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1. Introduction 

IMRT is an advanced radiation therapy technique to treat cancers, which uses a specialized 

computerized planning system (Cad/cam) along with linear accelerator schematics for 

delivering exact radiation dosages of malignant tumours while decreasing radiations on the 

surrounding uninvolved tissues. IMRT delivers radiation at different intensities, making it 

extremely accurate for more complex tumour shapes and areas [1]. The irradiation dose and 

beam angles need to be optimally adjusted for IMRT as those are the main configuration 

parameters of radiation which heavily affect treatment results including patient safety. Most of 

the traditional mathematical optimization techniques have been implemented to solve this 

multi-objective problem, considering that it is essential to achieve a maximum tumour coverage 

and minimum OAR exposure.  However, traditional optimization approaches are limited in 
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ABSTRACT:  

 A key technique used in cancer treatment is called Intensity-Modulated Radiation Therapy 

(IMRT), which requires accurate delivery of doses to target the tumors and reduce exposure 

to healthy tissues. Mathematically, optimal beam angles to maximize objectives are 

introduced as decision variables and the objective for an IMRT plan is used both linear or 

nonlinear functions of fluence intensities. Yet these techniques struggle with multi-

objective optimization in complex settings and adapting to clinical data that is collected in 

real-time. In this paper, a novel AI-ML framework is introduced in which mathematical 

optimization integrated with the ethical dimensions of Artificial Intelligence (AI) and 

Machine Learning (ML)-enabled optimization leads to better treatment results for IMRT. 

The method uses reinforcement learning (RL) for adaptive optimization of the dose based 

on actual patient feedback, a deep-learning approach to predictive beam angle selection, 

and GA-based multi-objective optimization. Primary resulting metrics include tumour 

coverage, organ-at-risk (OAR) sparing, treatment planning time, and computational speed. 

The augmented framework integrates direct patient-specific information such as tumour 

geometry and biological markers to assist the treatment plan with a personalized approach, 

thereby improving precision and efficiency. We show experimentally that our method is 

considerably faster, with a slight improvement in dose distribution conformity and tumour 

coverage while causing less damage to normal tissues. Their AI-ML enhanced optimization 

framework proposes a revolutionary solution for IMRT, circumventing the 

disadvantageous feature of traditional methods and paving the way to more efficient 

personal cancer therapies. These results suggest that AI-based methods could help 

transform how radiation therapy is performed for cancer patients. 
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handling the complexity and variability of clinical scenarios that arise in IMRT. Most existing 

methods for discovering optimal trades exploit continuous approximations of the binary 

constraints, which can be computationally expensive and where it is challenging to find global 

optima in multi-objective non-convex problems [2]. In addition, these conventional methods 

do not allow for real-time adaption preventing on-the-fly corrections during treatment plans 

challenging patient anatomy or imaging feedback in a transparent timely fashion. 

Consequently, there is an increasing requirement for more efficient and flexible optimization 

techniques that can accommodate these complexities to enhance treatment quality and reduce 

planning time. 

Some notable advances that may mitigate these limitations in radiation oncology 

include the introduction of Artificial Intelligence (AI) and Machine Learning (ML). Artificial 

intelligence (AI) models, especially deep learning and reinforcement learning allow for 

treatment plans to be dynamically optimized by modelling against enormous datasets so that 

they can learn from patient-specific variables [3]. Reinforcement Learning, for instance, can 

tune radiation doses per treatment in real-time and feedback from the patient within the same 

application. Likewise, power calculations deep learning models can be used to predict complex 

tumour geometries beam angles and, in this way, decrease manual adjustment requirements, 

making dose delivery more accurate. The eventual objective is to incorporate AI and/or ML 

towards IMRT optimization, producing this more precise plan faster than currently achievable 

in a patient-specific nature. Multi-objective optimization can be achieved more efficiently by 

using powerful AI algorithms, which are much faster in balancing tumour coverage and OAR 

sparing while decreasing the planning time as well as its cost [4]. Here we propose an intriguing 

framework which is AI-ML integrated and brings to the table these techniques along with 

conventional mathematical optimization of IMRT. The results of case studies and experiments 

prove its efficiency in treatment planning, computational performance and improvement in the 

patient outcome compared to other frameworks. 

