

Organizational Culture and Knowledge Management in a Basic Education Educational Institution

Raquel Elizabeth Almeida Suárez¹, Edwin Raul Lazo Eche², Verónica Vanessa Yagual Montero³, Efrén Alejandro Viteri Chiriboga⁴

- ¹Magister en Gestión de los Servicios de la Salud Universidad César Vallejo, Piura Perú, doctorando en Educación, Licenciada en Enfermería, Ministerio de Salud Pública, p7002454277@ucv.edu.pe
- ²Magíster en Matemática Aplicada Universidad Nacional de Piura, Piura Perú, doctorando en Educación, docente en la Universidad Tecnológica del Perú Facultad de Ciencias Psicológicas, c20154@utp.edu.pe
- ³Magister en psicología Educativa Universidad César Vallejo, Piura Perú, doctorando en Educación, docente de Educación primaria, vyagual@ucv.edu.pe
- ⁴Doctor en Educación Universidad César Vallejo, Piura Perú, Magister en Terapia Familiar Sistémica y de Pareja, Psicólogo Clínico, doctorando en Psicología, docente en la Universidad de Guayaquil Facultad de Ciencias Psicológicas, efren.viteric@ug.edu.ec

KEYWORDS

Knowledge management, organizational culture, educational institutions, basic education.

ABSTRACT

There is a broad consensus that knowledge management represents an asset that can be used by different organizations as long as it is incorporated within the framework of an organizational culture. In this context, the research aimed to determine the influence of organizational culture on knowledge management in basic education institutions. Basic research taken from a non-experimental, correlational design, took a sample of 150 teachers. Standardized instruments were applied for both variables which had a good level of reliability. It was found that 51.3% of teachers characterized the organizational culture at a process level and 43.3% at the same level for Knowledge Management. The ordinal regression model allowed us to determine that the characteristics of the organizational culture configure a model for knowledge management. The Nagelkerke coefficient showed that organizational culture predicts 39.4% of knowledge management levels in basic education institutions.

1. Introduction

Knowledge management (KM) represents a way in which organizations can obtain better performance based on the skills of their members, however, its growth is informal and limited to sporadic academic discussion spaces. (Álvarez et al., 2020)

Educational institutions (EI) are also organizations, they have goals, they pursue a social purpose which is to guarantee a comprehensive education of future citizens, however, sometimes they do not achieve their expected levels of development. Knowledge management processes in educational institutions are directly related to teaching performance and have a positive impact on teacher engagement. (Sivagnanam et al., 2023)

From this, it is inferred that the process for knowledge management is a practice that is not well established, sporadic in educational organizations, that is, it is not part of the organizational culture (OC), which misses an opportunity to improve organizational performance by taking teacher commitment as a structural element. Countries such as Spain, the United States, Slovenia, among others, have implemented models to carry out KM in EI, taking as qualitative, quantitative or mixed perspectives whose starting point configures the traditional model of Nonaka and Takeuchi and other components that are directed towards the academic performance of students (Acevedo et al., 2020).

In Malaysia, KM is considered a unique predictor of institution-level change and is a strength for new perspectives of organizational learning. In Chile, OC is a predictor element that allows us to explain the levels of creation, storage and transfer of knowledge. (Rahman et al., 2023) (Rodríguez et al., 2022)

The reality explored in Peru reflected that 63.6% of basic education teachers have an average level in terms of KM, highlighting the impact on the processes of socialization, internalization, combination and externalization of pedagogical knowledge (Primo et al., 2022), in addition to the fact that there are educational gaps that have worsened as a result of Covid19 that affected educational quality and of which good practices of educational management based on obtaining knowledge are the response to this harsh reality (Páucar & Rimac, 2022).

There is a record of research where the association between organizational culture and KM has been

corroborated. Although KM provides competitive advantages, little work has been done in the field of opportunities it generates for the education sector at all levels. (Al Saifi, 2015) (Khatun et al., 2021)

In addition, there are few studies where knowledge management is linked to organizational culture using some resources generally solved through technology, some only maintain that collaborative behavior suffers effects from the exchange of knowledge. Some authors point out that knowledge must be directly integrated into leadership, as well as into organizational culture, which is not always done. The reality presented so far reflects shortcomings in obtaining an approximation of the influence of OC on KM in the framework of EI in the field of basic education in different countries. (Eshbayev et al., 2023) (Chedid et al., 2020) (Hassan et al., 2021)

This research collected the problems obtained from the situational diagnosis corresponding to KM in EIs, the observation of which showed little generation of pedagogical knowledge derived from their daily experience during the learning sessions, limitations for the incorporation of implicit knowledge, especially in the reflection of those effective didactic strategies for student learning, these are based on the understanding of the social, psychological and cognitive characteristics of students. There are also deficiencies in the process of knowledge transfer because there is not the necessary time for reflection on this practice, nor is it a habit established in most teachers, there are limitations in the systematization of the work carried out and there is no usefulness in carrying out this process since in most cases they are considered as isolated events within the tasks of the teachers. which you can take a back seat.

