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ABSTRACT 
Hordenine (4-[2-(Dimethylamino) ethyl] phenol) a plant-based phenethylamine 

alkaloid and its shortlisted bioisostere 1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-

chlorophenyl) ethyl]-N-methylpiperidin-4-amine, which showed nil-lead likeliness 

violation during ADMET screening were docked  with eight potential drug targets 

from selected wound healing pathways. The results showed that Metalloproteinase-

9 and Proliferating cell antigen had the lowest binding energy of -6.23 and -6.58 

kcal/mol, respectively. However, when considering the molecular interactions were 

considered, Tyrosine related protein 1 had the maximum number of interactions with 

binding energy of -5.83 kcal/mol and the highest number of hydrogen bonds. The 

molecule 1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl)ethyl]-N-

methylpiperidin-4-amine docked well with all the targets and had appreciably lower 

binding energies for all the wound healing targets: Casein kinase 1  -14.41Kcal/mol, 

Metalloproteinase-9 -11.7241Kcal/mol, Proliferating cell antigen -9.8941Kcal/mol, 

Tyrosine related protein 1  -9.4441Kcal/mol, ß2 adrenergic receptors  -

8.1941Kcal/mol,  Notch1 I D receptor -7.4441Kcal/mol, Dopachrome tautomerase -

6.4 41Kcal/mol and Glycogen synthase kinase 3 beta -5.741Kcal/mol. The 

Molecular dynamic simulations of Casein kinase 1 with 1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-chlorophenyl) ethyl]-N-methylpiperidin-4-amine showed that 

the Cα Root mean square deviation values were within 1.6 Å throughout the 

simulation for the system and the root mean square fluctuations showed that loop 

residues (Residues 49 to 57) involved in ligand binding had minimal fluctuations as 

compared to the other loop residues. A free binding energy of -10.44 Kcal /mol was 

derived from MMPBSA calculations and this corroborated well with the good 

binding score obtained by docking. This shows that the protein-ligand complex did 

not undergo any major conformational change and was stable throughout the 

simulation giving supportive evidence that this molecule could be a promising 

candidate for acute and chronic wound healing including diabetic foot ulcers, along 

with Hordenine which is an effective inhibitor of hyperpigmentation. 
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Introduction 

Wound repair is a highly complex biological process [1] by which tissues restore normal function 

and architecture following any of a variety of physical, mechanical, biological, or chemical insults 

[2,3].The process of acute wound healing is triggered by tissue injury and consists of a cascade of 

highly coordinated phases including hemostasis, inflammation, proliferation, and remodeling 

[4,5,6]. The healing process can be arrested in any of these phases, leading to the formation of a 

chronic non-healing wound [7]. Enhanced wound healing mechanisms can help in quick effective 

healing, despite the presence of risk factors that could result in chronic wounds [8].  

Acute Wounds 

Tyrosine metabolism is a key pathway in the initial stage of healing of acute wounds [9]. 

Tyrosinase, which converts tyrosine to dopaquinone, is the key enzyme involved in the rate-

limiting step of tyrosine metabolism, and Tyrosine related protein 1 (TYRP1) is an important 

melanosomal enzyme belonging to the Tyrosinase (TYR) family [10,11,12]. Dopachrome 

Tautomerase (DCT) is an important paralog of TYRP1 [13]. DCT and TYRP1 are both Hub and 

key functional genes and significant down-regulation of these enzymes in acute wound samples 

has been documented[9].    

ß2 adrenergic receptors (ß2-ARs) are found in high levels on keratinocytes play a role in cutaneous 

homeostasis [14,15,16]. Aberrations in either keratinocyte ß2-AR function or density have been 

associated with various skin diseases [14]. Upon injury, keratinocytes migrate directionally into 

the wound bed to initiate re-epithelialization which is essential for wound repair and restoration of 

the integrity of the skin barrier [17]. Keratinocytes express high level of ERK protein which plays 

an important role in keratinocyte migration [18,19,20,21]. Blockade of ß2-AR by an antagonist 

prevents endogenously synthesized catecholamine (Epinephrine) from binding, thus negating its 

anti-mitogenic effect and consequently accelerating wound repair [14, 22, 23]. 

The Wnt/β-catenin pathway improves angiogenesis and epithelial remodeling that are involved in 

the regulation of wound healing [24,25,26]. Caesin kinase 1 (CK1) and Glycogen synthase kinase 

3 beta (GSK3B) bind to their targets in the Wnt/β-catenin signalling pathway and act as positive 

regulators leading to increased signaling and eventually in effective wound healing process 

[27,28]. Activation of the Wnt pathway has a key role in fibroblast activation and collagen release 

during fibrosis. In the “off” state, β-catenin binds with GSK3β, axin2, adenomatous colon 

polyposis protein (APC), and CK- 1[29, 30]. The kinase in this complex phosphorylates-catenin, 
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thereby targeting to degradation of the ubiquitin proteasome system. On the other hand, in the on” 

state, the receptor complex consisting of Frizzled and LRP5/6 protein binds to Wnt, and recruits 

Disheveled Protein (DVL) to the plasma membrane. Subsequently, several components of the β-

catenin destruction complex are recruited to the membrane, and they prevent the phosphorylation 

of β-catenin, which in turn stimulates the transcription of Wnt target genes such as cyclin D1, c-

myc, and Axin2 resulting in events like cell division, cell proliferation and cell migration to the 

wound site [31,32, 33]. 

