

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

The Evolution of Physical Chemistry in Healthcare: A Comprehensive **Bibliometric Analysis**

Shaija P B¹, Remya Krishnan M², Reeja Gopalakrishnan Nair³, Sreya P⁴, Abey K Jose⁵

¹Department of Chemistry, Sree Narayana College, Cherthala, Kerala, India

KEYWORDS

ABSTRACT

Physical Chemistry, Health, Bibliometric VOSviewer

The intersection of physical chemistry and healthcare has gained significant attention in recent years, driven by its potential to revolutionize medical diagnostics, treatments, and drug development. This study Analysis, Biblioshiny, conducts a bibliometric analysis to explore the research trends, collaborative networks, and key thematic developments in this interdisciplinary field. Publications from 1990 to 2024 were retrieved from the Web of Science, focusing on journal articles, book chapters, and conference papers. The dataset was analyzed using VOSviewer and Biblioshiny to identify key patterns, major contributors, and collaborative networks across countries. The findings provide valuable insights into the growth of scientific output, prominent research themes, and the role of global collaborations in advancing the applications of physical chemistry in healthcare. This study offers a roadmap for future research directions and highlights emerging areas of interest within this evolving field.

Introduction

Physical chemistry plays a crucial role in various facets of healthcare, particularly in pharmaceutical science, biomedical research, and the development of innovative medical technologies. The integration of physical chemistry principles in healthcare fields enables scientists to understand the molecular and atomic interactions that underpin many health-related phenomena, aiding in drug design, disease diagnosis, and therapeutic innovations. In pharmaceutical sciences, physical chemistry provides the theoretical and practical foundation necessary for drug design and optimization. Studies have shown that physical chemistry is central to understanding drug interactions, solubility, stability, and bioavailability, which are critical factors in developing effective medications [1]. This branch of chemistry allows scientists to predict the outcomes of chemical reactions, facilitating the creation of new therapeutic agents that can be precisely tailored to treat specific conditions.

Physical chemistry also plays an instrumental role in biomedical research, especially in understanding complex biological processes at the molecular level. For example, research on neurodegenerative diseases, such as Parkinson's disease, has utilized physical chemistry to study the aggregation of proteins like α -synuclein, which is associated with disease progression. Sophisticated methods such as circular dichroism and neutron reflectometry have been employed to explore these protein interactions and their implications for cellular health [2]. Further, physical chemistry offers tools for studying drug bioavailability and the mechanisms of drug delivery, which are crucial in personalized medicine. By quantifying how drugs interact with biological membranes and how these interactions affect drug efficacy, physical chemistry provides insights that can be applied to tailor treatments to individual patients [3].

Incorporating physical chemistry into healthcare education, particularly in medical and pharmaceutical training, has been emphasized as a means of improving healthcare professionals' understanding of fundamental chemical processes. For instance, the integration of physical chemistry concepts into the medical curriculum is designed to provide future doctors with the theoretical grounding necessary for understanding complex biochemical processes [4]. This knowledge forms the basis for more advanced subjects such as physiology and pharmacology, which are integral to medical practice. Several studies have also highlighted the importance of innovating teaching methods to

²Department of Physics, Sree Narayana College Kannur, Kerala, India

³Assistant Professor of Physics, Government College Malappuram, Kerala, India

⁴Department of Chemistry, Sree Narayana College Kannur, Kerala, India

⁵Department of Chemistry, T. M. Jacob Memorial Government College, Manimalakkunnu,Ernakulam, Kerala, India

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

enhance student engagement and learning outcomes in physical chemistry courses. For example, hands-on inquiry learning has been shown to significantly improve students' active learning skills and their grasp of physical chemistry concepts, which are critical for pharmaceutical sciences [5]. Furthermore, the redesign of physical chemistry laboratory courses during the pandemic emphasized the use of blended learning models. By incorporating virtual tools such as cloud computing environments and video conferencing, students could continue their education without interruption, enhancing their skills in data analysis and computation. This approach has been met with positive feedback and is expected to become a permanent fixture in educational models [6].

The field of nanotechnology has also greatly benefited from the application of physical chemistry, particularly in the development of nanomedicines. Nanocarbon-based materials, such as fullerenes, have been investigated for their potential in drug delivery and medical imaging, offering multitasking solutions for treating complex diseases. Physical chemistry provides the framework for understanding the interactions between nanomaterials and biological systems, which is crucial for advancing nanomedicine [7]. Furthermore, the use of nanomaterials in biosensing applications, driven by their chemical and physical properties, has enhanced diagnostic capabilities in healthcare by improving the sensitivity and specificity of detection methods [8]. In addition, the exploration of physical chemistry in the design of conductive polymers has shown promising results for real-time healthcare monitoring systems. Conductive polymers, optimized through doping engineering, enhance the functionality of sensors by improving their electrical properties and durability under various mechanical conditions [9].

