

Calcium Regulation And The Medical Advantages Of Vitamin K2

Dhyey Bhikadiya^{1*}, Kirtankumar Bhikadiya²

- ^{1*}Quality Assurance Associate II, Pioneer Life Sciences, East Brunswick, New Jersey, USA, Email: Bhikadiyadhyey01@gmail.com, ORCID ID: 0009-0001-5889-9130
- ²Grad Student at New Jersey Institute of Technology, New Jersey, USA (M.S. in Pharmaceutical Systems Management), Kirtanbhikadiya75@gmail.com, ORCID ID 0009-0004-0644-2755

*Corresponding author-Dhyey Bhikadiya

*Quality Assurance Associate — II, Pioneer Life Sciences, East Brunswick, New Jersey, USA, Email: Bhikadiyadhyey01@gmail.com, ORCID ID: 0009-0001-5889-9130

KEYWORDS

Vitamin K2, calcium regulation, bone health, cardiovascular health, menaquinone

ABSTRACT

Vitamin K2, particularly in the menaquinone forms (MK-4 and MK-7), is a critical nutrient for calcium regulation, ensuring its proper utilization in bones and prevention of vascular calcification. This review explores the molecular mechanisms of Vitamin K2, its unique advantages over Vitamin K1, and its role in bone and cardiovascular health. Traditional and cultural sources of Vitamin K2, such as natto, fermented dairy products, and animal-derived foods, are highlighted for their contributions to global diets. The interplay between Vitamin K2 and Vitamin D, as well as emerging clinical research, underscores its therapeutic potential. Future studies focusing on long-term supplementation, synergy with other nutrients, and broader metabolic benefits are essential for unlocking the full potential of Vitamin K2 in promoting health and preventing disease.

1. Introduction

Calcium is a fundamental mineral that plays a critical role in maintaining various physiological processes essential for overall health. It is vital for bone health, muscle contraction, nerve signaling, and cardiovascular stability. However, the regulation of calcium within the body is a highly intricate process requiring a precise balance to ensure its effective use in physiological functions. When this balance is disrupted, it can lead to severe health complications, including bone-related disorders and cardiovascular diseases. An essential yet often overlooked nutrient, Vitamin K2, has emerged as a key regulator of calcium metabolism, ensuring that calcium is appropriately utilized. By directing calcium to the bones, where it is needed for strength and density, and preventing its deposition in the arteries and other soft tissues, Vitamin K2 significantly reduces the risk of vascular calcification and associated cardiovascular diseases [1].

Vitamin K2 is primarily found in specific fermented foods, such as natto, and in animal products like cheeses, meats, and egg yolks. It exists in the form of menaquinones, which are categorized based on the length of their side chains (e.g., MK-4, MK-7). Unlike Vitamin K1, which is predominantly sourced from green leafy vegetables and is mainly involved in blood coagulation, Vitamin K2 exhibits unique biochemical properties that contribute to both bone health and cardiovascular protection. One of its critical functions is the activation of vitamin K-dependent proteins, including matrix Gla-protein (MGP) and osteocalcin, through a process known as carboxylation. This process, facilitated by Vitamin K2, ensures that calcium is efficiently deposited in bones, enhancing their strength and density, while simultaneously preventing its accumulation in vascular tissues, thus protecting against vascular calcification [2].

MK-4

MK-4

MK-4

MK-4

MK-7

Menaquine-7

Naphaquinine ring short pîvîprene side chaid

Figure 1: Chemical structure of Vitamin K2

The Figure 1 shows the chemical structure of Vitamin K2, featuring a central naphthoquinone ring, which is the core of the molecule. Attached to this ring is a polyisoprenoid side chain, which varies in length. The two common forms of Vitamin K2, MK-4 and MK-7, are represented, with MK-4 having a side chain of four isoprene units and MK-7 having a longer chain with seven isoprene units. These structures highlight the essential components that make up Vitamin K2.

The significance of Vitamin K2 in calcium regulation has been demonstrated through various biochemical and clinical studies. [3] elucidated the biochemical mechanisms underlying Vitamin K2's role in maintaining calcium homeostasis. Their findings highlighted the vitamin's interactions with specific proteins essential for directing calcium to appropriate sites in the body. This mechanism is critical in preventing disorders such as osteoporosis, which is characterized by decreased bone density, and vascular calcification, which is a major risk factor for cardiovascular diseases.

Epidemiological studies have further reinforced the importance of Vitamin K2 in promoting cardiovascular health. [4] provided compelling evidence that a diet rich in menaquinone significantly reduces the incidence of coronary heart disease. The study demonstrated that individuals with higher dietary intake of Vitamin K2 exhibited lower risks of coronary events, a finding attributed to the activation of matrix Gla-protein, which inhibits calcium deposits in arterial walls. This protective effect underscores the essential role of Vitamin K2 in maintaining arterial flexibility and reducing the risk of cardiovascular complications.