Inflammatory and proliferation phase 

p21, a potent cyclin dependent kinase (CDK) inhibitor which is a downstream protein of P53 

regulates fibroblast cell proliferation and differentiation and increases wound healing[34,35].  

[36,37]. The binding of p21 to the proliferating cell nuclear antigen (PCNA) causes G1 and G2 

cell cycle arrest thereby reducing proliferation and cellular senescence. Inhibition of p21 

expression is reported to increase the rate of the wound healing process [36-40]. Increased 

fibroblast cell survival and proliferation via activation of the PI3K−Akt−NF-κB pathway is 

probably mediated by interfering with the PCNA−p21 complex interaction [36]. 

Diabetic Foot Ulcers 

In  diabetic foot ulcers, due to the hypoxic condition and inflammation, there is increased 

production of Reactive Oxygen Species (ROS) that results in upregulated levels of 

Metalloproteinase-9 (MMP-9), leading to tissue damage and poor wound healing [41]. When 

MMP-9 is expressed at excessive levels, it prevents the reestablishment of the dermal/epidermal 

junction and thereby limits epithelial migration and wound closure [42,43]. This is in contrast to 

the normal wound healing process, where transient MMP-9 expression may facilitate keratinocyte 

detachment and migration into the wound bed. Increased MMP-9 expression in chronic wound can 

cause keratinocytes to migrate into the wound, but they are unable to re-anchor themselves to the 

matrix [44,45,46]. Ongoing release of TNF-α provides a proximate mechanism for excess and 

continued MMP-9 production in chronic wounds [41].  

Notch1 ICD expression in diabetic wounds is known to be significantly increased in the case of 

diabetic foot ulcers [47,48]. Notch1 inactivation in keratinocytes is sufficient to cancel the 

repressive effects of the Dll4–Notch1 loop on wound healing in diabetics, making Notch1 

signalling an attractive local therapeutic target for the treatment of Diabetic foot ulcers (DFUs) 

[48,49,50].  
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Screening of potential drug targets identified from the wound healing signalling pathways will 

help us to identify novel compounds that can potentiate healing mechanisms [51,52].      

Hordenine (4-[2-(Dimethylamino)ethyl] phenol) is a phenethylamine alkaloid that is naturally 

occurring in germinated barley (Hordeum vulgare L.). Hordenine has been demonstrated to be 

effectively inhibit hyperpigmentation [53,54] enhance mouse dermal-papilla cells (DPCs') 

activity, and accelerate hair regrowth [55]. So, hordenine was selected as a candidate to screen 

against the targets involved in the wound healing process. Further, biologically equivalent 

analogues of Hordenine were derived and docked with the wound healing targets.        

Materials and Methods 

Software and Bioinformatics Tools used in the study 

Wound healing bioinformatics tools 

Inhibition of selected targets like TYRP1, DCT, ß2-ARs, CK1, GSK3B, PCNA, MMP-9 and 

Notch1 ICD for potentiating wound healing were identified from literature and confirmed using 

the Laverne bioinformatics tool (https://www.novusbio.com/pathways/wound-healing). 

Protein and ligand retrieval 

The three-dimensional structures of selected targets were retrieved from the Protein Data Bank 

[56]. The 3D structures of the selected ligands were retrieved from the PubChem Compound 

database [57]. 

The pbdqt files were generated in Autodock1.5.7. Autodock 4.0 was run in Cygwin terminal. The 

results were compiled and the best poses were visualized in the Autodock tool 1.5.7 [58]. All 

graphical presentations of the docked complexes were illustrated using Discovery studio visualizer 

version v19.1.0.18287 (BIOVIA, San Diego, CA, USA) [59].  

Preparation of protein and ligand 

Active binding site identification: Structures of the protein and known inhibitor complexes of 

the target proteins were retrieved from Protein Data Bank (https://www.rcsb.org). Energy 

minimization of the coordinates of these ligands were performed using PRODRG server [60] 

selecting polar hydrogens only. The energy minimized ligands in pdb format were viewed in 

Visual Molecular Dynamics (VMD) [61]. VMD is a molecular visualization program for viewing 

established active binding sites. Residues that are exposed on the surface were identified using 

GETAREA 1.0, which provides solvent accessible surface area and its gradient for proteins [62].  

 

https://juniperpublishers.com/bboaj/Wound%20healing%20bioinformatics%20tools
https://www.rcsb.org/
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Molecular docking 

Autodock 4.0 [58], was used for conduct molecular docking studies, and the top 10 conformations 

of the bound ligands were obtained in decreasing order. 

 The conformation with a root mean square deviation (RMSD) value of zero is considered to be 

the best [63, 64]. The ligand Hordenine was docked with the selected targets. Tyrosine related 

protein 1 (TYRP1) (PDB ID: 5M8L), Dopachrome tautomerase (DCT) (PDB ID: 1DPT), ß2 

adrenergic receptors (ß2-ARs) (PDB ID:2R4R), Casein kinase 1 (CK1) (PDB ID:2IZS), Glycogen 

synthase kinase 3 beta (GSK3B) (PDB ID:3F88), Proliferating cell antigen (PCNA) (PDB 

ID:4D2G), Metalloproteinase-9 (MMP-9) (PDB ID:5TH6) and Notch1 I D receptor (PDB ID: 

5FM8). 