Cyber-physical systems (CPS) represent an exciting application of physical chemistry in healthcare. CPS involves the integration of physical processes with computational and communication technologies, facilitating intelligent and real-time monitoring and management of health conditions. Studies have emphasized the potential of CPS in managing big data in healthcare, enhancing patient-centric healthcare services through cloud and edge computing technologies [10]. Additionally, the use of augmented reality (AR) in healthcare CPS enhances the efficiency of clinical treatments by providing an immersive experience for both patients and clinicians [11]. Physical chemistry has significantly contributed to the development of physical sensors used in biomedical applications. These sensors, which are responsive to physical properties such as temperature, pressure, and radiation, have revolutionized medical diagnostics by providing accurate, real-time data on patient health. As reported in recent studies, advances in sensor technology, based on physical chemistry principles, have enabled the precise quantification of critical physiological parameters, which is essential for improving patient outcomes [12].

Physical chemistry also plays a critical role in cancer research and the broader field of synthetic biology. The Physical Sciences in Oncology Initiative integrates physics, chemistry, and engineering into oncology, seeking to advance diagnostic tools and treatments. This interdisciplinary approach has shown promise in improving clinical outcomes by applying physical chemistry to understand and manipulate biological processes at a molecular level [13]. Furthermore, physical organic chemistry has provided intellectual frameworks to tackle challenges in synthetic biology. For example, new chemical reactivity and mechanism designs have aided in understanding metabolic pathways in organisms and designing tools for medical applications such as drug development [14].

The intersection of physical chemistry with machine learning and data science is set to revolutionize the field, leading to significant advancements in healthcare research. Machine learning algorithms, combined with the principles of physical chemistry, are being employed to accelerate drug discovery, improve molecular simulations, and enhance understanding of biochemical pathways. The integration of machine learning with traditional physical chemistry methods offers new insights that were previously unattainable, driving forward innovations in medical treatments and diagnostics [15]. Physical chemistry serves as a bridge between the fundamental chemical sciences and healthcare, offering essential insights into drug design, disease mechanisms, and therapeutic innovations. Through its applications in pharmaceutical education, biomedical research, and nanotechnology, physical chemistry continues to shape the future of healthcare.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

Bibliometric analysis is a quantitative approach used to evaluate and explore patterns, trends, and the impact of scientific publications [16]. This method involves examining citation networks, coauthorship relations, and keyword co-occurrence to reveal the structure and development of specific research fields [17,18]. It offers valuable insights into the academic influence of publications and helps identify key contributors in a given area of study [19].

RStudio, a popular integrated development environment (IDE) for R, is particularly well-suited for conducting bibliometric analysis due to its flexibility and robust statistical features [20]. Biblioshiny, an interface available within RStudio, simplifies the bibliometric analysis process, making it more accessible to researchers with limited programming experience. It supports various analyses, such as citation analysis, co-citation networks, and thematic mapping, helping researchers identify patterns and trends in academic literature [21].

Additionally, VOSviewer is a specialized tool designed for creating and visualizing bibliometric networks. It is highly regarded for its ability to map and cluster networks of authors, journals, and keywords [22]. VOSviewer provides clear visualizations that allow researchers to interpret complex bibliometric data, offering deeper insights into the relationships and trends within research fields [23,24].

The primary objective of this study is to analyze and map the scientific research at the intersection of physical chemistry and healthcare by examining publication trends, key contributors, and thematic developments over the period from 1990 to 2024. Specifically, the study aims to identify the most prolific authors, influential sources, and globally recognized research hubs through co-authorship and citation analysis. Additionally, it seeks to explore the emerging, declining, and established research themes within the field, using tools like VOSviewer and Biblioshiny to visualize co-occurrence networks and thematic clusters. By doing so, the study provides insights into the evolving landscape of physical chemistry in healthcare, highlights collaboration patterns, and uncovers key areas of focus that may drive future research and innovation.

Review

Materials and Methods

In this study, publications were retrieved from the Web of Science using the keywords "physical chemistry" and "health" from a variety of sources, without imposing any language limitations, with a focus on journal articles, book chapters, and conference papers. A total of 277 documents from 154 sources, spanning the years 1990 to 2024, were identified. To refine the dataset, reviews, editorials, letters, notes, and short surveys were excluded, leaving only relevant journal articles, book chapters, and conference papers for analysis. The final dataset was saved as a text file and analyzed using VOSviewer and Biblioshiny to uncover key trends and patterns within the research.