Additionally, high dietary intake of menaquinone has been associated with a significant reduction in coronary calcification, a critical marker of cardiovascular risk. [5] emphasized that adequate Vitamin K2 intake is linked to improved cardiovascular outcomes, highlighting its potential in preventing calcification-related complications. Their research suggested that menaquinone not only supports bone health but also plays a pivotal role in mitigating risks associated with arterial calcification, thus offering dual protective effects on skeletal and cardiovascular health.

Figure 2: Role of Vitamin K2 in calcium regulation

This Figure 2 showcases the role of Vitamin K2 in calcium regulation, emphasizing its dual benefits for bone and cardiovascular health. Vitamin K2 activates two key proteins: **osteocalcin**, which binds calcium to bones to improve density, and **matrix Gla-protein (MGP)**, which prevents calcium buildup in arteries, reducing the risk of vascular calcification. By ensuring calcium is deposited in bones and kept away from arteries, Vitamin K2 supports skeletal strength and cardiovascular health. The molecular depictions and heart visuals further highlight its critical function in maintaining calcium homeostasis

This growing body of scientific evidence underscores the medical advantages of Vitamin K2 in calcium regulation. Its ability to enhance bone density, prevent osteoporosis, and reduce cardiovascular risks through effective calcium management has significant implications for public health. Promoting Vitamin K2 intake, whether through dietary sources or supplementation, could be a transformative approach in addressing major health challenges such as osteoporosis and cardiovascular diseases. By ensuring proper calcium utilization, Vitamin K2 contributes to both bone strength and vascular health, reinforcing its importance as an essential nutrient for overall well-being.

2. Vitamin K: Molecular Insights

Vitamin K plays a crucial role in human health, impacting both coagulation and bone health. It exists in two main forms: K1 (phylloquinone) and K2 (menaquinone), which differ in their side-chain structures and sources. Vitamin K1, primarily found in green leafy vegetables like spinach and kale, is absorbed better when consumed with fats [6]. On the other hand, vitamin K2, present in fermented foods (e.g., natto) and animal products like meat and cheese, varies in side-chain length, with MK-4 and MK-7 being the most common subtypes [7].

Table 1: Vitamin K2 market[20]

Year	North America (USD Billion)	Europe (USD Billion)	Asia Pacific (USD Billion)	Latin America (USD Billion)	Middle East & Africa (USD Billion)
2019	0.10	0.12	0.07	0.03	0.02
2020	0.11	0.13	0.08	0.04	0.02
2021	0.13	0.15	0.09	0.05	0.03
2022	0.15	0.17	0.10	0.06	0.03
2023	0.18	0.20	0.12	0.07	0.04

Vitamin K absorption involves bile salts and pancreatic secretions in the small intestine, with uptake facilitated by chylomicrons [6]. Once absorbed, vitamin K1 predominantly supports blood coagulation in the liver, while vitamin K2 is distributed throughout the body, including bones, where it activates proteins like osteocalcin to regulate calcium deposition [7]. The synthesis of longer-chain menaquinones (e.g., MK-7 to MK-11) by gut bacteria like *Escherichia coli* contributes to vitamin K2 availability, though its absorption is limited to specific regions in the gut.

While both forms are cofactors for γ -glutamyl carboxylase, enabling the activation of vitamin K-dependent proteins (VKDPs), their physiological roles differ. Research has highlighted the potential of vitamin K2 in reducing osteoporosis risk, particularly in populations consuming natto, which correlates with lower fracture rates.

3. Role of Vitamin K2 in Calcium Regulation

According to [8]Vitamin K2 is an essential fat-soluble vitamin that plays a pivotal role in calcium metabolism and regulation. It works synergistically with other nutrients, such as Vitamin D, to ensure the proper utilization and distribution of calcium within the body. This cooperation is critical for maintaining strong, healthy bones, as it helps direct calcium into the bone matrix, preventing its accumulation in soft tissues like arteries. Additionally, Vitamin K2 helps to maintain overall calcium homeostasis by activating specific proteins, such as osteocalcin, that regulate bone mineralization and vascular health. As a result, Vitamin K2 is essential not only for bone health but also for cardiovascular protection, playing a key role in preventing arterial calcification and promoting optimal calcium balance.