The lack of research that also explores the analysis of KM development from the perspective of CO allowed it to be formulated as a research question: What is the influence of CO on KM for regular basic education institutions?

The research had a social relevance since basic education EIs are also organizations in which it is not always possible to achieve the incorporation and transfer of knowledge to the transformation of their functions, especially due to the variety of social contexts in which they are located, the social problems of teachers and the demographic factors that affect them. The relevance of investigating how KM is developed in EI in basic education occurs in the context of the lack of studies on the subject, especially at this level of education, where the latest measurements reflect organizational problems that must be addressed from national policies.

Conceptually, KM is defined as an asset by which organizations identify, capture, store, disseminate and apply knowledge to their processes in order to improve their performance. Since its appearance, KM has managed to put into perspective the dynamism of knowledge in an organization. (González et al., 2023)

Knowledge goes from being a tacit and explicit element to becoming an added value through the processes of internalization and externalization to all members of the organization. The importance of KM lies in the fact that it becomes a support for organizations to face the political, social, technological changes that finally configure the state of survival of an organization (Nonaka y Takeuchi, 1995) (Salguero & García, 2024), with it in an era marked by a society that coexists under a cooperative technological network, the transfer of knowledge takes a crucial role for organizational survival, but also its scope can produce added value for the development of a nation (Fioravanti et al., 2023) (Mostofa y Othman, 2024).

The need for KM in educational institutions allows us to take advantage of different aspects derived from experience, not only knowledge but also in the reduction of work, to be able to replicate processes and also to obtain decision-making in a timely manner. Despite these advantages that arise in organizations, not all organizations manage to be aware of the asset it means and the relevance they have in different contexts. (Khatun et al., 2021) (Considering , 2019)

It is also important to specify that KM is intrinsically related to the quality of information, where the level of knowledge about it correlates with the skills of its employees to apply them in obtaining new organizational knowledge. On the other hand, given the dynamics of constant change in technological matters, risks and expectations, staying at the forefront of knowledge becomes an urgent need. KM also offers a structural approach to strategically obtaining and transferring knowledge. (Zambrano et al., 2023) (Hernández et al., 2022) (Pérez et al., 2023)

With respect to OC, it is understood as a set of patterns of assumptions that are internalized and learned to handle in a group of people and that are transmitted to other members. Other authors define it as a way of life within an organization obtained from the individual contribution to the organization as a form of lifelong learning. The construct of OC has been relevant in recent years by various researchers because its effects on the quality of

services and the assurance of success are known. The main thrust of CO is based on elements such as mission and vision, in addition to the values that should be a commitment shared by all employees in the organization. (Schein, 2004) (Parrales et al., 2023) (Palma Gardea et al., 2024) (Hassan et al., 2021)

The culture of innovation is a type of OC that comprises principles and values oriented towards the creation of new processes or the reengineering of existing ones from an autonomous space for its members. (Pedraja et al., 2021)

2. Methodology

The objective of this research was to determine the influence of OC on KM in Basic Education educational institutions from the perspective of teachers and administrative staff. It was a research with a quantitative approach and a basic type, with a non-experimental, cross-sectional correlational design. The hypothetical deductive method was also applied. The population was made up of 244 teachers belonging to six educational institutions located in the city of Piura, which offer teaching services at the regular basic education level. The sample was determined by random sampling, defining a total of 150 teachers. The six educational institutions were selected as part of the observational process of knowledge management developed in the context of a postgraduate course at a Peruvian university. These educational institutions belong to the urban area in addition to having more than 10 years of operation in the locality and state management.