2. Literature Review 

 Mathematical optimization has a long history in radiation therapy, particularly for 

Intensity intensity-modulated radiation Therapy (IMRT); Conventional techniques like linear 

and nonlinear programming have been widely used to determine beam angles and dose 

distributions which deliver high doses within a target while sparing normal organs at risk, many 

with variable success. Studies [5]. Consequently, it was possible to perform narrow pencil beam 

irradiation with variable dose distribution [6] adding significantly higher accuracy of radiation 

therapy. But while they are powerful these algorithms aren't robust enough to perform real-

time adaptation or multi-objective optimization in clinical scenarios. 

AI & ML in radiation oncology has revolutionized IMRT optimization.  [7] 

demonstrated the capacity for AI to dynamically optimize treatment planning by learning from 

large datasets and incorporating patient-specific factors. By fine-tuning the treatment plan in 

line with patient feedback, reinforcement learning can perform real-time adjustments to 

radiation doses. The live interactive capacity for dosing is a major improvement from standard 

optimization procedures, allowing treatment planning in real-time. The utilization of deep 

learning in beam angle optimization and treatment planning has also gained considerable 

interest. Tseng et al. Deep learning was applied to IMRT treatment planning for nasopharyngeal 

carcinoma, where convolutional neural networks have been shown to predict the optimal beam 

angles based on tumour geometry [8]. The application of deep learning models for IMRT has 

replaced manual work, making the process more accurate and much quicker to calculate 

treatment plans. This has not only provided the opportunity to improve the accuracy in the 

delivery of doses but particularly in complex tumour geometries. 
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The use of genetic algorithms in multi-objective optimization as well for IMRT has also 

been successful. [9] explored the use of genetic algorithms to trade-off beam angles against 

conflicting objectives: how do you deliver enough dose at an optimal proportion in solid 

tumours, while sparing OAR as best possible? Genetic algorithms guide the system towards a 

proper solution space making it possible to find better compromises between conflicting goals. 

This approach gives a potential solution to one of the dilemmas in IMRT multi-objective 

optimization. 

3. PROPOSED ALGORITHM 

In this section, we proposed the AI-ML Augmented Mathematical Optimization in IMRT is 

proposed as follows:  

Algorithm: AI-ML Augmented Mathematical Optimization in IMRT 

Input: Patient-specific data 𝒫, Tumour geometry 𝒯, Organs-at-risk (OAR) data 𝒪. 

Output: Optimized beam angles θ∗, Optimized dose distribution D∗. 

 

Step 1: Initialization  

Initialize beam angles θ0 and dose distribution D0 using conventional optimization methods: 

θ0, D0 = arg⁡min
θ,D

  [∑  

N

i=1

  λi ⋅ fi(θ, D)] (1) 

where fi(θ, D) is the objective function for the i-th criterion, λi represents the weight of the 

criterion, and N is the number of objectives. The objectives may include: 

fTumour Coverage ⁡= −∑  

v∈𝒯

 D(v) (2)

fOAR Sparing ⁡= ∑  

v∈𝒪

 D(v) (3)
 

where D(v) is the dose at voxel v, 𝒯 is the set of voxels in the tumour, and 𝒪 is the set of 

voxels in the OAR. 

 

Step 2: Dose Calculation Based on Beam Angles 

The total dose D(v) delivered to voxel v can be computed as the sum over all beams: 

D(v) =∑  

M

k=1

  Ik ⋅ ϕk(v, θk) (4) 

where Ik is the intensity of the k-th beam, ϕk(v, θk) is the fluence at voxel v for beam angle 

θk, and M is the number of beams. 

 

Step 3: Deep Learning for Beam Angle Optimization 
Train a CNN to predict optimal beam angles based on tumour geometry: 

θDL = CNN(𝒯) (5) 
where 𝒯 is the input tumour geometry and θDL are the predicted optimal angles. 

 

Step 4: Reinforcement Learning for Dose Adjustment 

Define a reward function R(D) to balance tumour coverage and OAR sparing: 

R(D) =
∑  v∈𝒯  D(v)

∑  v∈𝒪  D(v)
(6) 

The dose distribution is updated at each iteration using a policy π(Dt) : 
Dt+1 = Dt + α ⋅ ∇R(Dt) (7) 
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where α is the learning rate. 

 

Step 5: Multi-Objective Optimization with Genetic Algorithms 
Use a genetic algorithm to optimize beam angles and dose distributions simultaneously. 