Table 1 presents a comprehensive overview of the key characteristics of the dataset analyzed in this study, which covers research spanning from 1990 to 2024. The dataset includes 277 documents sourced from 154 journals, books, and other outlets, with an average annual growth rate of 7.31%. On average, documents are 10.4 years old, with each receiving an average of 55.2 citations, and a total of 14,289 references cited across the dataset. The document contents include 1,414 Keywords Plus (ID) and 959 Author Keywords (DE), reflecting the thematic breadth of the research. The authorship analysis reveals that the 277 documents were authored by 1,250 unique authors, with 36 documents being single-authored. Collaborative efforts are evident, with an average of 4.87 co-authors per document and 19.49% of the works featuring international co-authorship. The dataset is predominantly comprised of journal articles (258), followed by conference proceedings papers (14) and book chapters (5), providing a diverse representation of publication types. This summary highlights the depth and collaborative nature of research at the intersection of physical chemistry and healthcare.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

Description	Results
MAIN INFORMATION ABOUT DATA	
Timespan	1990:2024
Sources (Journals, Books, etc)	154
Documents	277
Annual Growth Rate %	7.31
Document Average Age	10.4
Average citations per doc	55.2
References	14289
DOCUMENT CONTENTS	
Keywords Plus (ID)	1414
Author's Keywords (DE)	959
AUTHORS	
Authors	1250
Authors of single-authored docs	36
AUTHORS COLLABORATION	
Single-authored docs	36
Co-Authors per Doc	4.87
International co-authorships %	19.49
DOCUMENT TYPES	
article	258
proceedings paper	14
book chapter	5

Table 1. Main aspects of the study

Annual scientific production

Figure 1 illustrates the annual scientific production related to physical chemistry in healthcare from 1990 to 2024. The graph shows a relatively low and stable output in the earlier years, with modest increases between 1994 and 2006. However, starting around 2008, there is a noticeable upward trend in publication volume, reflecting a growing interest in the intersection of physical chemistry and healthcare research. This trend reaches a significant peak in 2013, marking the highest number of articles published in any year during this period. Following this peak, there is a period of fluctuation, with the number of publications declining slightly in subsequent years, but maintaining a higher baseline compared to the earlier period. The decline post-2013 may be attributed to changing research priorities, funding shifts, or the natural progression of research cycles in this domain. Despite some variations, the general trend remains positive, suggesting a sustained interest in the field. The sharp decline in 2024 might be a temporary effect, possibly due to incomplete data for the year or other external factors such as global events that may have impacted research activities. Overall, the graph demonstrates a strong upward trajectory in scientific output over time, indicating that physical chemistry's applications in healthcare have become an increasingly important area of research.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

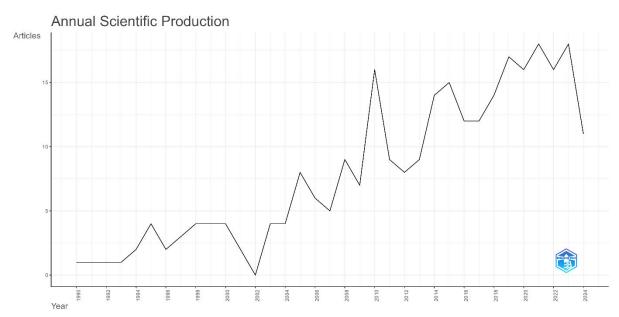


Figure 1. Annual Scientific Production

Most Relevant Authors

Table 2 lists the most prolific authors in the field of physical chemistry and healthcare research, highlighting their contributions based on the number of articles they have published. Carey MC leads the group with 17 publications, demonstrating their prominent role in advancing research in this area. Wang DQH follows with 11 articles, and Cohen De ranks third with 8 publications. Other key contributors include Paigen B with 5 articles, and Liu M with 4 articles. Several authors, such as Baker D, Chen JX, Kucukkal TG, Lammert F, and Leonard MR, have each contributed 3 articles. This list provides a clear view of the leading researchers driving the discourse and development of knowledge at the intersection of physical chemistry and healthcare, with Carey MC standing out as a particularly influential figure. These authors' contributions likely cover a broad range of topics, advancing the scientific understanding of physical chemistry's applications in healthcare.