Board 1. Demographic indicators of the study sample

Board 1.	Demographic indicators of		<u>e</u>
T 1' /		Frequency	
Indicators		Absolute	Its
Sex	Female	86	57,3%
	Male	64	42,7%
Age	[25 – 35 >	31	20,7%
	[35 – 45 >	64	42,7%
	[45 – 55 >	41	27,3%
	[55 – more >	14	9,3%
Employment Status	Hired	84	56,0%
	Noted	66	44,0%
Position in institution	Managerial	12	8,0%
	Teaching Coordinator	30	20,0%
	Teacher	108	72,0%
Years of teaching experience	[1-5>	32	21,3%
	[5 – 10 >	47	31,3%
	[10 – 15 >	52	34,7%
	[15 – 20 >	19	12,7%
Level at which he teaches	Initial	32	21,3%
	Primary	60	40,0%
	High school	58	38,7%
Academic degree achieved	Bachelor	93	62,0%
-	Master	51	34,0%
	Doctor	6	4,0%
Total = 150			

According to Table 1, 57.3% of the sample were female, 42.7% belonged to the age range between 35 and 45 years, and 56% had the status of contracted, which reduces the period of institutional work to one year, after which they do not always obtain a contract in the same institution. Of the sample, 8% were managers and 20% were assigned coordination functions. On the other hand, 34.7% had between 10 and 15 years of teaching experience; 40% belonged to the primary level and 38.7% to the secondary level. Similarly, 62% of teachers had a bachelor's degree, of which all had a bachelor's degree in education and 34% had a master's degree.

2.1 Instruments and techniques used

The variables were measured as OC, which was considered as independent and the CG as dependent. In the process of collecting information, the survey technique was applied under the implementation of two questionnaires.

For OC, a scale developed was used because it consisted of 92 items grouped into five groups of factors: culture of change and innovation aimed at measuring customer service, innovation and creativity, learning and organizational change; culture of the task and results whose orientation was to measure the culture of efficiency and productivity, of the task, achievement of goals and objective; the culture of personal well-being oriented

towards recognition and rewards, development and quality of work life, health and safety at work; the culture of teamwork whose orientation was given towards interpersonal relationships, empowerment and teamwork; organizational values were also considered as a factor, where respect, commitment, honesty and responsibility were valued. Patlán et al. (2021)

This questionnaire was oriented towards the work of the educational institution through verbal precisions which did not influence its reliability value. The theoretical reliability was 0.826, while in the application a value of 0.807 was obtained, with no variability in internal consistency.

For KM, the questionnaire was used Square (2020), which was adapted from a university context to basic education institutions, also taking the development of intellectual capital as an axis. Only 41 items related to KM were selected, the essence of which comprises the model developed by Nonaka and Takeuchi in the different components of the knowledge cycle. The theoretical reliability of the questionnaire took values between 0.7 and 0.8 for the dimensions knowledge creation, knowledge transfer/storage, application/use of knowledge.

The system of both general and specific hypotheses to be tested was based on:

HG: CO significantly influences the KM level for Basic Education Els.

HE1: The Culture of Change and Innovation influences KM in Basic Education EIs.

HE2: The culture of the task and results influences KM in Basic Education EIs.

HE3: The culture of personal well-being influences KM in Basic Education EIs.

HE4: The culture of teamwork influences KM in Basic Education EIs.

HE5: Organizational values influence KM in Basic Education EIs.

2.2 Procedure

The procedure for collecting information went through the request to the educational institutions for the application of the research. Once the research was settled, the consent of the teachers was requested to belong to the research sample. The collection of information was carried out physically during a week of academic work. The questionnaires were coded and sorted for processing. Scales were established for organizational culture based on the positioning quartiles of the scores. For both OC and KM the scales were: Incipient (0% - 50%), Progress (51% - 75%) and developed (76% - 100%).

The analysis of the information was developed from the ordinal regression analysis through three moments: Contrast of the regression model, analysis of the goodness of fit and calculation of the square Pseudo R for the intersection of variables. Assuming in each case a confidence level of 95% and a margin of error equivalent to 5%

The research contemplated the ethical criteria of quantitative research since protocols were applied for the protection of the identity of the participants, as well as the preservation of the name of the educational institutions. All participants expressed their willingness to participate in the research. The instruments applied did not imply direct impact on the sample units.

3. Results

Descriptive calculations were made based on the scales of each of the variables and dimensions, see Table 2.