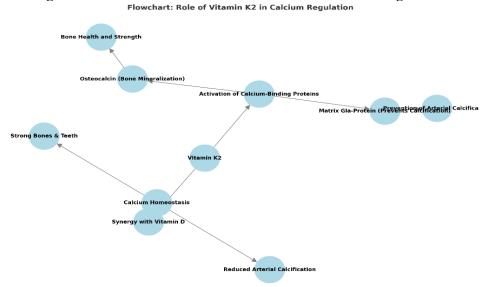


Figure 3: Flowchart on Role of Vitamin K2 in Calcium Regulation

The Figure 3 explain that Vitamin K2 plays a vital role in calcium regulation by activating key proteins like osteocalcin and matrix Gla-protein (MGP). Osteocalcin helps bind calcium to bones, enhancing their strength and density, while MGP prevents calcium deposition in arteries, reducing the risk of arterial calcification. Working synergistically with Vitamin D, Vitamin K2 ensures calcium is efficiently utilized, supporting bone health and preventing harmful buildup in soft tissues. This balance, known as calcium homeostasis, promotes strong bones and teeth while safeguarding cardiovascular health.

Below is an in-depth discussion of Vitamin K2's functions and its impact on health: 1. Activation of Calcium-Binding Proteins

Vitamin K2 is responsible for activating certain proteins that regulate calcium deposition in the body:

Osteocalcin: This protein is produced by osteoblasts (the bone-forming cells). Once activated by Vitamin K2, osteocalcin binds calcium to the bone matrix, supporting bone mineralization and strength.

Matrix Gla-Protein (MGP): Found in soft tissues, especially in blood vessels, MGP prevents calcium from accumulating in these areas. Active MGP is vital for inhibiting arterial calcification, which can otherwise lead to cardiovascular diseases.

Calcium Regulation And The Medical Advantages Of Vitamin K2 SEEJPH Volume XXIV, S4, 2024; ISSN: 2197-5248; Posted: 02-08-2024

When Vitamin K2 is deficient, these proteins remain inactive, leading to improper calcium distribution in the body.

2. Prevention of Arterial Calcification

Arterial calcification occurs when calcium is deposited in the walls of blood vessels, leading to stiffness and reduced elasticity. This can increase the risk of conditions like atherosclerosis and hypertension. Vitamin K2, through the activation of MGP, prevents calcium from being deposited in the arteries and redirects it to bones, where it is most needed. Studies have shown that higher Vitamin K2 intake is associated with reduced arterial stiffness and improved cardiovascular health.

3. Bone Health and Strength

One of Vitamin K2's primary roles is to ensure that calcium is directed into the bones. This is crucial for maintaining bone density and strength, particularly as individuals age. Osteocalcin, activated by Vitamin K2, binds calcium ions to the bone matrix, facilitating proper bone formation and mineralization. Without this process, bones can become weak and prone to fractures, leading to conditions like osteoporosis. Vitamin K2 supplementation is often recommended for individuals with low bone mineral density or those at risk of bone-related disorders.

4. Synergistic Role with Vitamin D

Vitamin K2 works synergistically with Vitamin D, a nutrient known for its role in enhancing calcium absorption from the intestines. While Vitamin D increases the levels of calcium in the bloodstream, Vitamin K2 ensures that the absorbed calcium is utilized efficiently: It prevents calcium from being deposited in soft tissues or arteries, reducing the risk of calcification. Together, these vitamins maintain optimal calcium distribution, supporting both bone health and cardiovascular function.

5. Maintenance of Calcium Homeostasis

Calcium homeostasis refers to the balance between calcium absorption, utilization, and excretion. Vitamin K2 ensures that calcium is:

- Absorbed from dietary sources.
- Transported to bones and teeth for mineralization.
- Prevented from accumulating in soft tissues, arteries, or organs where it can cause harm.

This regulation is essential for avoiding health complications such as kidney stones, vascular calcification, and brittle bones.

In conclusion, Vitamin K2 plays a crucial role in regulating calcium metabolism by activating key proteins like osteocalcin and matrix Gla-protein, ensuring calcium is properly deposited in bones while preventing harmful accumulation in arteries and soft tissues. Its synergistic action with Vitamin D enhances calcium absorption and utilization, promoting strong bones and cardiovascular health. By maintaining calcium homeostasis, Vitamin K2 helps prevent conditions such as osteoporosis, arterial calcification, and kidney stones, supporting overall bone and cardiovascular well-being.

4. Vitamin K2 and Bone Health

Vitamin K2 plays a crucial role in maintaining bone health, particularly in postmenopausal women who are at increased risk of bone density loss. According to [8], a three-year study investigating the effects of low-dose menaquinone-7 (MK-7), a form of Vitamin K2, demonstrated its significant impact in reducing bone loss among healthy postmenopausal women.