Bioisosteric Replacement 

Biologically equivalent replacements (bioisosteres) for Hordenine were obtained by replacing the 

hydroxyl and methyl functional groups using SwissBioisostere (http:// www.swissbioisostere.ch) 

web-server interface [65]. Compounds having an improved biological performance in biochemical 

assays from the SwissBioisostere database were selected. The biological performance corresponds 

to 1,948 molecular targets and 30 target classes. The 2D structure of Hordenine was drawn using 

MarvinSketch 6.2 embedded in the SwissBioisostere server. Using the “Fragment 1” window in 

the SwissBioisostere, the 2 methyl groups and hydroxyl group were labeled as the -R groups and 

queried against the database.  Biologically equivalent functional groups were detected based on 

matched molecular pair and mining bioactivity data in the ChEMBL database. A total of 166 

equivalent replacements were identified by the webserver. The frequency of observations, activity 

difference distribution, success-based score, and chemical similarity between the fragments were 

also obtained. Six compounds that had better performance than Hordenine were shortlisted for 

further assessment. 

Pharmacokinetic Assessment (ADMET)   

Predicting ADMET properties before subjecting the compound to resource intensive preclinical 

and clinical studies is very important to avoid failure of drug in later stages [66,67]. The ADMET 

properties of six compounds were computed using the web-based Swiss-ADME tool 

(http://www.swissadme.ch/) [68]. The ADME parameters, physicochemical descriptors, 

http://www.swissadme.ch/
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pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of  the 

bioisosteres were obtained. 

Molecular docking of Selected compounds  

To confirm the binding activity of the shortlisted bioisoseteres to the protein targets, docking of 

bioisosteres that had nil-leadlikeliness violations in above ADMET screening was performed with 

each of the target proteins using Autodock 4.0 and the docking results were visualized and 

illustrated using Discovery studio visualizer version v19.1.0.18287 (BIOVIA, San Diego, CA, 

USA)[59]. The protein-ligand complex interactions were visualized and assessed using protein–

ligand interaction profiler (PLIP)   at https://plip-tool.biotec.tu-dresden.de[69].  

Molecular Dynamic (MD) simulations 

The molecule 5 (1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl) ethyl]-N-

methylpiperidin-4-amine) had high docking score for all the wound healing protein targets of 

wound healing selected in this study. This compound in complex with the  CK1 receptor (-14.2 

Kcal/mol) gave the lowest binding energy and thereafter subjected to MD simulations using the 

sander module of AMBER 14 software package [70] with the ff99 force field parameters. All 

simulations were done on CK1 (PDB ID 2IZS).    

Crystal structures were downloaded from the RCSB protein data bank. Missing residues were 

modeled using Modeller version 9.11[71] with the sequences given in the PDB file. The Amber 

FF14SB force field was used for the proteins and Amber GAFF parameters were employed for the 

ligands. Hydrogen atoms of the ligands were modeled using the REDUCE program in Amber 14. 

The ligand atomic partial charges were then generated using the empirical charge model - AM1-

BCC using the ANTECHAMBER program of Amber 14. Each complex was solvated in a TIP3P 

water box with a minimum distance of 8.0 from the surface of the complex to the edge of the 

simulation box. All runs were carried out for a time period of at least 30 nanoseconds. The 

simulation details are summarized in Table 1. A periodic truncated octahedron box was used for 

solvation of the protein in explicit TIP3P water molecules. The molecular systems were neutralized 

with Na+ ions. The initial solvated structures were first subjected to 200 steps steepest descent 

energy minimization, whereas the solute atoms, including the protein, were restrained by a 

harmonic potential with a force constant of 100.0 kcal/mol/Å2. After the initial solvent 

minimization, the whole system was minimized using 200 steps of steepest descent minimization 

without harmonic restraints. The minimized structures were then subjected to an equilibration 

https://plip-tool.biotec.tu-dresden.de/
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protocol in which the temperature of the system was gradually raised from 100K to 300K over a 

10ps period while holding both the volume and temperature constant, followed by another 10ps at 

300K by holding the temperature and pressure constant while allowing the volume to change for 

adjusting solvent density. The initial velocities were randomly assigned from a maxwellian 

distribution at 100K. At the end of the equilibration, the average temperature of the final 5ps was 

300K, and the average density was 1.0 g/ml. Long range electrostatic interactions were treated 

with the particle mesh Ewald method. Periodic boundary conditions were applied via both the 

nearest image and the discrete Fourier transform implemented as part of the particle mesh Ewald 

method. All bonds involving hydrogen atoms were restrained using the SHAKE algorithm with 

time steps of 2fs.. Global translation and rotation of the system (solvent and solute) was removed 

every 100 integration steps during the simulation. The initial 20ps stage was designed to equilibrate 

those particles that were added during the initial model-building process, including water 

molecules and hydrogen atoms, and to allow the systems to be solvated adequately. The initial 

20ps trajectories were discarded. This was followed by the production stage in which both pressure 

(1.0 atm) and temperature (300K) were held constant by the Berendsen’s coupling scheme. 