Board 2. Organizational culture and knowledge management. Descriptive by dimensions

Variable / Dimension	Incipient	Process	Developed	
Organizational Culture (OC)	24,7%	51,3%	24,0%	
Culture of change and innovation	28,0%	56,0%	16,0%	
Task culture and results	18,0%	43,3%	38,7%	
Culture of personal well-being	16,0%	47,3%	36,7%	
Culture of teamwork	23,3%	53,3%	23,3%	
Organizational values	26,0%	33,3%	40,7%	
Knowledge Management (KM)	39,3%	43,3%	17,3%	
Knowledge creation	41,3%	49,3%	9,3%	
Knowledge transfer and/or storage	29,3%	45,3%	25,3%	
Application and/or use of knowledge	34,7%	60,0%	5,3%	

Source: Elaboration based on consolidation of scales.

The CO in the Basic Education EIs that were part of the study had a process level for 51.3% of teachers. The same level was evidenced in 56% of teachers about the culture of change and innovation; 47.3% in the culture of personal well-being; 53.3% for the culture of teamwork; while organizational values had a developed level for 40.7%. Regarding GC, it was found that perception at the incipient and process levels were very close, according to 39.3% and 43.3% respectively. In the analysis by dimensions, 49.3% of the teachers perceive that the creation of knowledge is at a process level, while 45.3% perceive the same level for transfer and storage. A fixed trend is at the process level for the application of knowledge from the perspective of 60% of teachers.

Board 3. HG Contrast: Organizational Culture and Knowledge Management

Model Fit Contrast Sta						
Model	Logaritmo de verosimilitud -2	la	χ^2	Gl.	Mr.	Pseudo R square for fit
Intersection only	148,661					Cox and Snell 0,414
Final	35,744	22	24,142	4	0,000	Cox and Shell 0,414
Pearson		74	4,362	4	1,000	Nagelkerke 0,394
Deviation		5	1,842	4	1,000	McFadden 0,405

Note: Logit binding function.

The analysis carried out to contrast the general hypothesis (see table 3) showed by means of the Chi-square coefficient and its significance () that OC generated a functional model that allowed to explain KM in Basic Education EI. In this part, Pearson's coefficient was 74.362, which showed a good fit for the data obtained (sig. = 1.000). On the other hand, the Nagelkerke coefficient reflected that 39.4% of the data obtained in the KM are influenced by the levels of CO perceived by the teachers of the EI. $\chi^2 = 224,142$; sig. = 0,00

Board 4. Contrast of HE1: Culture of Change and Innovation and Knowledge Management

Model Fit Contrast Star							
Model	Logaritmo de verosimilitud -2	la	χ^2	Gl.	Mr.	Pseudo R square for fit	
Intersection only	278,002					Cox and Snell 0.421	
Final	74,245	37	78,132	11	0,001	Cox and Shell 0,421	
Pearson		1	12,047	11	0,974	Nagelkerke 0,372	
Deviation		13	34,620	11	0,912	McFadden 0,387	

Note: Logit binding function.

For specific hypothesis 1 (see table 4), it was evidenced through the chi-square coefficient and its significance () that the culture of change and innovation generated a functional model that allowed explaining KM in Basic Education EIs. In this part, Pearson's coefficient was 112.047, which, according to its level of significance, had a good data fit for the levels of GC (sig. = 0.974). The influence of the level of culture of change and innovation on KM was obtained from the Nagelkerke coefficient, which indicated that 37.2% of the data obtained from KM were explained by this dimension and indicators. $\chi^2 = 378,132$; sig. = 0,001

Board 5. HE2 Contrast: Task Culture and Results and Knowledge Management

Model Fit Contrast Sta						
Model	Logaritmo de verosimilitud -2	la	χ^2	Gl.	Mr.	Pseudo R square for fit
Intersection only	194,621					Cox and Snell 0.348
Final	104,331	2	51,114	13	0,057	Cox and Shen 0,348
Pearson		6	4,122	13	0,541	Nagelkerke 0,304
Deviation		5	5,774	13	0,607	McFadden 0,297

Note: Logit binding function.