Authors	Articles
Carey MC	17
Wang DQH	11
Cohen De	8
Paigen B	5
Liu M	4
Baker D	3
Chen JX	3
Kucukkal TG	3
Lammert F	3
Leonard MR	3

Table 2. Most Relevant Authors

Most Relevant Sources

Table 3 highlights the most relevant sources in the field of physical chemistry and healthcare research, ranked by the number of articles they have published. The Journal of Chemical Education leads with 39 articles, reflecting its significant role in disseminating research related to chemical education and its relevance to healthcare. The Journal of Physical Chemistry B follows with 20 articles, focusing on the physical chemistry of biomolecular systems. Other important sources include the Journal of Lipid Researchwith 11 articles, and the Biophysical Journal with 8, both of which emphasize research at the

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

intersection of chemistry and biological processes. Heliyon, a multidisciplinary journal, contributes 6 articles. Notable sources such as Hepatology, Journal of the American Chemical Society, and Physical Chemistry Chemical Physics each have 4 articles, while American Journal of Physiology-Gastrointestinal and Liver Physiology and Biomaterials have each published 3 articles. These journals represent a diverse array of disciplines, indicating that research on physical chemistry in healthcare is interdisciplinary, with contributions spanning chemistry, biophysics, physiology, and biomaterials. The presence of journals like Journal of Chemical Education also suggests a focus on educational outreach and the application of physical chemistry concepts in healthcare-related teaching.

Sources	Articles
Journal of Chemical Education	39
Journal of Physical Chemistry B	20
Journal of Lipid Research	11
Biophysical Journal	8
Heliyon	6
Hepatology	4
Journal of the American Chemical Society	4
Physical Chemistry Chemical Physics	4
American Journal of Physiology-Gastrointestinal and Liver Physiology	3
Biomaterials	3

Table 3. Most Relevant Sources

Most Cited Countries

Table 4 lists the most cited countries in the field of physical chemistry and healthcare research, ranked by their total number of citations. The USA leads by a significant margin, with 11,451 citations, underscoring its dominant role in producing highly influential research. Brazilfollows with 1,245 citations, while the United Kingdom ranks third with 507 citations, reflecting these countries' substantial contributions to the field. Other notable countries include Sweden with 322 citations and China with 267 citations, highlighting the global reach of research in this domain. Mexico and Italy also appear on the list with 223 and 202 citations, respectively, indicating growing contributions from these nations. Canada, Germany, and Australia round out the list with relatively lower citation counts, but still play active roles in advancing research in physical chemistry and healthcare. This citation distribution emphasizes the international nature of research in this field, with the USA being the clear leader, while other countries contribute valuable work that is recognized globally.

Country	Total Citations
Usa	11451
Brazil	1245
United Kingdom	507
Sweden	322
China	267
Mexico	223
Italy	202
Canada	85
Germany	72
Australia	69

Table 4. Most Cited Countries

Reference Spectroscopy

Figure 2 displays a Reference Publication Year Spectroscopy (RPYS) graph, which tracks the number of cited references (represented by the black line) and their deviation from the 5-year median (indicated by the red line). The graph covers the period from 1990 to 2024, showing a general

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

increase in the number of cited references, particularly from the early 2000s until around 2012. This growth highlights an expanding citation base in the field, suggesting a rise in foundational literature influencing the research on physical chemistry in healthcare. The black line peaks between 2007 and 2012, indicating these years as particularly influential periods in terms of cited references. Following this peak, the number of cited references starts to decline after 2014, possibly reflecting shifts in research focus or the emergence of new paradigms that cite more recent works. The red line, which tracks deviations from the 5-year median, shows fluctuations, indicating periods where citation behaviors deviated from the typical trend, particularly in earlier years (before 2005). These deviations could point to breakthrough studies or changes in the research landscape that caused temporary shifts in citation patterns. Overall, the RPYS graph helps in identifying key periods of scientific contribution and shifts in citation trends, offering insights into the evolving research landscape of spectroscopy in physical chemistry and healthcare.