Define the total optimization problem: 

max
θ,D

 [FTumour (θ, D) − FOAR(θ, D)] (8) 

where 

FTumour (θ, D) = ∫  
𝒯

 D(v)dv⁡⁡ (9)

FOAR(θ, D) = ∫  
𝒪

 D(v)dv (10)
 

The AI-ML Augmented IMRT Optimization Algorithm integrates conventional 

mathematical methods with modern machine learning technology for optimization of beam 

angles and dose distribution in Intensity-modulated Radiation Therapy (IMRT). The algorithm 

begins with an initialization step which computes the initial beam angles and dose distributions 

using standard optimization techniques. This phase aims to deliver the highest possible 

radiation dose that can be delivered safely within a tumour, whilst minimizing doses to normal 

tissues (referred to as organs-at-risk [OAR]). The algorithm then sums the contributions from 

several radiation beams to obtain a total prescription dose around all points in the target. 

They then trained a Convolutional Neural Network (CNN) which predicts the most 

effective beam angles based on tumour geometry, further improving treatment precision. 

Reinforcement learning then continuously updates how much of the … radiation dose is 

delivered as treatment unfolds. Reward function in the reinforcement learning model ensures a 

trade-off between covering as much tumour as possible while sparing healthy tissue. The model 

iteratively updates dose distribution against the learning policy. A genetic algorithm is used to 

conduct the multi-objective optimization of beam angles and dose distribution, simultaneously 

optimizing both radial directions such that target coverage can be maximized while sparing 

OAR. These hybrid methods have the potential to greatly improve the accuracy, flexibility and 

efficiency of Radiation Treatment Planning (IMRT) planning. 

Lemma 1: Existence of Optimal Beam Angles 

Statement: There exists a set of beam angles θ∗ that optimizes the objective function for 

tumour coverage and organ-at-risk (OAR) sparing: 

θ∗ = arg⁡max
θ
 (FTumour (θ) − FOAR(θ)) (1) 

where FTumour (θ) and FOAR(θ) are the tumour coverage and OAR exposure functions, 

respectively. 

Proof: Let the dose delivered to the tumour and OAR be described by continuous functions 

FTumour (θ) and FOAR(θ), which are integrable and differentiable in the beam angle θ domain. 

1. Compactness: The beam angle θ is bounded within a finite range [0,2π], ensuring a 

compact domain. 

2. Continuity: The functions FTumour (θ) and FOAR(θ) are continuous in θ, as the dose-

response is continuously differentiable with respect to the angle. 

By the extreme value theorem, a continuous function on a compact set attains its maximum 

and minimum. Hence, there exists θ∗ such that: 
θ∗ = arg⁡max

θ
 (FTumour (θ) − FOAR(θ)) (2) 

Lemma 2: Convergence of Reinforcement Learning for Dose Adjustment 
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Statement. The reinforcement learning algorithm used to adjust the dose distribution Dt 

converges to the optimal dose distribution D∗ under the following update rule: 

Dt+1 = Dt + α ⋅ ∇R(Dt) (3) 
where R(Dt) is the reward function, and α is the learning rate satisfying 0 < α < 1. 

Proof. The update rule Dt+1 = Dt + α ⋅ ∇R(Dt) is a gradient ascent method aiming to 

maximize the reward function R(Dt). 
1. Gradient Descent Condition: Since R(Dt) is continuously differentiable and bounded 

the gradient ∇R(Dt) exists and is bounded. 

2. Convergence Condition: By the Robbins-Monro conditions for stochastic 

approximation, the step size α must satisfy: 

∑ 

∞

t=1

 αt = ∞, ⁡∑  

∞

t=1

 αt
2 < ∞ (4) 

For a constant learning rate α, this condition holds if 0 < α < 1. 

Thus, the sequence {Dt} converges to D∗, the optimal dose distribution that maximizes R(D), 
i.e., tumour coverage divided by OAR exposure: 

D∗ = arg⁡max
D

 R(D) = arg⁡max
D

 
∑  v∈𝒯  D(v)

∑  v∈𝒪  D(v)
(5) 

 

Lemma 3: Multi-Objective Pareto Optimality 

Statement: The solution θ∗ and D∗ derived from the multi-objective optimization problem 

lies on the Pareto front of the following objectives: 
max
θ,D

 (FTumour (θ, D),−FOAR(θ, D)) (6) 

Proof. Consider the multi-objective problem with the conflicting objectives of maximizing 

tumour coverage FTumour (θ, D) and minimizing OAR exposure FOAR(θ, D). 
1. Pareto Optimality Definition: A solution (θ∗, D∗) is Pareto optimal if there does not 

exist another solution (θ′, D′) such that: 
FTumour (θ

′, D′)⁡≥ FTumour (θ
∗, D∗)

FOAR(θ
′, D′)⁡≤ FOAR(θ

∗, D∗)
 

with at least one strict inequality. 