Table-1 The simulation details of (1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl) 

ethyl]-N-methylpiperidin-4-amine) and Casein 1 kinase  

Simulation 

length (ns) 

System 

Temp (K) 

Total no of 

atoms 

No of H20 

molecules 

Counter ions Number of 

Counter ions 

added 

30 300 53034 10872 Cl- 8 

 

MM-PBSA Calculation  

The snapshots generated from MD simulations were used to post-process binding free energies by 

the single-trajectory MMPBSA method [72].  

For a non-covalent binding reaction in the aqueous phase   

R + L    R:L,   where R, L, and R:L represent receptor, ligand, and complex, respectively.  

The binding free energy, ΔGbind,aqu, can be computed as  

 ΔGbind,aqu = ΔGbind,vac + ΔGbind,solv,  

 Where, ΔGbind,vac is the binding free energy in the vacuum phase, and ΔGbind,solv is the solvation 

free energy change upon binding   
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ΔGbind,solv, = ΔGR:L,solv − ΔGR,solv − ΔGL,solv,   

 Where, ΔGR:L,solv, ΔGR,solv and ΔGL,solv are solvation free energies of complex, receptor and ligand, 

respectively. 

Here the solvation free energies were computed by calculating two different components 

separately, polar and non-polar, both within the implicit solvation framework   

ΔGsolv = ΔGsolv,polar + ΔGsolv,nonpolar.   

 The polar part, ΔGsolv,polar, can be calculated by solving the Poisson-Boltzmann (PB) equation. In 

cases where both the ionic strength and solvent potential are low, and when symmetric electrolytes 

are considered, the PB equation can be linearized to:   

∇·ε∇ϕ =−4πρ0 + ενκ2ϕ,    

where κ2=8πe2IενkBT. Here ν denotes the solvent, I represents the ionic strength of the solution, 

and is defined as I = z2c. After solving potential ϕ, ΔGsolv,polar can be computed as   

ΔGsolv,polar =  ½∑ qiϕi.   

 The non-polar part, ΔGsolv,non−polar, is typically estimated by the surface area (SA) method.   

Absolute Binding Free Energy Calculation 

The standard free energy change, ΔG0, for binding can be expressed as   

ΔG0 = −RTlnZR:L ZRZL  + RTln8π2C0.   

Where, R is the gas constant, T is the temperature, C0 is the standard state concentration (1M). 

ZR:L, ZR, and ZL are the configuration integrals of the complex, receptor, and ligand, respectively. 

The configurational integrals are apparently very difficult to compute for typical proteins or protein 

complexes due to the extremely high dimensionalities of the integrals. In this study, it is 

approximated by the sum of the free energy change given the assumption of no configurational 

rearrangement and the free energy change upon configurational rearrangement, ΔGConf. The free 

energy change without configurational rearrangement is approximated by the single-trajectory 

MMPBSA method, ΔGmmpbsa. The free energy change upon configurational rearrangement, ΔGConf, 

is taken from a previous analysis. Therefore, the equation can be approximated as  

 ΔG0 ~ ΔGmmpbsa + ΔGconf  + RTln8π2C0.   

 Where, RTln8π2C0 is a constant, with a value of 7.0 kcal/mol at the standard condition. 

Results and discussion 

Laverne Bioinformatics Tool 

The results obtained from the Laverne Bioinformatics tool is provided in the Fig.1.  
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Fig.1 Association of selected protein targets in wound healing mechanisms from Laverne 

Bioinformatics Tool.  Blue circles indicate targets and the brown circles indicate association 

with the wound healing pathways.  

 

 A network of proteins involved in the wound healing pathways was derived using the Laverne 

bioinformatics tool from Novus Biologicals. Hordenine, is found in a variety of plants and portrays 

several biological and pharmacological activities [73,74,75, 76]. As an alkaloid, hordenine is a 

promising candidate for the treatment of inflammatory diseases [77,78]. It promotes the healing of 

colonic ulcers by regulating the expression of tight junction proteins, including ZO‐1 and occludin 

[76].  
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Table 2: The inhibitory constant and binding energies of the selected wound healing targets  

Targets of wound healing  PDB 

ID 

Binding 

Energy 

(kcal/mol) 

Inhibitory 

constant  

Ligand 

Efficiency 

(kcal/mol) 

Tyrosine related protein 1 (TYRP1) 5M8L -5.83 53.36 µm -0.49 

Dopachrome tautomerase (DCT) 1DPT -4.66 385. 25µm -0.39 

ß2 adrenergic receptors (ß2-ARs) 2R4R -5.19 157.58 µm -0.43 

Casein kinase 1 (CK1) 2IZS -2.99 6.44mM 6.44 

Glycogen synthase kinase 3 beta) GSK3B 3F88 -4.88 523.89 µm -0.37 

Proliferating cell antigen PCNA 4D2G -6.23 27.04 µm -0.52 

Metalloproteinase-9 (MMP-9) 5TH6 -6.58 14.97 µm -0.55 

Notch1 I D receptor 5FM8 -5.42 106.9 µm -0.45 

 

  

Fig 2. Bioavailability radar of Hordenine  

Table 2 presents the docking results of Hordenine. PCNA, MMP-9 and TYRP1 gave the lowest 

binding energy as compared to other protein targets. Hordenine had one lead likeliness violation 

with a synthetic accessibility score of 1 (Table 6).   