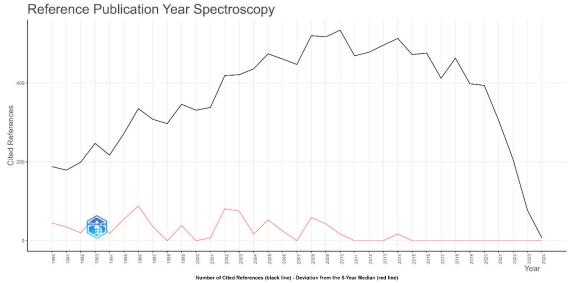


Figure 2. A Reference Publication Year Spectroscopy (RPYS) Graph

Trend Topics

Figure 3 depicts the trend topics within the research domain of physical chemistry and healthcare from 1999 to 2024. The size of the circles represents the frequency of the terms, with larger circles indicating higher occurrences. Key topics such as "computer-based learning," "thermodynamics," and "graduate education/research" have shown steady relevance, reflecting their foundational role in the field. More recent emerging topics, such as "nanotechnology," "physical chemistry," and "biochemistry," have gained prominence, especially from 2013 onwards. Other notable topics include "laboratory instruction" and "kinetics," which have been consistently relevant over the years. Terms related to education, such as "upper-division undergraduate" and "hands-on learning/manipulatives," highlight the increasing focus on practical and interdisciplinary learning in the field. The visualization underscores the evolving nature of research interests, with some topics like "nucleation" and "cholesterol" emerging sporadically but gaining attention in specific years. Overall, this trend analysis showcases both enduring and evolving areas of focus, indicating shifts in research priorities and technological advancements within the intersection of physical chemistry and healthcare.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

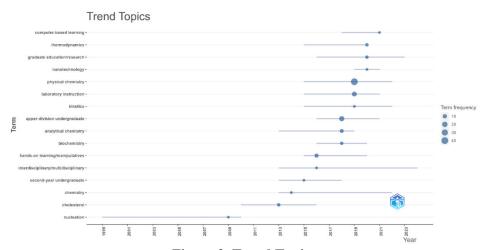


Figure 3. Trend Topics

Thematic Map

Figure 4 presents a thematic map that categorizes various research themes in the field of physical chemistry and healthcare based on their development degree (density) and relevance degree (centrality). In the Niche Themes quadrant, topics like "cholesterol," "nucleation," "genetics," "nanomaterials," "pharmaceutical chemistry," and "pharmacology" are highlighted. These themes are characterized by their high density but lower centrality, indicating that while they may be welldeveloped areas of research, they are not yet mainstream or widely recognized in the broader research community. The Motor Themes quadrant showcases more established themes such as "nanoparticles," "precipitation (physical chemistry)," "x-ray diffraction," "physical chemistry," "upper-division undergraduate," and "laboratory instruction." These themes demonstrate both high relevance and high density, suggesting they are central to ongoing research and actively contribute to advancements in the field. The Basic Themes quadrant includes terms like "chemistry," "electrochemistry," and "acidbase equilibrium." These areas are foundational and highly relevant to the field but may not reflect the latest research trends. Finally, the Emerging or Declining Themes quadrant, represented by terms such as "dft," "hirshfeld surface," "graphene oxide," and "protein adsorption," indicates themes that are either newly emerging or declining in significance, reflecting shifts in research interests. Overall, this thematic map effectively illustrates the landscape of research in physical chemistry and healthcare, highlighting the interplay between niche, motor, basic, and emerging themes and offering insights into the evolving focus areas within the discipline.

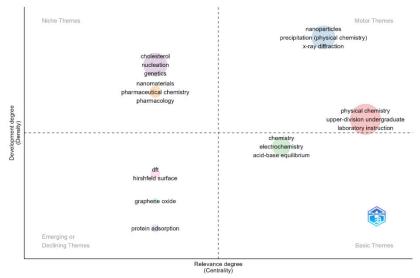


Figure 4. Thematic Map

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

Co-authorship between Countries

Figure 5 visualizes the co-authorship network between countries involved in physical chemistry and healthcare research. The size of the nodes represents the volume of research output, and the thickness of the lines indicates the strength of collaboration between countries. The USA is the most central and largest node in the network, signifying its dominant role in global research collaborations. The USA has strong connections with many countries, including Canada, Japan, England, and Germany, reflecting its widespread influence and collaborations in this field. Other notable clusters include Canada, England, and Japan, which form significant hubs of collaboration, primarily connected to the USA but also interacting with each other. Countries like Spain, France, and Australia also play active roles in global research, with numerous collaborations across regions. Smaller nodes such as India, Russia, Brazil, and Italy indicate these countries' contributions, though with fewer international collaborations compared to larger hubs. Notably, Italy and Brazil appear connected, highlighting a regional collaboration trend. Overall, this co-authorship map underscores the USA's central role in driving international collaborations in physical chemistry and healthcare research, while also highlighting the growing contributions of other countries like Canada, Japan, and England. The interconnectedness of countries suggests a highly collaborative research environment, with key players working together across continents.