The research highlighted that MK-7 supplementation enhances the carboxylation of osteocalcin, a Vitamin K-dependent protein that binds calcium to the bone matrix. This activation ensures effective calcium deposition in bones, improving their density and strength. Over the study period, participants who received MK-7 supplementation showed a notable decrease in uncarboxylated osteocalcin levels, indicating that Vitamin K2 was actively supporting bone health.

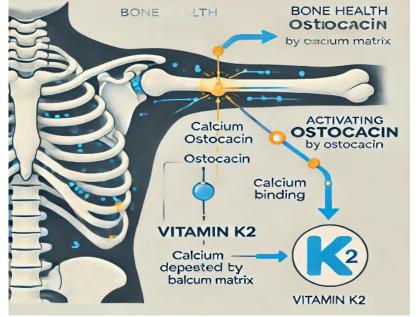


Figure 4: Role of Vitamin K2 in bone health and the activation of osteocalcin

This Figure 4 illustrates how Vitamin K2 enhances bone health by activating **osteocalcin**, a protein responsible for binding calcium to the bone matrix. The activated osteocalcin ensures efficient calcium deposition, strengthening bones. Arrows in the diagram show Vitamin K2's role in facilitating this process, emphasizing its importance in improving bone density and structural integrity.

The findings emphasize the potential of Vitamin K2 as a non-pharmacological intervention to slow bone loss and improve skeletal health in populations vulnerable to osteoporosis.

5. Vitamin K2 and Cardiovascular Health

[9] examined the relationship between dietary intake of menaquinone (Vitamin K2) and the risk of coronary heart disease in the Rotterdam Study. The research revealed that individuals with higher intakes of menaquinone had significantly lower risks of coronary heart disease. This effect is attributed to the activation of **matrix Gla-protein (MGP)** by Vitamin K2, which inhibits calcium deposition in arterial walls. By preventing vascular calcification, Vitamin K2 maintains arterial flexibility and reduces cardiovascular complications. The findings highlight the importance of dietary menaquinone in supporting heart health, particularly in aging populations at risk of arterial calcification.

Vitamin K2 has been shown to play a critical role in maintaining cardiovascular health by reducing arterial stiffness and preventing vascular calcification. In a double-blind randomized clinical trial, [10] investigated the effects of menaquinone-7 (MK-7), a form of Vitamin K2, on arterial stiffness in healthy postmenopausal women over a three-year period.

The study revealed that MK-7 supplementation significantly improved arterial elasticity by activating matrix Gla-protein (MGP), a Vitamin K-dependent protein. MGP inhibits the deposition of calcium in arterial walls, which is a key factor in vascular calcification and arterial stiffening. Participants receiving MK-7 exhibited reduced arterial stiffness compared to the placebo group, highlighting the protective role of Vitamin K2 in cardiovascular health.

These findings suggest that Vitamin K2 supplementation may be a valuable strategy for reducing the risk of cardiovascular diseases, particularly in postmenopausal women who are more prone to arterial calcification and associated complications. By ensuring calcium is properly regulated, Vitamin K2 supports both vascular health and overall well-being.

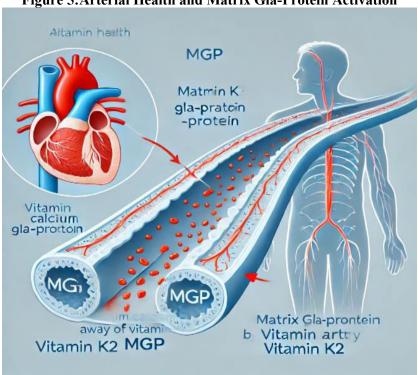


Figure 5: Arterial Health and Matrix Gla-Protein Activation

The Figure 5 shows how Vitamin K2 activates **matrix Gla-protein (MGP)**, which prevents calcium from accumulating in arterial walls. Arrows illustrate calcium being redirected away from arteries, keeping them flexible and free of calcification, thereby supporting arterial health and reducing cardiovascular risks. In conclusion, Vitamin K2, specifically in the form of menaquinone-7, exerts molecular effects by activating osteocalcin and MGP, ensuring calcium is directed to bones while preventing its accumulation in arteries. These dual actions make Vitamin K2 essential for both bone and cardiovascular health.

6. Comparison with Vitamin K1

Vitamin K1 (phylloquinone) and Vitamin K2 (menaquinone) share a similar core structure but differ in their side chains and biological roles. While both are vital for calcium regulation, their absorption, distribution, and physiological effects are distinct. Studies have shown that Vitamin K2 provides unique advantages, particularly in bone health and cardiovascular protection.