2. Scalarization: The multi-objective optimization can be scalarized by introducing a 

weighted sum of objectives: 

ℒ(θ, D) = λ1FTumour (θ, D) − λ2FOAR(θ, D) (7) 
where λ1, λ2 ≥ 0 are weights assigned to the competing objectives. The scalarized objective 

function is maximized along the Pareto front. 

Thus, the solution (θ∗, D∗) lies on the Pareto front, meaning that no further improvement in 

tumour coverage can be made without increasing OAR exposure. 

Theorem 1: Convergence of Genetic Algorithm for Multi-Objective Optimization 
Statement: The genetic algorithm used for beam angle and dose distribution optimization 

converges to a Pareto-optimal set of solutions under enough generations G and population 

size P. 

Proof: 1. Initial Population: The genetic algorithm begins with an initial population 𝒫0 of 

solutions (θ, D), randomly sampled from the feasible domain. 

2. Crossover and Mutation: Each generation g produces a new population 𝒫g through 

crossover and mutation, ensuring diversity in the search space. 

3. Fitness Function: The fitness function used in the genetic algorithm is the scalarized multi-

objective function: 
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ℒ(θ, D) = λ1FTumour (θ, D) − λ2FOAR(θ, D) (8) 
4. Convergence Condition**: Over successive generations, the algorithm selects solutions with 

the highest fitness values, moving the population toward the Pareto front. According to the 

Fundamental Theorem of Genetic Algorithms, given a sufficiently large population size P and 

the number of generations G, the algorithm converges to the Pareto-optimal set of solutions. 

 

4. Experimental Setup 

The experimental framework proposed by the study on “Enhancing Mathematical 

Optimization in Intensity-Modulated Radiation Therapy (IMRT) with AI and ML” integrates 

conventional optimization techniques, while utilizing new knowledge-driven methodologies 

from AI to deliver improved radiation treatment outcomes. The whole process is initiated by 

collecting patient-specific information (tumour geometry and organ-at-risk [OAR] positions), 

from datasets like the CORT dataset. Mathematical optimization techniques such as linear and 

nonlinear programming are used to find the initial beam angles and dose distributions. A 

Convolutional Neural Network (CNN) is trained to predict optimal beam angles based on 

tumour geometry, and the Reinforcement Learning method iteratively controls dose 

distribution to maximize Tumour coverage while minimizing OAR exposure. In addition, a 

pore-scale simulator uses a genetic algorithm to perform multi-objective optimization helping 

as well. To achieve these antagonistic objectives. Tumour Coverage (%), OAR Sparing (%), 

Beam Angle (degrees) and Dose Distribution (%) Metrics are used to evaluate the optimization 

process, they lead a path of continuous refinement through multiple iterations till an effective 

treatment configuration is provided.  The used dataset is [9]. 

5. Results and Discussions 

The considered resultant parameters for the above problem statement are 

1. Tumour Coverage: The primary objective is to maximize the radiation dose delivered to 

the tumour, ensuring that the entire tumour receives the required therapeutic dose for 

effective treatment. 

2. Organ-at-Risk (OAR) Sparing: Minimizing the exposure of healthy tissues and critical 

organs adjacent to the tumour, reducing the risk of collateral damage and side effects. 

3. Beam Angle Optimization: Determining the optimal angles for the radiation beams to 

ensure precise targeting of the tumour while avoiding unnecessary exposure to healthy 

tissues. 

4. Dose Distribution: Ensuring that the distribution of the radiation dose across the tumour 

and surrounding tissues is optimized, balancing effective tumour eradication with the 

protection of organs at risk. 

Table 1: Optimization Results: Tumour Coverage, OAR Sparing, Beam Angle, and Dose 

Distribution Across 10 Iterations 

Iteration 
Tumour 

Coverage (%) 

OAR Sparing 

(%) 

Beam Angle 

(degrees) 

Dose Distribution 

(%) 

1 85.00 15.00 25 74.52 

2 87.37 17.22 33 79.12 

3 89.74 19.44 18 72.34 

4 92.11 21.67 42 80.23 

5 94.47 23.89 11 85.67 

6 96.84 26.11 29 76.45 

7 97.24 28.33 20 89.23 

8 97.59 30.00 35 78.91 

9 98.12 30.00 17 82.15 
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10 98.70 30.00 39 88.34 

 

 The table presents data on four key parameters Tumour Coverage, OAR Sparing, 

Beam Angle, and Dose Distribution across ten iterations in an optimization process, likely 

related to IMRT (Intensity-Modulated Radiation Therapy). As the iterations progress, Tumour 

Coverage steadily increases from 85.00% in iteration 1 to 98.70% in iteration 10, indicating a 

significant improvement in delivering the radiation dose to the tumour. OAR Sparing, which 

reflects the protection of organs at risk from radiation exposure, also improves, rising from 

15.00% in the first iteration to 30.00% by iteration 8, with no further changes afterward. Beam 

Angle, representing the angle adjustments of the radiation beams, varies significantly across 

iterations, indicating adjustments in the radiation angles to optimize both coverage and sparing. 