For specific hypothesis 2 (see table 5) it was possible to infer through the Chi-square coefficient and its significance () that the culture of the task and results, as well as the indicators, did not generate characteristics that were decisive to give consistency to a model that explains the levels of KM. $\chi^2 = 261,114$; sig. = 0,057

Board 6. HE3 Contrast: Personal Wellbeing Culture and Knowledge Management

Model Fit Contrast Stati							
Model	Logaritmo de verosimilitud -2	la	χ^2	Gl.	Mr.	Pseudo R square	e for fit
Intersection only	190,234					Cox and Snell	0.184
Final	78,332	21	7,661	12	0,107	Cox and Shen	0,184
Pearson		59	,131	11	0,317	Nagelkerke	0,147

Organizational Culture and Knowledge Management in a Basic Education Educational Institution SEEJPH 2024 Posted: 20-10-2024

Deviation	62,734	11	0,480	McFadden	0,107

Note: Logit binding function.

In the analysis of specific hypothesis 3 (see table 6), it was evidenced through the Chi-square coefficient and its significance () that the culture of personal well-being and its indicators did not configure a model that directly explains the level of KM in EI. $\chi^2 = 217,661$; sig. = 0,107

Board 7. HE4 Contrast: Teamwork Culture and Knowledge Management

Model Fit Contrast Sta	atistics				J	Š	
Model	Logaritmo de verosimilitud -2	la	χ^2	Gl.	Mr.	Pseudo R square for	fit
Intersection only	117,451					Cox and Snell 0.3	20
Final	74,258	98	3,521	10	0,004	Cox and Shen 0,3	20
Pearson		60	,847	10	0,874	Nagelkerke 0,2	97
Deviation		59	,631	10	0,795	McFadden 0,3	05

Note: Logit binding function.

Regarding specific hypothesis 4 (see table 7), the Chi-square coefficient and the level of significance obtained () showed that the culture of teamwork had predictive characteristics for KM. Similarly, with the value of Pearson's coefficient and its significance () determine the existence of a good fit for the data, while Nagelkerke's Pseudo R square coefficient determined that 29.7% of the GC levels are explained from the level of development of the Teamwork Culture. $\chi^2 = 98,521$; sig. = 0,004 $\chi^2 = 60,847$; sig. = 0,874

Board 8. HE5 Contrast: Organizational Values and Knowledge Management

		-			8 8
Model Fit Contrast Star					
Model	Logaritmo de verosimilitud -2	la χ²	Gl.	Mr.	Pseudo R square for fit
Intersection only	87,004				Cox and Snell 0.381
Final	64,110	93,637	11	0,001	Cox and Snell 0,381
Pearson		60,147	11	1,000	Nagelkerke 0,346
Deviation		50,668	11	1,000	McFadden 0,357

Note: Logit binding function.

Finally, in this section for specific hypothesis 5 (see table 8) the Chi-square coefficient and the level of significance obtained () allowed us to observe that the characteristics of the organizational values configured the model to explain KM. On the other hand, the value of Pearson's coefficient and its significance () showed that there was a good fit for the regression model. Now, as for Nagelkerke's Pseudo R square coefficient, it showed that 34.6% of KM was explained from the organizational values of the teachers. $\chi^2 = 93,637$; sig. = 0,001 $\chi^2 = 60,147$; sig. = 1,000

4. Discussion

The analysis of the frequencies for OC showed that there is still no adequate level of positioning in Basic Education EIs, this because 51.3% of teachers have a perception that it is in the process of being processed, while KM has a very similar perspective since 43.3% of teachers also classify it at the same level of achievement.

The reality of OC reflected that teachers perceive little institutionalization of a clearly defined organizational culture, that is, it does not have the expected relevance, this fact contradicts positions assumed as . The levels obtained for KM coincide with the results of Palma et al. (2024) Primo et al. (2022) reflecting that in Peru EIs have done little to strengthen KM processes, where the main appreciations are directly oriented to perceive that the lack of commitment is an element that does not allow generating a proposal of greater value for EI.

Through the research it was found that CO had components that configured a good data fit to predict KM levels, specifically the Nagelkerke coefficient showed that 39.4% of KM levels are explained by CO, in addition the elements of the culture of change and innovation (Nagelkerke = 0.372), teamwork culture (Nagelkerke = 0.297) and organizational values (Nagelkerke = 0.346) manage to significantly explain the processes of creation, storage, transfer, use and application of the knowledge generated in Basic Education EIs.

These results coincide with the scenario described by Al Saifi (2015) in this case more than the association had a determined as a predictive factor, a fact that also coincides with Rodríguez et al. (2022). This allows us to directly infer that both variables configure a relational state that makes it possible to generate value to the educational processes that take place in EIs, which also goes beyond what is expressed by Chedid et al. (2020) who refer that there is only a culture to work as a team as long as knowledge transfer is taking place.