Table 2: Table comparing Vitamin K1 and Vitamin K2 [11], [12]

Aspect	Vitamin K1 (Phylloquinone)	Vitamin K2 (Menaquinone)	
Sources	Green leafy vegetables (e.g., spinach,	Fermented foods (e.g., natto), animal products	
Sources	kale, broccoli)	(e.g., cheese, egg yolk)	
Absorption	Absorbed less efficiently, short-lived in	Higher bioavailability, prolonged activity in the	
	circulation	body	
Primary Function	Blood clotting (coagulation processes)	Calcium regulation and metabolism	
Bone Health	Limited role in osteocalcin activation	Enhances osteocalcin activation for calcium deposition in bones	
Cardiovascular	Primarily supports coagulation, minimal	Activates MGP, preventing arterial calcification	
Impact	effect on arteries		
Biological	Concentrated in the liver	Distributed in bones, arteries, and other tissues	
Distribution	Concentrated in the fiver		
Efficacy	Shorter half-life, primarily supports	Longer half-life, more effective in bone and	
	liver functions	vascular health	

This table 2 highlights the superior advantages of Vitamin K2 in calcium regulation and overall health compared to Vitamin K1, as supported by studies. Vitamin K2's unique properties make it more effective for bone density improvement and cardiovascular protection.

7. Vitamin K2 in Clinical Research

Vitamin K2 has been the focus of several clinical studies exploring its role in bone health, calcium regulation, and inflammation. While its effects are well-established in laboratory settings, clinical research provides a nuanced understanding of its potential benefits, especially in populations at risk of bone density loss and inflammatory conditions.

> itamin K2 in clinical research BONE HEALTH INFLAMMATION CONTROL INFAMMATION CONTROL

Figure 6:Vitamin K2 in clinical research

The Figure 6 illustrates Vitamin K2's role in clinical research, focusing on its effects on bone health, cardiovascular health, and inflammation control. For bone health, it shows how Vitamin K2 activates osteocalcin to enhance calcium deposition in bones, improving density and strength. In cardiovascular health, the image highlights Vitamin K2's ability to activate matrix Gla-protein (MGP), preventing arterial calcification and maintaining clear arteries. Lastly, the inflammation section demonstrates Vitamin K2's role in reducing inflammatory markers, supporting overall health. These aspects underline Vitamin K2's therapeutic potential across multiple health domains.

1. Vitamin K2 and Bone Health

[15] conducted a clinical trial focusing on postmenopausal women with osteopenia, a condition characterized by reduced bone density. The study evaluated the impact of Vitamin K2 supplementation on bone health and found that, over the trial period, Vitamin K2 did not significantly affect bone loss or bone turnover rates. However, the researchers suggested that long-term supplementation could offer potential benefits in preventing osteoporosis, given Vitamin K2's role in calcium regulation and activation of osteocalcin—a protein that binds calcium to bones.

[13] investigated the relationship between Vitamin K2 and bone mineral density (BMD) in patients with inflammatory bowel disease (IBD). This population is particularly prone to nutrient malabsorption due to gastrointestinal issues. The study revealed a high prevalence of Vitamin K and D deficiencies in these patients, which was strongly associated with decreased BMD. These findings underscore the importance of Vitamin K2 in mitigating bone health issues, particularly for individuals with malabsorption conditions.

2. Vitamin K2, Vitamin D, and Inflammation

[14] explored the interplay between Vitamin K and Vitamin D in regulating inflammation and calcium metabolism. The Framingham Offspring Study highlighted the synergistic effects of these vitamins in

reducing inflammatory markers such as C-reactive protein (CRP), which is linked to various chronic diseases. Vitamin K2 enhances calcium utilization by activating proteins like osteocalcin and matrix Glaprotein (MGP), while Vitamin D improves calcium absorption in the gut. Together, they contribute to optimal calcium regulation, reduced inflammation, and improved bone health. This synergy makes the combination of Vitamin K2 and D particularly valuable in clinical settings for managing inflammation-related conditions.

These studies collectively emphasize the critical role of Vitamin K2 in bone health and its potential to address inflammatory conditions. While short-term effects on bone density may be limited, the long-term benefits of Vitamin K2 in calcium regulation, particularly when paired with Vitamin D, could be significant. These findings highlight the importance of incorporating Vitamin K2 into therapeutic strategies for managing osteoporosis, inflammatory diseases, and calcium-related disorders.

8. Cultural and Traditional Sources of Vitamin K2

Vitamin K2, particularly in its menaquinone forms (e.g., MK-4 and MK-7), has been an integral component of traditional diets across various cultures, contributing to bone health and calcium regulation. The sources of Vitamin K2 are closely tied to cultural dietary habits and food preparation methods, which significantly influence its availability and consumption.