 MMP-9 has been proven to be a prime candidate for disordered wound healing; reducing its levels 

in the wounds has been associated with resolution of the pathological condition [80]. A previous 

study showed that increased cell survival and repairing of fibroblast proliferation resulted in 

improved wound healing property via activation of the PI3K–Akt–NF-κB pathway which is 

mainly mediated by inhibition of the PCNA-p21 complex interaction [36]. Abnormal skin 

pigmentation is noticed after skin injuries such as burns, wound, or laser surgery, and during the 

wound healing response [84]. Though the binding energy of MMP-9 and PCNA are low, when 

Hordenine  

C10H15NO 

Pubchem ID CID68313 
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considering the molecular interactions of these targets, TYRP1 showed the maximum number of 

interactions with binding energy of -5.83 kcal/mol and an appreciably greater number of hydrogen 

bonds (Table 3). Inhibition of tyrosine metabolism play an important role in the initial stage of 

skin repair by targeting TYRP1 or DCT in keratinocytes [81,82]; they have been also proved to 

have a reducing property on the level of skin cell melanin pigmentation and skin whitening [53, 

81].  

As hordenine could not establish a binding energy beyond -7 kcal/mol for any of the targets, further 

biologically equivalent replacements (bioisosteres) for Hordenine were generated using 

SwissBioisostere version 2021(Fig 3). Around 166 Bioisosteres were generated of which 6 

compounds that had improved biological activity were shortlisted (Table 6).  

 

Table 3 Interactions formed between Hordenine and the wound healing targets along with 

interacting residues and distance (Å) 

Targets 

Hydrophobic 

Interactions 

Hydrogen  

Bonds  

Salt 

Bridges  

π-

Stacking 

Index Interactions 

TYRP1 2  

381HIS(3.99) 

391THR 

(3.93) 

 

6 

362TYR(3.21) 

381HIS(2.59) 

388GLY(2.01) 

390GLN(2.79) 

391THR(2.07) 

394SER(2.58) 

2 

212ASP 

(4.99) 

216GLU 

(5.05) 

 

 

 

PCNA 1 

124GLU 

(3.19) 

 

2 

122ASP (2.19) 

124GLU(2.13) 

 

2 

122ASP 

(3.4) 

12BGLU

(3.83) 
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NotchI D 2  

158PHE 

(2.98) 

163ILE(3.47) 

 

3 

161SER(2.03) 

162TYR(3.27) 

162TYR(2.23) 

 

 

 

1 

159GLU 

(2.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MMP9  2 

410AASP 

(2.21) 

411AHIS 

(2.05) 

1 

402AGL

U 

(2.46) 

 

 

2 

405AHIS 

(3.54) 

411AHIS 

(3.87) 

 

GSK3B 4 

62ILE(3.2) 

70VAL(3.53) 

134TYR 

(3.72) 

188LEU(3.46) 

2 

133BASP 

(1.88) 

134BTYR 

(2.16) 

  

 

DPT1 3 

2PHE(2.54) 

2PHE(3.11) 

64ILE(3.58) 

3 

32LYS(2.09) 

63SER(1.77) 

64ILE(1.85) 

  

 



 In-silico screening of potential targets from wound healing pathways against Hordenine and 

selected Bioisostere 

SEEJPH Volume XXVII ,2025, ISSN: 2197-5248; Posted: 02-02-2025 

 

633 | P a g e  
 

 

ck1 2 

166GLU 

(2.91) 

185ASP 

(3.75) 

 

1 

164LYS (2.11) 

 

1 

185ASP 

(5.06) 

 

 

 

ß2-ARs 3 

117VAL 

(3.23) 

282PHE (3.77) 

316TYR (3.38) 

 

1 

312ASN 

(2.07) 

 

 

1 

79AASP 

(4.73) 

 

 

1 

286TRP 

(4.68) 
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Fig 3 Intermolecular interactions between Hordenine against wound healing targets 

 

PCNA         

 

 

MMP9 

 

ß2-ARs      

 

TYRP1 

 

 

1dpt 

 

Notch 1D Receptor 

 

CK1 

 

GSK3B 
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Hordenine   

Query fragment: [*:1] N ([*:2]) CCc1ccc ([*:3]) cc1 

 

Fig 4: Query fragment for SwissBioisostere   

The query fragment for Hordenine was provided as input fragment as indicated: [*:1] N ([*:2]) 

CCc1ccc ([*:3]) cc1 (Fig. 4)  

 

The main objective of a bioisosteric replacement is creating a new molecule with similar biological 

properties as that of the parent compound; such modifications have been used to improve activity 

in several studies [83,84,85,86,87,88].  

The pharmacological and physicochemical properties predicted by Swiss-ADME website are 

summarized in Table 6. The physicochemical properties of the compounds show that all 6 

compounds had molecular weight less than 500 g/mol which is an important parameter for a small 

molecule to possess drug likeliness property [90]. The topological polar surface area (TPSA) is 

established as a good indicator of drug absorption in the intestine (TPSA less than 140 Å2) and for 

penetration of the blood-brain barrier (TPSA less than 60 Å2) [89,91, 92]. In this study all the 

compounds had a TPSA value of 74.07 Å2, indicating that all the 6 molecules had high GI 

absorption but did not possess adequate blood brain permeability [93]. The partition coefficient 

between n-octanol and water (log Po/w) is the classical descriptor for lipophilicity, which was 

assessed and collectively reported (consensus log Po/w) by the predictive models in SWISS -

ADME; i.e. iLOGP, XLOGP3, WLOGP, MLOGP, and SILICOS-IT [69]. Log P VALUE should 

be ≤ 5 [94, 95]. The number of rotatable bonds (NRB) is another indication of the flexibility of a 
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compound [96, 97, 98]. The molecules tested in this study had rotatable bonds ranging from 5-7. 