These results are relevant since the organizational work of EIs in Peru must be strengthened, for this it is necessary to look for the elements that allow improving the quality of education, based on the implementation of different typologies of organizational culture whose common denominator is that of obtaining pedagogical knowledge.

It is well known that different problems emerge from the reality in which EIs work, which can be addressed from the KM methodology. Problems such as school dropout, the failure of educational inclusion, school aggression, the development of the competency-based approach, among others, emerge every year through the diagnostic analysis that is carried out in the collegiate discussion where they have also been assumed in isolation from annual strategies, which are not sustainable over time, this is because an institutional KM model is not yet adequately configured for each case, having its main weakness in the lack of a CO that allows building organizational values to make use of innovation and teamwork.

5. Conclusions

It has been proven that organizational culture has a significant influence on knowledge management for basic education institutions in Peru. With this, the improvement of knowledge management must start from adequately configuring a work model that includes elements such as innovation, creativity, teamwork. In addition, organizational values must be considered as an axis to seek the social positioning of educational institutions and face the challenges that emerge from social, cultural, technological changes and changes in educational paradigms that ultimately affect their functioning and may affect their survival as an organization.

References

- [1] Acevedo-Correa, Y., Aristizábal-Botero, C. A., Valencia-Arias, A., & Bran-Piedrahita, L. (2020). Formulation of knowledge management models applied to the context of higher education institutions. Information Technology, 31(1), 103–112. https://doi.org/10.4067/S0718-07642020000100103
- [2] Al Saifi, S. A. (2015). Positioning organisational culture in knowledge management research. Journal of Knowledge Management, 19(2), 164–189. https://doi.org/10.1108/JKM-07-2014-0287
- [3] Álvarez-Cedillo, J. A., Aguilar-Fernández, M., Álvarez-Sánchez, T., García Jarquín, B., & Patiño Ortiz, J. (2020). Knowledge management in educational institutions. RIDE Ibero-American Journal for Educational Research and Development, 11(21). https://doi.org/10.23913/ride.v11i21.775
- [4] Chedid, M., Caldeira, A., Alvelos, H., & Teixeira, L. (2020). Knowledge-sharing and collaborative behaviour: An empirical study on a Portuguese higher education institution. Journal of Information Science, 46(5), 630–647. https://doi.org/10.1177/0165551519860464
- [5] Cuadrado-Barreto, G. (2020). Knowledge management in the university: questionnaire for institutional evaluation. Ibero-American Journal of Higher Education, 11(30). https://doi.org/10.22201/iisue.20072872e.2020.30.596
- [6] Eshbayev, O., Mirzaliev, S., Sultonov, M., Igamberdiev, A., Kholikova, N., Razikov, N., Hashimov, B., & Aziz, A. (2023). A digital sustainability approach for effective knowledge and information management in education specific non-profit organizations: Culture Intelligent IS Solutions. E3S Web of Conferences, 452, 07023. https://doi.org/10.1051/e3sconf/202345207023
- [7] Fioravanti, V. L. S., Stocker, F., & Macau, F. (2023). Knowledge transfer in technological innovation clusters. Innovation & Management Review, 20(1), 43–59. https://doi.org/10.1108/INMR-12-2020-0176
- [8] González Roys, G. A., Martínez Arredondo, L. E., & Verdía Miranda, L. J. (2023). Research and knowledge management in university education. Revista Venezolana de Gerencia, 28(103), 1312–1326. https://doi.org/10.52080/rvgluz.28.103.24
- [9] Hassan, H., Ghee, W. Y., Aziz, M. I., Ramli, A. J., & Razak, A. A. (2021). Knowledge management at universities: The roles of leadership, culture, and information technology. Organizational Cultures, 21(1). https://doi.org/10.18848/2327-8013/CGP/v21i01/1-20
- [10] Hernández Luque, E., Estrada-Sentí, V., & Hernández de la Rosa, M. Á. (2022). Postgraduate Education from the point of view of knowledge management. Scire: Representation and Organization of Knowledge, 28(2), 55–65.