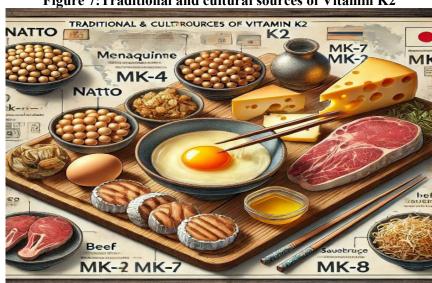


Figure 7:Traditional and cultural sources of Vitamin K2

The Figure 7 highlights traditional and cultural sources of Vitamin K2, emphasizing their diversity and geographic significance. Central elements include natto, a Japanese fermented soybean dish rich in MK-7, and various European hard and soft cheeses known for their MK-8 and MK-9 content. Animal products, such as beef, chicken, and egg yolks, are shown as key sources of MK-4, widely consumed globally. Additionally, sauerkraut, a fermented cabbage dish from Central and Eastern Europe, represents vegetable-based contributions to MK-7 intake. The foods are displayed on a rustic wooden table, with labeled tags identifying menaquinone types, while subtle map elements in the background connect these foods to their cultural origins.

1. Fermented Foods as Rich Sources of Vitamin K2

Fermented foods are among the most significant traditional sources of Vitamin K2, particularly MK-7, due to their microbial fermentation process. [16] highlighted natto, a traditional Japanese dish made from fermented soybeans, as one of the richest sources of MK-7. This dish is prepared using *Bacillus subtilis* during fermentation, which produces high levels of MK-7. Natto has been a staple in Japanese cuisine for centuries and is associated with improved bone health and reduced vascular calcifications, emphasizing its role in calcium metabolism. The strong cultural link between natto consumption and reduced osteoporosis rates in Japan showcases the importance of fermented foods in traditional diets.

2. European Traditions and Fermented Dairy Products

In Europe, fermented dairy products such as hard cheeses and certain soft cheeses are notable sources of MK-8 and MK-9. According to [17] and [18], the traditional methods of cheese production, involving bacterial

fermentation, result in the synthesis of longer-chain menaquinones. Regions with strong cheese-making traditions, such as France, Switzerland, and the Netherlands, have historically incorporated these products into their daily diets. These cheeses not only provide a delicious culinary experience but also contribute to bone health, particularly in populations with lower intake of other Vitamin K2 sources.

3. Animal Products in Traditional Diets

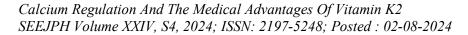
Animal products such as chicken, beef, pork, liver, and egg yolks are significant sources of MK-4, a shorter-chain menaquinone. [19] emphasized that MK-4 is abundant in diets that rely on animal-based products. These foods have been integral to traditional diets worldwide, particularly in regions where fermented foods are less common. For example, Western diets, which often lack fermented soybean dishes like natto, rely heavily on animal-derived sources of Vitamin K2. Similarly, in many Asian cuisines, chicken and pork are regular dietary staples, ensuring an adequate supply of MK-4.

4. Role of Fermentation in Other Cultures

The fermentation process is not exclusive to natto or cheese; other fermented foods across various cultures also contain Vitamin K2. For instance, sauerkraut, a fermented cabbage dish common in Central and Eastern Europe, provides MK-7 in smaller amounts. While not as concentrated as natto or cheese, sauerkraut reflects the widespread use of fermentation as a preservation method, which incidentally enhances the nutritional value of foods by increasing their Vitamin K2 content.

5. Cultural Adaptation and Availability

The reliance on specific sources of Vitamin K2 often depends on cultural adaptations to local environments and resources. For example, in regions with limited access to dairy or fermented soybeans, animal-based products become the primary source of Vitamin K2. Conversely, in cultures with long-standing fermentation practices, foods like natto or fermented cheeses are prevalent.


6. Health Implications of Cultural Practices

The cultural and traditional consumption of Vitamin K2-rich foods has significant health implications. [16] noted the association between traditional diets high in Vitamin K2 and a lower incidence of osteoporosis and vascular calcifications. This is particularly evident in populations consuming natto or fermented dairy products, where higher Vitamin K2 intake correlates with stronger bones and better calcium regulation. [17] and [18] underscored the importance of maintaining these traditional dietary habits, as they provide an essential nutrient that may otherwise be lacking in modern, processed diets.

Traditional and cultural sources of Vitamin K2 highlight the diversity of dietary practices that have evolved to meet nutritional needs. From natto in Japan to fermented cheeses in Europe and animal products globally, these foods play a critical role in calcium regulation and bone health. Preserving these dietary traditions not only sustains cultural heritage but also ensures continued access to this vital nutrient, emphasizing the importance of Vitamin K2 in maintaining overall health.