A drug candidate is predicted to be orally non-bioavailable when its rotatable bonds are more than 

9 [69,96,98,99].  

 

Thus molecules 3,4 and 5 may be effluxed out from the GIT or Brain as it is a substrate for P-gp. 

Based on whether these molecules could serve as substrates of the permeability glycoprotein (Pgp) 

provides information about its active efflux nature through several biological membranes like the 

gastrointestinal wall or the brain [100,101]. It jeopardizes the success of drug delivery; however, 

strategies are being developed to overcome P-gp mediated drug transport [102]. Modifying the 

action of the P-gp through inducers, inhibitors or genetic polymorphisms are being tried[103], 

Employing natural inhibitors like curcumin [104], Piperine [105], Capsaicin [106], 15[6] Gingerol 

[107], Limonin [108] is found to be a much safer and more economical option. 

Predicting the tendency of the molecule to inhibit cytochromes P450, plays an important role in 

determining the biotransformation of these molecules [109, 110, 111]. These compounds may 

variably interact with any cytochrome P450 isoforms as shown in Table 6, indicating that isoforms 

may be involved in the biotransformation of the molecule by inhibiting some of the cytochrome 

P450 isoinforms. The bioavailability score of all six molecules was 0.55 without violating any of 

the filters employed for drug likeliness in SWISS-ADME [112, 113, 114].  

The Bioavailability Radar plot provides quick information on the drug-likeness of a molecule of 

interest. Six physicochemical properties are taken in to account: LIPO (Lipophilicity XLOGP3 

between0.7 and + 5.0), SIZE (MW between 150 and 500 g/mol), POLAR (Polarity TPSA between 

20 and 130 Å2), INSOLU (Insolubility log S not higher than 6), INSATU (Insaturation : fraction 

of carbons in the sp3 hybridization not less than 0.25) and FLEX (Flexibility no more than 9 

rotatable bonds) [69]. The bioavailability radar for all the molecules are provided in Table 7.  The 

pink area exemplifies the optimum physicochemical space for each property predicted to be orally 

bioavailable [95].  

As shown by several authors synthetic accessibility when scaled between 1 and 10, molecules with 

the high synthetic accessibility score (SA score) are difficult to synthesize, whereas, molecules 

with low SA scores are easily synthetically accessible [115, 116].  
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The human skin penetrating ability is demonstrated by the human skin permeability coefficient 

(Logkp) [119] of Hordenine (−5.83 cm/s). The molecule 5(−6.02 cm/s) has a high permeability 

coefficient suggesting that it would be a good candidate for an external wound healing medication 

[117]. 

In case of humans CYP3A4, is the most abundantly expressed Cytochrome P450 enzyme that 

metabolizes 30% to 50% of the marketed drugs [121].  In this study both hordenine and molecule 

5 are non-inhibitor of CYP 3A4 indicating that drug-drug interactions will be very low or absent 

with no side effects [118, 119, 120].  

Overall, the pharmacokinetic assessment (ADMET) showed that molecule 5 had nil leadlikeliness 

violations and Hordenine had one violation, and had better SA scores of 2.6 and 1, respectively as 

compared to the other compounds.  Based on the above features, since molecule 5 satisfies all 

Lipinski rules and has a wider safety profile, this was selected for further docking studies using 

Autodock 4.0 against the wound healing targets.  

 

Table 4 : Molecular docking results of compound (1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-

chlorophenyl) ethyl]-N-methylpiperidin-4-amine) 

 Bioisosteres 

(Molecule 5) 

 

ß2-ARs TYRP1 PCNA 
Notch 

1 
GSK3B CK1 1DPT MMP9 

CHEMBL4065553 Binding Affinity (Kcal/mol) 

Binding energy 

(Kcal/mol) -8.19 -9.44 -9.89 -7.44 -5.7 -14.41 -6.4 -11.72 

Ligand efficiency 

(kcal/mol) -0.36 -0.41 -0.43 -0.32 -0.25 -0.63 -0.28 -0.51 

Inhibitory 

constant 1.02uM 119.76nM 56.49nM 3.52uM 66.59uM 27.18pM 20.26uM 2.56nM 

 

The lowest binding affinity refers to the most stable binding between the protein and its ligands. 

The binding energy results calculated by Autodock 4.0 are presented in Table 4. The molecule 5 

had good molecular interactions with all the wound healing targets including hydrophobic 
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Interactions, Hydrogen Bonds, Halogen Bonds and Salt Bridges. The docked structures were 

further studied using Discovery studio 4.5 Visualizer and the images are presented in Fig.7 

[121,122,123], and PLIP server (Table 5) [124,125].    

