khinchi MP, Sharma N, et al.: Female infertility: An overview. Int J Pharm Sci Res, 2011. 10.13040/IJPSR.0975-8232.2(1).01-12
- [35] Physiological aspects of female fertility: Role of the environment, modern lifestyle, and genetics | Physiological reviews. 2016, 96:873-909. 10.1152/physrev.00023.2015
- [36] Sheehan MT: Polycystic Ovarian Syndrome: Diagnosis and Management. Clin Med Res. 20041, 2:13-27. 10.3121/cmr.2.1.13.
- [37] Brunham RC, Gottlieb SL, Paavonen J.: Pelvic inflammatory disease. Medicine (Baltimore. 2015, 21:2039-48. 10.1056/NEJMra1411426.
- [38] Mahdavinezhad F, Gharaei R, Farmani AR, et al.: The Potential Relationship Between Different Human Female Reproductive Disorders and Sperm Quality in Female Genital Tract. Reprod Sci. 2022, 3:695-710. 10.1007/s43032-021-00520-7
- [39] Doufas AG, Mastorakos G: The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann. N. Y. Acad. Sci. 2000, 1:65-76. 10.1111/j.1749-6632.2000.tb06217.x.
- [40] Hafner LM: Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections. Contraception. 2015, 2:108-15. 10.1016/j.contraception.2015.01.004.
- [41] Diagnosis and management of infertility: A review. (2024). Accessed: Aug 27: https://jamanetwork.com/journals/jama/article-abstract/2781637.
- [42] Endometrial polyps: diagnosis and treatment options a review of literature: Minimally Invasive Therapy. Allied Technologies. 2024, 30:1080/13645706. 10.1080/13645706.2021.1948867
- [43] Diagnosis and Management of Infertility: A Review. 2024, 8:27-36.
- [44] Su HW, Yi YC, Wei TY, et al.: Detection of ovulation, a review of currently available methods. Bioeng Transl Med. 2017,

SEEJPH 2024 Posted: 10-09-2024

2:238-46. 10.1002/btm2.10058

- [45] Nishiyama H: Race, biometrics, and security in modern Japan: a history of racial government. University of, Warwick; 20152024, 8:2863865.
- [46] Ecological metabolomics: overview of current developments and future challenges | Chemoecology. 2011, 21:00049-011. 10.1007/s00049-011-0083-5
- [47] Fauser B.C, Diedrich K., Bouchard P, et al.: Contemporary genetic technologies and female reproduction. PMC. 2024, 8: 829-847. 10.1093/humupd/dmr033
- [48] Journals Cancers (ed): The influence of the microbiome on urological malignancies: A systematic review. 2024, 15:2072-6694. 10.3390/cancers15204984
- [49] Collard J: Conceiving abnormality. University of British Columbia. University of British Columbia, 2020. 8:24. 10.14288/1.0392013
- [50] Oxford Academic (ed): Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine | Human Reproduction Update. 2024, 8:28/3. 10.1093
- [51] Angel Sánchez-Garrido M, García-Galiano D, Tena-Sempere M, et al.: A review of 25 years of research in bidirectionality in parent-child relationships: An examination of methodological approaches. sagepub. 2016, 10:346-375. 10.1177/0165025415607379
- [52] Seth Young: The myth of promiscuity: Examining black male sexual narratives and sexual identity. ProQuest. 2024, 8:87.
- [53] Weinbaum AE: Walter benjamin and the work of art in a biotechnological age. Racial Aura: . Lit Med. 2007, 26:207-39. 10.1353/lm.2008.0011
- [54] Weinbaum AE: Dermatoglyphics: in health and disease a review. Int J Res Med Sci. 2014, 2:31-37. 10.1353/lm.2008.0011.
- [55] Kobyliansky E, Yakovenko K, Bejerano M, et al.: Relationship between genetic anomalies of different levels and deviation in dermatoglyphic traits. Int J Anthropol. 1999, 20:85-109. 10.1007/BF02445216
- [56] Rato L, Sousa ACA: The impact of endocrine-disrupting chemicals in male fertility: Focus on the action of obesogens. J Xenobiotics. 2021, 11:163-96. 10.3390/jox11040012.
- [57] Assidi M.: Infertility in Men. Advances towards a comprehensive and integrative strategy for precision theranostics. Cells. 2022, 11:1711. 10.3390/cells11101711
- [58] Assidi M. Infertility in Men: Advances towards a Comprehensive and Integrative Strategy for Precision Theranostics. Cells. 2022, 11:1711. 10.3390/cells11101711.
- [59] Ghayda RA, Cannarella R, Calogero AE, et al.: Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics. World J Mens Health. 2024, 42:39. 10.5534/wjmh.230050
- [60] Thornhill R, Moller AP: Development stability, disease and medicine. Biol Rev. 1997, 72:497-548. 10.1017/s0006323197005082.
- [61] Carew RM, French J, Morgan RM: A thematic review of ethical considerations for the creation and use of 3D printed human remains in crime reconstruction. Sci Justice. 2023, 63:330-42. 10.1016/j.scijus.2023.03.003
- [62] Panner Selvam MK, Durairajanayagam D, Agarwal A: Proteomic and metabolomic fingerprinting in male Infertility.. Contemporary Clinical Approaches (ed): Springer International Publishing, 20202024912338.
- [63] Alesi S, Ghelani D, Mousa A: Metabolomic biomarkers in polycystic ovary syndrome: A review of the evidence. Semin Reprod Med. 2021, 4:102-110. 10.1055/s-0041-1729841.

SEEJPH 2024 Posted: 10-09-2024

- [64] Weeden J, Sabini J: Physical attractiveness and health in western societies: A review. Psychol Bull. 2005, 131:635-653. 10.1037/0033-2909.131.5.635
- [65] Gouello A, Dunyach-Remy C, Siatka C, et al.: Analysis of microbial communities: An emerging tool in forensic sciences. Diagnostics. 2021, 12:1. 10.3390/diagnostics12010001
- [66] Zhavoronkov A, Mamoshina P, Vanhaelen Q, et al.: Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Res Rev. 2019, 49:49-66. 10.1016/j.arr.2018.11.003
- [67] De Gramont A, Watson S, Ellis LM, et al.: Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol. 2015, 12:197-212. 10.1038/nrclinonc.2014.202
- [68] Wittchen HU: Reliability and validity studies of the WHO-Composite International Diagnostic Interview (CIDI): A critical review. J Psychiatr Res. 1994, 28:57-84. 10.1016/0022-3956(94)90036-1
- [69] 69Argenziano G, Soyer HP, Chimenti S, et al.: Dermoscopy of pigmented skin lesions. J Am Acad Dermatol. 2001, 10:1016. 10.1016/j.jaad.2001.11.001