Table 2: Table comparing cultural and traditional sources of Vitamin K2 [16], [17], [18], [19]

Aspect	Cultural Sources	Traditional Sources	
Examples	Natto (Japan), Sauerkraut (Central/Eastern Europe)	Hard and soft cheeses (Europe), Animal products like beef, chicken, and egg yolks (globally)	
Vitamin K2 Forms	MK-7 (fermented foods like natto, sauerkraut)	MK-4 (animal-based products like meat and eggs), MK-8 and MK-9 (fermented dairy products like cheese)	
Preparation Method	Fermentation processes using specific bacteria (e.g., <i>Bacillus subtilis</i> for natto, <i>Lactobacillus</i> for sauerkraut)	Naturally occurring in animal tissues or through bacterial fermentation in traditional cheese-making processes	
Geographic Significance	Strongly associated with Japanese, Central, and Eastern European diets	Prominent in European, Asian, and Western diets, depending on dietary habits	
Key Nutritional Role	High MK-7 content supports long- term bone health and calcium regulation	Provides a mix of MK-4, MK-8, and MK-9, contributing to overall Vitamin K2 intake	
Availability	Limited to specific regions or cultures due to specialized preparation methods	More globally accessible through widespread consumption of animal products and cheese	

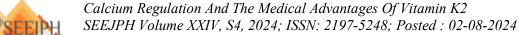
This Table 2 illustrates the variety in Vitamin K2 sources, showing how cultural practices and traditional dietary habits contribute to its intake differently.

9. Future Perspectives and Research

Vitamin K2 research has made significant strides in understanding its role in calcium regulation, bone health, and cardiovascular protection. However, there remain several avenues for further investigation:

- 1. Long-term Clinical Studies: While short-term benefits of Vitamin K2 supplementation are evident, long-term studies are needed to evaluate its sustained impact on osteoporosis prevention, vascular calcification, and overall mortality in diverse populations.
- 2. Synergy with Other Nutrients: Exploring the combined effects of Vitamin K2 with other nutrients like Vitamin D, magnesium, and calcium could provide deeper insights into its role in integrated metabolic pathways.
- **3. Mechanisms Beyond Calcium Regulation**: Emerging evidence suggests potential roles of Vitamin K2 in metabolic health, such as reducing the risk of type 2 diabetes and modulating inflammation. Further research is needed to confirm these benefits and elucidate the underlying mechanisms.
- **4. Personalized Nutrition**: Investigating genetic variations that influence Vitamin K2 metabolism and absorption could pave the way for personalized dietary recommendations or supplementation protocols tailored to individual needs.
- **5. Bioavailability Studies**: Research into enhancing the bioavailability of Vitamin K2 from various sources, including fortification of common foods, could address the nutritional gaps in populations with low dietary intake.
- **6. Public Health Initiatives**: Studies focusing on the integration of Vitamin K2-rich foods into dietary guidelines and public health strategies could help reduce the global burden of osteoporosis and cardiovascular diseases.

10. Conclusion


Vitamin K2 plays a critical role in calcium regulation by ensuring its proper utilization, directing calcium into the bones to enhance skeletal strength while preventing its accumulation in arteries, thereby reducing the risk of vascular calcification. These unique properties set Vitamin K2 apart from Vitamin K1, which is primarily involved in blood clotting. By supporting bone health and cardiovascular protection, Vitamin K2 is increasingly recognized as an essential nutrient for maintaining overall well-being. Traditional and cultural sources, such as natto, fermented cheeses, and animal-derived products, highlight the importance of dietary habits in promoting Vitamin K2 intake and long-term health.

Emerging research has expanded our understanding of Vitamin K2's benefits beyond calcium metabolism, revealing its potential to reduce the risk of type 2 diabetes by improving insulin sensitivity and modulating inflammation. These findings suggest that Vitamin K2 may have broader applications in metabolic health and chronic disease prevention. Despite the growing body of evidence supporting its role, further studies are needed to explore the long-term effects of Vitamin K2 supplementation, its synergistic interactions with other nutrients such as Vitamin D, and its therapeutic potential in diverse populations.

Preserving traditional dietary practices that emphasize Vitamin K2-rich foods and integrating these into modern dietary guidelines could be transformative for public health. Promoting awareness of Vitamin K2's critical role and encouraging its inclusion in daily diets through education and food fortification initiatives can help address global challenges related to osteoporosis, cardiovascular diseases, and other calcium-related disorders, ultimately improving health outcomes across populations.