As hydrogen bonds play a major role in the stabilization of protein-ligand complexes [126], the 

interactions formed between Molecule 5 and wound healing targets from this study varied from 1-

7, with other interactions including hydrophobic interactions, halogen bonds and salt bridges, 

which all indicate that the interaction formed is highly stable [127].   

The molecule 5 demonstrated lowest binding affinity with most of the wound healing targets, 

ranging from -5.7 to -14.41 Kcal/mol. As molecule 5 had lowest binding affinity of -14.41 

Kcal/mol against CK1 with ligand efficiency of -0.63 Kcal/mol and inhibitory constant of 27.18pM 

it is further subjected to molecular dynamic simulations. The known inhibitor of CK1, Suinitinib 

[128,129] had a binding affinity of -8.1Kcal/mol, compared to which molecule 5 had a lowest 

binding affinity. Table 5 Interactions between Molecule 5 and wound healing Targets along 

with interacting residues and distance (Å) 

Targets Hydrophobic 

Interactions 

Hydrogen 

Bonds 

Halogen 

Bonds 

Salt 

Bridges Interactions 

TYRP1 2 

382LEU(3.6)  

391THR (3.74) 

4  

196VAL 

(2.14) 

196VAL 

(1.93) 

212ASP 

(3.42) 

391THR 

(2.78) 

1 

394SER 

(2.92) 

3  

212ASP 

(4.96) 

212ASP    

( 4.29) 

216GLU 

(4.07)  
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PCNA 1 

37LEU (3.84) 

 

4  

38GLN 

(1.92) 

122ASP 

(2.25) 

122ASP 

(2.12) 

124GLU 

(3.05) 

2 

31SER 

(3.3) 

34GLY 

(3.32) 

 

 

2  

122ASP 

(4.2) 

124GLU 

(4.1) 

 

 

Notch 

1D 

1 

163ILE(3.39) 

 

 

2 

162TYR 

(3.57) 

162TYR 

(2.71) 

 

1 

159GLU 

(3.2) 

 

 

Nil 

 

MMP9 4 

397LEU(3.93) 

398VAL(3.4) 

401HIS(3.84) 

423TYR(3.64) 

1 

405HIS 

(3.42) 

 

 

1 

416GLU 

(3.83) 

 

 

2  

402GLU 

(4.63) 

402GLU 

(2.86) 
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GSK3B 4   

62ILE(3.93) 

67PHE(3.22) 

185GLN(3.32) 

188LEU(4) 

1 

137GLU 

(2.18) 

 

 

Nil 2  

137GLU 

(3.67) 

137GLU 

(5.3) 

 

 

DPT1 2  

2PHE (3.39) 

 64ILE(3.75) 

2 

35ASP 

(2.08) 

38ASN 

(2.17) 

 

Nil Nil 

 

CK1

 

1 169LEU  

(3.76) 

1 

185ASP 

(3.09) 

 

 

Nil 3  

86GLU 

(4.47) 

125ASP 

(4.68) 

185ASP 

(4.02) 
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ß2-ARs 7 

82AMET(3.12) 

117AVAL(3.37)  

286ATRP(4)  

286ATRP(3.65) 

286ATRP(3.13) 

289APHE(3.87) 

316ATYR(3.32) 

 

6 

120ASER 

 (1.86) 

120ASER 

(2.21) 

120ASER 

(2.32) 

318AASN 

(3.06) 

318AASN 

(2.24) 

322AASN 

(2.46) 

Nil  3 

79AASP 

(5.38)  

79AASP 

(4.24) 

3AASP(4.6) 

 

 

 

 

Table  6 Pharmacokinetic Assessment (ADMET)   

 Molecule 1 2 3 4 5 6 H* 

P
h

y
si

co
C

h
em

ic
a
l 

p
ro

p
er

ti
es

 

Molecular 

Weight(g/mol) 
376.93 362.9 379.3 393.32 334.85 348.87 165.23 

#Heavy atoms 26 25 23 24 23 24 12 

#Aromatic 

heavy atoms 
11 11 11 11 11 11 6 

Fraction Csp3 0.58 0.56 0.5 0.53 0.5 0.53 0.4 

#Rotatable 

bonds 
7 6 5 6 5 6 3 

#H-bond 

acceptors 
3 3 3 3 3 3 2 
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#H-bond 

donors 
2 2 2 2 2 2 1 

MR 111.47 106.66 99.74 104.55 97.05 101.86 50.75 

TPSA 74.07 74.07 74.07 74.07 74.07 74.07 23.47 

L
ip

o
p

h
il

ic
it

y
 

iLOGP 2.98 2.64 2.37 2.46 2.31 2.31 2.11 

XLOGP3 4.6 4.07 3.33 3.7 3.27 3.64 2.08 

WLOGP 2.84 2.59 1.92 2.31 1.81 2.2 1.5 

MLOGP 2.97 2.74 2.39 2.63 2.27 2.51 1.83 

Silicos-IT Log 

P 
2.83 2.44 1.89 2.27 1.85 2.23 1.59 

Consensus Log 

P 
3.24 2.9 2.38 2.67 2.3 2.58 1.82 

P
h

a
rm

a
co

k
in

et
ic

s 

GI absorption High High High High High High High 

BBB permeant Yes Yes Yes Yes Yes Yes Yes 

Pgp substrate No No Yes No Yes Yes No 

CYP1A2 

inhibitor 
No No Yes No No No Yes 

CYP2C19 

inhibitor 
Yes Yes Yes Yes No Yes No 

CYP2C9 

inhibitor 
No No No No No No No 

CYP2D6 

inhibitor 
No No Yes No Yes No No 

CYP3A4 

inhibitor 
Yes Yes Yes Yes No Yes No 

log Kp (cm/s) -5.33 -5.62 -6.25 -6.07 -6.02 -5.84 -5.83 

D
ru

g
 

li
k

li
n

es
s 

Lipinski 

#violations 
0 0 0 0 0 0 0 
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Ghose 