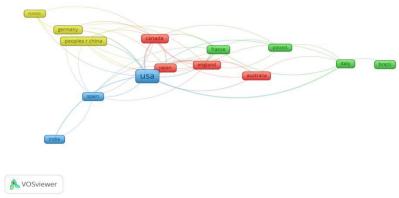


Figure 5. Co-authorship between Countries

Co-occurrence of keywords

Figure 6 visualizes the co-occurrence network of keywords in research related to physical chemistry and healthcare. Each cluster represents groups of closely related topics, with larger nodes indicating more frequent occurrences of specific keywords. The **green cluster** is centered around "physical chemistry" and includes related educational topics like "laboratory instruction," "upper-division undergraduate," and "graduate education/research." This cluster highlights the importance of educational methods and research instruction in physical chemistry. The **blue cluster** revolves around applied and experimental topics such as "nanoparticles," "nanotechnology," "membranes," and "toxicity," reflecting research into the practical and medical applications of physical chemistry in healthcare. The **red cluster** focuses on more theoretical and modeling aspects, with keywords such as "kinetics," "dynamics," "molecular dynamics," and "protein models," representing research focused on molecular behavior and dynamics within chemical systems. The **yellow cluster** is associated with health-related terms like "cholesterol," "bile," "nucleation," "gallstone formation," and "dietary cholesterol," indicating a strong connection between physical chemistry and medical research in lipid metabolism and related disorders. The **purple cluster** includes keywords like "thermodynamics," "aqueous solutions," and "delivery," focusing on fundamental chemical principles and their

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

applications in solutions and transport mechanisms. Overall, this co-occurrence map illustrates the diverse range of research areas within physical chemistry and healthcare, spanning from theoretical studies to applied medical research and education, providing insight into how these various subfields are interconnected.

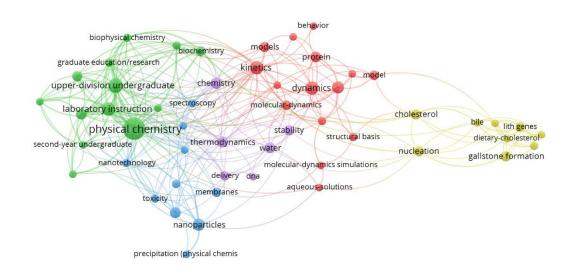


Figure 6. Co-occurrence of keywords

Discussion

This study provides a detailed bibliometric analysis of the intersection between physical chemistry and healthcare research from 1990 to 2024. By using tools like VOSviewer and Biblioshiny, the research identifies key trends, influential authors, most cited countries, and thematic development within this interdisciplinary field. The steady rise in annual scientific production since 2008, peaking in 2013, underscores the growing recognition of physical chemistry's applications in healthcare. While the slight decline in output post-2013 might suggest changing priorities, the overall trajectory remains positive, indicating sustained interest. This could be attributed to the increasing importance of topics such as nanotechnology, cholesterol metabolism, and molecular dynamics, which have pivotal roles in both fundamental chemistry and applied healthcare research.

The co-authorship network highlights the USA as a central player in driving international collaborations. The strong connection between the USA and countries like Canada, Japan, and England suggests an interconnected global research environment. However, smaller nodes like Brazil, Italy, and India reflect the emerging contributions of developing economies, indicating potential growth in research output and collaboration in the coming years.

The thematic map further illustrates the complexity of research within this domain. Motor themes, such as "nanoparticles" and "x-ray diffraction," are well-developed and central to advancing the field, reflecting their established role in both physical chemistry and biomedical applications. Meanwhile, niche themes like "cholesterol" and "nucleation" signal areas that, while highly developed, remain outside the mainstream focus, offering opportunities for more targeted research exploration.

Emerging or declining themes, such as "graphene oxide" and "protein adsorption," suggest new frontiers in research that require further attention. These topics could reflect technological advances or shifting research priorities towards more advanced materials and biomolecular interactions, areas critical for the next wave of healthcare innovations.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

Research Gaps and Future Directions

The bibliometric analysis reveals several research gaps that present opportunities for further exploration. While motor themes such as nanotechnology and x-ray diffraction are well-established, there is a noticeable lack of integration between newer themes such as graphene oxide, protein adsorption, and healthcare applications. This highlights a potential gap in translating cutting-edge materials research into practical healthcare innovations. Future research should explore how these emerging materials can be applied in medical devices, drug delivery systems, or diagnostics.

Moreover, the study indicates that while certain health-related themes such as cholesterol and bile are well-developed, there is limited exploration of other biochemical systems and their interaction with physical chemistry principles. Expanding research on metabolic pathways, protein folding, and molecular interactions within healthcare contexts could provide new insights, especially in areas such as disease pathogenesis or pharmaceutical development.