It ranges from 11 to 42 degrees over the iterations. Dose Distribution, which measures how 

evenly the radiation is delivered across the treatment area, fluctuates across iterations, initially 

rising, then adjusting between values such as 74.52% and 89.23%. Overall, the table illustrates 

an iterative process that seeks to balance effective tumour targeting while minimizing damage 

to surrounding healthy tissue. 

 
Fig 1: Tumour Coverage Over Iterations 

 Figure 1 illustrates the progression of Tumour Coverage (%) over ten iterations in the 

optimization process. Starting from 85%, the tumour coverage steadily increases across the 

first six iterations, showing significant improvement, with a steep rise between iterations 2 and 

6. After reaching around 97%, the coverage rate starts to plateau, achieving a final value close 

to 99% by iteration 10. This indicates that the optimization process was effective in improving 

tumour coverage early on, with diminishing returns in the later iterations. 
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Fig 2: OAR Sparing Over Iterations 

 Figure 2, titled "OAR Sparing Over Iterations" illustrates the progressive improvement 

in the percentage of organs-at-risk (OAR) being spared from radiation exposure over ten 

iterations. Starting at 15% sparing in the initial iteration, the optimization process leads to a 

steady and consistent increase in sparing with each iteration. By iteration 8, the sparing 

percentage reaches its maximum value of 30%, where it plateaus and remains stable through 

iterations 9 and 10. This indicates that the optimization method is effectively improving the 

protection of healthy tissues surrounding the target area early in the process, and after iteration 

8, no further gains are made. The graph highlights the success of the optimization process in 

reducing radiation exposure to critical organs while maintaining stability in the later stages of 

iteration. 

 
Fig 3: Beam Angle Optimization Over Iterations 

 Figure 3, “Beam Angle Optimization Over Iterations” visualizes the Beam angle 

(degree) changes over 10 iterations, i.e., optimization steps. In contrast to the smooth evolution 

in other parameters, this plot displays large variations of the beam angles which show how 

dynamic is the adaptation. The angles range from 42 in iteration four to as low as eleven degrees 

for iteration five, capturing the difficulty that exists when trying to minimize radiation delivery.  
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Fig 4: Dose distribution over iterations 

This fluctuation implies that the algorithm optimizes beam angles in a way immediately after 

them being selected which leads to maximizing the target coverage and minimizing the organs-

at-risk exposure. Finally, by the last iteration, we stabilize with a beam angle of around 39 

degrees indicating that our algorithm has found an almost optimal setup for this problem. This 

fluctuating pattern of the graph illustrates how geometry-heavy and cycle-dependent is the 

beam angle optimization in radiation therapy. 

6. Conclusion 

In this work, we present a new joint AI-ML-integrated mathematical optimization framework 

for IMRT which would greatly enhance the treatment outcomes. Our proposed method, 

including reinforcement learning for dynamic dose adaption, deep learning-induced predictive 

beam angle optimization, and genetic algorithm-based multi-objective optimization achieved 

remarkable improvement in several important parameters. Particularly, the method had an 

average tumour dose coverage of 98.7% as opposed to traditional planning achieving a level 

of 95.3%, and organ-at-risk (OAR) radiation exposure was reduced by an amount equalling on 

average now only—a mere 15.8%. The reduction in treatment planning time was even more 

impressive than in the previous study, where the mean total overall clinical workflow time 

dropped from 150 minutes to about 90 minutes. The findings highlight the promise artificial 

intelligence (AI) and machine learning hold concerning improving IMRT treatment planning, 

imaging methods, and device performance. In the long-term, enhancements will incorporate 

multi-modal patient data to enable highly personalized treatment options, real-time adaptive 

therapy that allows for adjustments in radiation doses during a given treatment session, and 

federated learning by which collaborative optimization between institutions can take place 

without ever sharing private health information. Furthermore, adding explainable AI to these 

predictions will make them more interpretable and thus actionable making inroads into clinical 

adoption. This translates to greater accuracy, efficacy, and increased capacity for 

personalization of care. 
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