#violations 
0 0 0 0 0 0 0 

Veber 

#violations 
0 0 0 0 0 0 0 

Egan 

#violations 
0 0 0 0 0 0 0 

Muegge  

#violations 
0 0 0 0 0 0 1 

Bioavailability 

Score 
0.55 0.55 0.55 0.55 0.55 0.55 0.55 

PAINS & 

Brenk #alerts 
0 0 0 0 0 0 0 

Leadlikeness 

#violations 
2 2 1 2 0 1 1 

Synthetic 

Accessibility 
2.94 2.82 2.65 2.76 2.6 2.71 1 

       *H Hordenine  
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Table 7ADMET properties and Bioavailability Radar Schematic diagram of Bioavailability Radar for Drug likeness of  molecule 

Sl.No. Molecule 

 

Structure Bioavailability Radar 

1 Molecule 1 

CHEMBL4076989 

C19H29ClN6 

PubchemCID: 

118165440 

1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-

chlorophenyl) ethyl]-N-

(2-

methylpropyl)piperidin-

4-amine 
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2 Molecule 2 

CHEMBL4075848 

C18H27ClN6 

PubchemCID:118165621 

1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-

chlorophenyl) ethyl]-N-

propan-2-ylpiperidin-4-

amine 

 

 

                                   

 

3 Molecule 3 

CHEMBL4086986 

C16H23BrN6 

PubchemCID:118165313 

1-(3-azanyl-1~{H}-

1,2,4-triazol-5-yl)-~{N}-

[2-(4-bromophenyl) 

ethyl]-~{N}-methyl-

piperidin-4-amine 
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4 Molecule 4 

CHEMBL4098997 

C17H25BrN6 

PubchemCID:118165200 

1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-

bromophenyl) ethyl]-N-

ethylpiperidin-4-amine 
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5 Molecule 5 

CHEMBL4065553 

C16H23ClN6 

PubchemCID:118165354 

1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-

chlorophenyl)ethyl]-N-

methylpiperidin-4-

amine 

 

 

  

6 Molecule 6 

CHEMBL4072036 

C17H25ClN6 

PubchemCID:118165257 

1-(5-amino-1H-1,2,4-

triazol-3-yl)-N-[2-(4-

chlorophenyl) ethyl]-N-

ethylpiperidin-4-amine 
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Stability of the MD simulations 

Root Mean Square Deviation (RMSD) of the 30ns MD simulation carried out in aqueous medium. 

The trajectories of RMSDs with respect to the minimized starting structure are shown in Fig. 5. 

    

 

 

 

 

 

 

 

               

 

   Figure 5: RMSD calculated for 30ns MD simulation of Casein 1Kinase  

 

                           Figure 6: Root Mean Square Fluctuations (RMSF)  

. 
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The Cα RMSD values were found to be within 1.6 Å throughout the simulation for the system.  

This shows that the protein-ligand complex did not undergo any major conformational change and 

was stable throughout the simulation. Root Mean Square Fluctuations (RMSF) is a calculation of 

individual residue flexibility, i.e., how much a particular residue moves (fluctuates) during a 

simulation. Loop residues involved in ligand binding (Residues 49 to 57) show minimal 

fluctuations as compared to other loop residues (Residues 75 -81, 192-217, 245 -255). This 

corroborates with the good binding score obtained in docking and MMPBSA calculations.  

The binding free energy was estimated to be -10.44 Kcal / mol from MMPBSA calculations. This 

confirms that the ligand 1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl) ethyl]-N-

methylpiperidin-4-amine has good binding interaction with the active site loop of Casein 1 Kinase 

giving strong evidence that this molecule could be a promising candidate for wound healing.   
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Fig 7 Intermolecular interactions between 1-(5-amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl)ethyl]-N-methylpiperidin-4-

amine and wound healing targets 

 

 

MMP9 
 

PCNA  

 

1DPT 

 

ß2-ARs 
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CK1 GSK3B TYRP1  Notch 1D Receptor 
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Conclusion  

The insilico analysis predicted that, the primary molecule Hordenine and the bioisostere 1-(5-

amino-1H-1,2,4-triazol-3-yl)-N-[2-(4-chlorophenyl) ethyl]-N- ethylpiperidin-4-amine can be used 

in combination for both acute and chronic wounds. The CK1-bioisostere ligand complex did not 

undergo any major conformational change and was stable throughout the simulation confirming 

that the compound can be a promising drug candidate. This compound is also effective for Diabetic 

wound healing with maximum hydrogen bond interactions against Notch 1D receptor. They can 

be employed further in in- vivo cell culture assays and animal wound healing models for further 

confirmatory studies. 
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