Another research gap is the lack of focus on interdisciplinary studies that combine physical chemistry with emerging healthcare technologies such as artificial intelligence (AI) or machine learning (ML). The integration of AI/ML with physical chemistry models for healthcare applications, such as disease prediction or personalized medicine, represents a promising but underexplored area. Researchers should consider how advanced computational methods can be used to enhance molecular dynamics simulations or predict the behavior of new biomaterials in clinical settings.

Additionally, while the co-authorship analysis reveals significant international collaboration, the role of low-resource settings and their specific healthcare challenges remains underrepresented. Future research could focus on fostering collaborations with countries that are underrepresented in the co-authorship network to address global health issues and ensure that advancements in physical chemistry are accessible to all regions.

Practical Implications

The findings from this study have several practical implications, particularly for research institutions, healthcare policymakers, and educators. First, the identification of key motor themes such as nanotechnology and physical chemistry education suggests that educational programs need to evolve to incorporate more hands-on learning and interdisciplinary approaches. Institutions should invest in physical chemistry curricula that emphasize not only foundational concepts but also their direct applications in healthcare. Laboratory instruction, as highlighted in the thematic map, can serve as a critical tool for training the next generation of researchers in both the theoretical and practical aspects of physical chemistry as it relates to healthcare.

For healthcare policymakers, this study underscores the importance of fostering international collaborations to advance research in this field. Countries like the USA, Japan, and Canada play central roles in driving global research, and their partnerships with emerging economies should be encouraged to create more diverse and inclusive research networks. Policymakers can support this by funding joint international projects, especially in areas of physical chemistry that address pressing global health challenges, such as drug delivery, metabolic diseases, or medical devices.

From an industrial perspective, the study's insights into emerging materials such as graphene oxide and nanoparticles could guide pharmaceutical and medical device companies in their R&D strategies. These materials offer exciting possibilities for new drug formulations, implantable devices, and diagnostic tools. Companies should consider how the advances in physical chemistry can be translated into innovative healthcare products that address unmet clinical needs, particularly in precision medicine and personalized healthcare solutions.

Lastly, the strong representation of educational themes, such as graduate and upper-division undergraduate research, indicates that integrating physical chemistry with healthcare education is crucial for preparing students for future careers in interdisciplinary research. By fostering collaborations between chemistry and medical schools, institutions can create interdisciplinary programs that equip students with the knowledge and skills to tackle healthcare challenges using physical chemistry principles. This could lead to the development of new educational models, such as dual-degree programs or research initiatives that bridge the gap between chemistry and healthcare.

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

This study not only provides a snapshot of the current state of research in physical chemistry and healthcare but also highlights critical gaps and offers future directions. Addressing these research gaps and implementing the practical implications will be essential for advancing the field and ensuring that innovations in physical chemistry continue to contribute meaningfully to healthcare advancements.

Conclusion

This study presents a comprehensive bibliometric analysis of research at the intersection of physical chemistry and healthcare, covering publications from 1990 to 2024. The findings highlight a steady growth in scientific output, driven by key contributors and interdisciplinary collaborations. The USA leads in both research output and international collaboration, further emphasizing its central role in advancing the field. Thematic analysis reveals a balanced development of niche, motor, and emerging themes, with topics such as "cholesterol" and "nucleation" representing niche areas of focus, while more established fields like "nanoparticles" continue to drive the research forward. Emerging areas, such as "graphene oxide" and "protein adsorption," offer opportunities for future exploration. The co-occurrence of keywords also underscores the importance of education and interdisciplinary research in this domain. Overall, this study not only maps the current state of the field but also identifies key trends and areas for further investigation, contributing to a deeper understanding of how physical chemistry continues to shape healthcare research and innovation.