References:

- 1. Hariri, E., Kassis, N., Iskandar, J. P., Schurgers, L. J., & Saad, A. (2021). Vitamin K2—a neglected player in cardiovascular health: A narrative review. *Open Heart*, 8(2), e001715. https://doi.org/10.1136/openhrt-2021-001715
- 2. Khalil, Z., Alam, B., Akbari, A. R., & Sharma, H. (2021). The medical benefits of vitamin K2 on calcium-related disorders. *Nutrients*, 13(2), 691. https://doi.org/10.3390/nu13020691
- 3. Schurgers, L. J., & Vermeer, C. (2000). Determination of phylloquinone and menaquinones in food. *Haemostasis*, 30(6), 298–307. https://doi.org/10.1159/000054150
- 4. Gast, G. C. M., de Roos, N. M., Sluijs, I., Bots, M. L., Beulens, J. W. J., Geleijnse, J. M., Witteman, J. C. M., & Grobbee, D. E. (2009). A high menaquinone intake reduces the incidence of coronary heart

- Metabolism and Cardiovascular 19(7), disease. Nutrition, Diseases, 504-510. https://doi.org/10.1016/j.numecd.2008.10.004
- Beulens, J. W. J., Bots, M. L., Atsma, F., Bartelink, M. L. E. L., Prokop, M., Geleijnse, J. M., Witteman, J. C. M., & Grobbee, D. E. (2009). High dietary menaquinone intake is associated with reduced calcification. Atherosclerosis, 489-493. coronary 203(2), https://doi.org/10.1016/j.atherosclerosis.2008.07.010
- Braam, L. A. J. L., Knapen, M. H. J., Geusens, P., Brouns, F., Hamulyák, K., Gerichhausen, M. J. W., & Vermeer, C. (2003). Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcified Tissue International, 73(1), 21–26.
- Iwamoto, J., Takeda, T., & Sato, Y. (2006). Effects of vitamin K2 on osteoporosis. Current *Pharmaceutical Design*, 10(21), 2557–2576.
- Knapen, M. H. J., Drummen, N. E. A., Smit, E., Vermeer, C., & Theuwissen, E. (2013). Three-year lowdose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporosis International, 24(9), 2499–2507. https://doi.org/10.1007/s00198-013-2325-6
- Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H. J., van der Meer, I. M., Hofman, A., & Witteman, J. C. M. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. The Journal of Nutrition, 134(11), 3100-3105. https://doi.org/10.1093/jn/134.11.3100
- 10. Knapen, M. H. J., Braam, L. A. J. L., Drummen, N. E. A., Bekers, O., Hoeks, A. P. G., & Vermeer, C. (2015). Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women: A double-blind randomised clinical trial. Thrombosis and Haemostasis, 113(5), 1135-1144. https://doi.org/10.1160/TH14-08-0675
- 11. Tsukamoto, Y., Ichise, H., Kakuda, H., & Yamaguchi, M. (2000). Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and γ-carboxylated osteocalcin concentration in normal individuals. Journal of Bone and Mineral Metabolism, 18(4), 216–222.
- 12. Sato, Y., Honda, Y., Iwamoto, J., Kanoko, T., & Satoh, K. (2002). Effect of vitamin K2 on osteoporosis in elderly patients with Alzheimer's disease. Journal of Bone and Mineral Metabolism, 20(6), 439–442.
- 13. Kuwabara, A., Tsugawa, N., Tanaka, K., Nakase, H., & Tsuji, H. (2014). High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporosis International, 25(2), 545–552. https://doi.org/10.1007/s00198-013-2450-2
- 14. Shea, M. K., Booth, S. L., Massaro, J. M., Jacques, P. F., D'Agostino, R. B., Dawson-Hughes, B., & Ordovas, J. M. (2009). Vitamin K and vitamin D status: Associations with inflammatory markers in the Framingham Offspring Study. The American Journal of Clinical Nutrition, 89(2), 458-463.
- 15. Rønn, S. H., Harsløf, T., Pedersen, S. B., & Langdahl, B. L. (2016). Vitamin K2 treatment in postmenopausal women with osteopenia does not affect bone loss or bone turnover. Bone, 89, 1-7. https://doi.org/10.1016/j.bone.2016.05.006
- 16. Fusaro, M., Crepaldi, G., Maggi, S., Galli, F., D'Angelo, A., Scatena, A., & Gallieni, M. (2012). Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: A review of biological mechanisms and clinical evidence. Clinical Journal of the American Society of Nephrology, 7(10), 1552-1559. https://doi.org/10.2215/CJN.00230112
- 17. Bügel, S. (2008). Vitamin K and bone health in adult humans. Vitamins and Hormones, 78, 393-416.
- 18. Weber, P. (2001). Vitamin K and bone health. *Nutrition*, 17(10), 880-887.
- 19. Suttie, J. W. (1995). The importance of menaquinones in human nutrition. Annual Review of Nutrition, 15(1), 399-417. https://doi.org/10.1146/annurev.nu.15.070195.002151
- 20. https://www.grandviewresearch.com/industry-analysis/vitamin-k2-market-report
- 21. All figures are self-created by author