Organizational Culture and Knowledge Management in a Basic Education Educational Institution SEEJPH 2024 Posted: 20-10-2024

- https://doi.org/10.54886/scire.v28i2.4795
- [11] Khatun, A., George, B., & Dar, S. N. (2021). Knowledge management practices in the higher education sector with special reference to business schools. Education and Self Development, 16(2). https://doi.org/10.26907/esd.16.2.04
- [12] Mostofa, S. M., & Othman, R. (2024). User awareness of knowledge management practices of public university libraries in Bangladesh. Record and Library Journal, 10(1), 76–92. https://doi.org/10.20473/rlj.V10-I1.2024.76-92
- [13] Nonaka, I., & Takeuchi, H. (1995). The Knowledge Creating Company (Oxford University Press, Ed.).
- [14] Palma Gardea, L. C., Zueck Enríquez, M. del C., Tarango Ortiz, J., Enríquez Del Castillo, L. A., & Soto Valenzuela, M. C. (2024). Organizational culture and university context: an approach to the professional field of physical culture. Retos, 54, 535–540. https://doi.org/10.47197/retos.v54.99997
- [15] Parrales Poveda, M. L., Rodríguez Gutiérrez, K. G., Sornoza Parrales, D. R., & Fienco Parrales, M. J. (2023). Working environment. Considerations for a Higher Education Institution. Revista Venezolana de Gerencia, 28(Especial 9), 68–84. https://doi.org/10.52080/rvgluz.28.e9.5
- [16] Patlán Pérez, J., Betanzo San Román, S., De la Cruz Ramírez, B., & Espinoza López, V. (2021). Scale to measure types of organizational culture: Construction and psychometric properties; [Scale to measure types of organizational culture: Construction and psychometric properties]. Accounting and Administration, 66(3).
- [17] Páucar Coz, D. A., & Rimac Ventura, E. (2022). Teacher reflection on knowledge management in law teaching in times of COVID-19. Revista Venezolana de Gerencia, 27(97), 44–57. https://doi.org/10.52080/rvgluz.27.97.4
- [18] Pedraja-Rejas, L., Rodríguez-Ponce, E., & Muñoz-Fritis, C. (2021). Transformational leadership and innovative culture: Effects on institutional quality. Revista Venezolana de Gerencia, 26(96), 1004–1018. https://doi.org/10.52080/rvgluz.26.96.2
- [19] Pérez Gamboa, A. J., Gómez Cano, C. A., & Sánchez Castillo, V. (2023). Decision making in university contexts based on knowledge management systems. Data and Metadata, 1, 92. https://doi.org/10.56294/dm202292
- [20] Primo, R., Panduro, J., Palacios, J., Mayorga-Rojas, J., & Centurión-Larrea, A. (2022). Knowledge management, digital competence and reflective teaching practice in the Covid-19 context. Iberian Journal of Information Systems and Technologies, E48.
- [21] Rahman, M. M., Haque, A. K. M. A., & Suib, F. H. (2023). The Confronts of Edutourism in the Post-COVID-19 Pandemic Era: A Malaysian Perspective. Intellectual Discourse, 31(2). https://doi.org/10.31436/id.v31i2.1911
- [22] Rodríguez-Ponce, E., Pedraja-Rejas, L., Muñoz-Fritis, C., & Araneda-Guirriman, C. (2022). Knowledge management and organizational culture in Chilean higher education institutions. Ingeniare. Revista Chilena de Ingeniería, 30(2). https://doi.org/10.4067/s0718-33052022000200266
- [23] Salguero Barba, N. G., & García Salguero, C. P. (2024). Knowledge management based on artificial intelligence for the transformation of educational institutions. LATAM Latin American Journal of Social Sciences and Humanities, 5(3). https://doi.org/10.56712/latam.v5i3.2156
- [24] Schein, E. (2004). Organizational culture and leadership (Jossey-Bass, Ed.; 3a Edition).
- [25] Sivagnanam, P., Pillai, A. R., Elangovan, R., & Parayitam, S. (2023). Knowledge management process, infrastructure, and system quality as resilient strategies to respond to COVID-19 pandemic challenges: Evidence from higher educational institutions in India. Knowledge and Process Management, 30(4), 333–354. https://doi.org/10.1002/kpm.1722
- [26] Vu, N. X. (2019). Knowledge management in business and education: Evidence from vietnam companies and universities. Management Science Letters, 9(12). https://doi.org/10.5267/j.msl.2019.6.027
- [27] Zambrano, E., Sánchez, Y., Loor, L., & Gómez, S. (2023). New paradigm of knowledge management in Ecuadorian Higher Education. Journal of Social Sciences, XXIX, 249–263. https://doi.org/10.31876/rcs.v29i3.40710