References

- 1. Ku MS: Physical Pharmacy and Biopharmaceutics. Reviews in Cell Biology and Molecular Medicine. 2015, 1:229–75. 10.1002/3527600906.MCB.201500004
- 2. Flynn JD, Lee JC: Physical Chemistry in Biomedical Research: From Cuvettes toward Cellular Insights. The journal of physical chemistry letters. 2017, 8 9:1943–5. 10.1021/acs.jpclett.7b00549
- 3. Kushner J, Kinter C: The Influence of Chemistry on Personalized Medicine. 2017, 6:. 10.19080/CTBEB.2017.06.555689
- 4. Kuznetsova T, Stryzhak D, Kryvoruchko AV, Stryzhak SV, Kulenko O: THE SIGNIFICANCE OF THE CHEMICAL COMPONENT 'MEDICAL CHEMISTRY' IN THE PROFESSIONAL TRAINING OF THE FUTURE DOCTOR. Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. Published Online First: 2023. 10.31718/2077-1096.23.1.122
- 5. Deng X, Zhao J, Tian Q, Wang H: Applying Hands-on Inquiry Learning in Physical Chemistry Teaching Practice to Improve Teaching Quality. Indian Journal of Pharmaceutical Education and Research. Published Online First: 2023. 10.5530/ijper.57.4.140
- 6. Kuroki N, Mori H: Comprehensive Physical Chemistry Learning Based on Blended Learning: A New Laboratory Course. Journal of Chemical Education. Published Online First: 2021. 10.1021/acs.jchemed.1c00666
- 7. Elim HI, Chiang L: Nanochip Medicine: Physical Chemistry Engineering. SCIENCE NATURE. Published Online First: 2019. 10.30598/SNVOL2ISS1PP086-089YEAR2019
- 8. Pirzada M, Altintas Z: Nanomaterials for Healthcare Biosensing Applications. Sensors (Basel, Switzerland). 2019, 19:. 10.3390/s19235311
- 9. Guo X, Sun Y, Sun X, Li J, Wu J, Shi Y, Pan L: Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromolecular rapid communications. 2023, e2300246. 10.1002/marc.202300246
- 10. Zhang Y, Qiu M, Tsai C-W, Hassan MM, Alamri A: Health-CPS: Healthcare Cyber-Physical System Assisted by Cloud and Big Data. IEEE Systems Journal. 2017, 11:88–95. 10.1109/JSYST.2015.2460747
- 11. Peng K, Liu P, Bilal M, Xu X, Prezioso E: Mobility and Privacy-Aware Offloading of AR Applications for Healthcare Cyber-Physical Systems in Edge Computing. IEEE Transactions on Network Science and Engineering. 2023, 10:2662–73. 10.1109/TNSE.2022.3185092
- 12. Ahmad R, Salama K: Physical Sensors for Biomedical Applications. 2018 IEEE SENSORS. 2018, 1–3. 10.1109/ICSENS.2018.8589646
- 13. Walker SA, Pham A, Nizzero S, et al.: Education and Outreach in Physical Sciences in Oncology. Trends in cancer. Published Online First: 2020. 10.1016/j.trecan.2020.10.007

SEEJPH Volume XXIV, S3, 2024; ISSN: 2197-5248; Posted: 04-07-2024

- 14. Richards N, Bearne S, Goto Y, Parker E: Reactivity and mechanism in chemical and synthetic biology. Philosophical Transactions of the Royal Society B: Biological Sciences. 2023, 378:. 10.1098/rstb.2022.0023
- 15. Ferguson AL, Hachmann J, Miller TF, Pfaendtner J: The Journal of Physical Chemistry A/B/C Virtual Special Issue on Machine Learning in Physical Chemistry. The journal of physical chemistry B. 2020, 124 44:9767–72. 10.1021/acs.jpcb.0c09206

Barbu L: Global trends in the scientific research of the health economics: a bibliometric analysis from 1975 to 2022. Health Econ Rev. 2023, 13:31. 10.1186/s13561-023-00446-7

Banshal SK, Verma MK, Yuvaraj M: Quantifying global digital journalism research: a bibliometric landscape. LHT. 2022, 40:1337–58. 10.1108/LHT-01-2022-0083

Abas N, Hussin H, Hardi NM, Hashim N: Exploring the interconnection of social media, mental health and youth: A bibliometric analysis. Social and Management Research Journal. Published Online First: 2023. 10.24191/smrj.v20i2.24401

Agac G, Sevim F, Celik O, Bostan S, Erdem R, Yalcin YI: Research hotspots, trends and opportunities on the metaverse in health education: a bibliometric analysis. LHT. Published Online First: 26 July 2023. 10.1108/LHT-04-2023-0168

Devaki V, Ramganesh DE, Amutha DS: Bibliometric Analysis on Metacognition and Self-Regulation Using Biblioshiny Software. Indian Journal of Information Sources and Services. 2024, 14:115–25. 10.51983/ijiss-2024.14.2.17

Guleria D, Kaur G: Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech. 2021, 39:1001–24. 10.1108/LHT-09-2020-0218

van Eck NJ, Waltman L: Software survey: VOSviewer, a computer programfor bibliometric mapping. Scientometrics. 2010, 84:523–38. 10.1007/s11192-009-0146-3

Yu Y, Li Y, Zhang Z, et al.: A bibliometric analysis using VOSviewer of publications on COVID-19. Ann Transl Med. 2020, 8:816–816. 10.21037/atm-20-4235

Arruda H, Silva ER, Lessa M, Proença Jr D, Bartholo R: VOSviewer and bibliometrix. Journal of the Medical Library Association: JMLA. 2022, 110:392.