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Abstract   

In emergency priority situations, efficient resource allocation is vital for a rapid and 

effective response. Resources such as human , equipment, and information must be 

dynamically managed to meet urgent demands while upholding operational security. A 

strategic approach is required to prioritize resources based on the severity of the 

situation, ensuring critical areas receive timely support. Implementing robust security 

measures helps protect sensitive information and prevent unauthorized access, 

preserving the integrity of emergency response efforts. Integrating advanced 

technologies, including real-time tracking and data analysis, can enhance decision-

making, optimize resource distribution, and improve overall preparedness and 

responsiveness. 

 

1  Introduction  

Strategic resource allocation in emergency priority situations is a crucial aspect of disaster management, 

ensuring that limited resources are distributed efficiently to mitigate the impact of crises. Emergencies, 

including natural disasters, pandemics, and humanitarian crises, often create unprecedented demands for 

personnel, medical supplies, food, water, and shelter. Effective resource allocation strategies are necessary to 

address these urgent needs while maintaining security, efficiency, and adaptability in response efforts (Van 

de Walle & Comes, 2015). 

Emergency resource allocation has evolved from reactive, ad hoc methods to proactive, data-driven 

approaches. Earlier models primarily relied on pre-positioning resources based on historical data and expert 

judgment (Altay & Green, 2006)[1]. However, with advancements in technology, modern emergency 

management incorporates predictive analytics, artificial intelligence, and real-time monitoring systems to 

enhance decision-making (Kapucu & Garayev, 2016)[4]. The shift toward networked disaster response, 

involving governments, NGOs, private organizations, and international agencies, has further improved 

resource distribution efficiency (Kovács & Spens, 2011)[5]. 

Emergencies are unpredictable, and demand for resources fluctuates rapidly. Sudden surges in cases during a 

pandemic or after a natural disaster can overwhelm response systems (Tatham et al., 2017)[8]. 

The limited availability of critical supplies, such as medical equipment or food, necessitates prioritization and 

optimization of existing stockpiles (Coban & Saydam, 2020)[2].Transporting resources to affected areas, 

particularly in conflict zones or remote regions, poses significant challenges. Infrastructure damage can 

further complicate logistics (Devi & Kumar, 2021)[3]. 

Emergency response involves multiple stakeholders, including government agencies, military forces, 

humanitarian organizations, and private companies. Inefficiencies in coordination can lead to delays and 

duplication of efforts (Kovács & Spens, 2011)[5].The risk of theft, fraud, and misallocation of resources can 

undermine response efforts. Ensuring transparency and accountability through secure tracking mechanisms is 

critical (Patel et al., 2022). 

Strategic resource allocation in emergency priority situations is a continually evolving field that integrates 

historical lessons, technological innovations, and policy frameworks. The goal remains to enhance 

preparedness, optimize response efficiency, and ensure equitable distribution of critical resources. By 

leveraging emerging technologies and strengthening coordination among stakeholders, emergency 

management can significantly improve its ability to mitigate crises and save lives. 

 Effective resource allocation in emergency priority situations is critical for minimizing the impact of 

disasters and ensuring a coordinated response. Rapid decision-making plays a key role in distributing 

essential resources such as personnel, equipment, and medical supplies to areas of greatest need (Van de 

Walle & Comes, 2015)[9]. Given the unpredictable nature of emergencies, resource distribution must be both 

proactive and adaptive, leveraging real-time data analytics and predictive modeling to enhance situational 

awareness and optimize deployment (Kapucu & Garayev, 2016)[4]. 

A well-structured emergency response framework involves setting clear priorities based on severity 

assessments and ensuring a flexible allocation system that can adapt to changing conditions (Coban & 
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Saydam, 2020)[2]. Advanced planning, including scenario-based simulations and capacity-building 

initiatives, helps organizations anticipate resource demands and improve readiness (Altay & Green, 2006)[1]. 

Furthermore, the application of machine learning and artificial intelligence (AI) in emergency logistics can 

facilitate more efficient decision-making, reducing response time and resource wastage (Devi & Kumar, 

2021)[3]. 

Security in resource allocation is paramount, as the mismanagement or diversion of critical supplies can 

exacerbate an already dire situation (Tatham et al., 2017)[8]. To prevent misuse, theft, or misappropriation, 

emergency management systems should incorporate robust security measures, including digital 

authentication, inventory tracking, and personnel verification protocols (Lodree & Taskin, 2009)[6]. 

Emerging technologies such as blockchain can enhance transparency and accountability by creating 

immutable records of transactions, ensuring that resources are distributed equitably and efficiently (Patel et 

al., 2022)[7]. 

Ultimately, optimizing resource allocation in emergencies not only enhances response effectiveness but also 

strengthens resilience by maintaining a secure and well-coordinated supply chain. The integration of data-

driven technologies and security protocols can significantly improve emergency preparedness, ensuring that 

life-saving resources reach those in need promptly while minimizing risks associated with resource 

misallocation (Kovács & Spens, 2011)[5]. 

 

2  LITERATURE REVIEW 

Emergencies such as natural disasters, pandemics, and industrial accidents require efficient and dynamic 

resource allocation to mitigate damage and save lives. Traditional cloud-based resource management systems 

often struggle with latency, bandwidth limitations, and real-time data processing challenges. Fog computing, 

combined with artificial intelligence (AI) and machine learning (ML), has emerged as a promising solution to 

enhance resource allocation in emergency priority situations. This literature review explores existing research 

on the role of edge computing, AI, and ML in optimizing emergency resource management. 

Edge computing extends cloud capabilities to the edge of the network, enabling faster decision-making by 

processing data closer to the source (Bonomi et al., 2012). It reduces the dependency on centralized cloud 

servers, minimizing latency and improving response efficiency in time-sensitive emergency scenarios 

(Chiang & Zhang, 2016). Edge computing provides low latency(Shi et al., 2016) with bandwidth 

optimization reduces bandwidth congestion, allowing for efficient communication in disaster-prone areas 

(Yousefpour et al., 2019). It distributes computational tasks across multiple edge nodes, ensuring resilience 

and fault tolerance (Mahmud et al., 2018). Edge computing application in Disaster Response with IoT-

enabled fog nodes can track real-time data from sensors, cameras, and wearable devices to optimize 

personnel and supply deployment (Deng et al., 2020)[12].In Healthcare Emergencies: Fog-based AI models 

help prioritize medical resource distribution by analyzing patient vitals and predicting treatment urgency 

(Rahmani et al., 2018).Smart Transportation in urban emergencies can optimize traffic flow by managing 

emergency vehicle routing and crowd evacuation (Mukherjee et al., 2021). 

 AI and ML enhance emergency resource allocation by analyzing vast datasets, identifying patterns, and 

optimizing decision-making. These technologies play a crucial role in demand prediction, risk assessment, 

and automated resource allocation (Zhang et al., 2021).ML models use historical data, sensor readings, and 

social media inputs to predict resource demand during emergencies. Techniques such as deep learning, 

reinforcement learning, and federated learning are widely applied (Zhou et al., 2019).AI-driven algorithms 

optimize the distribution of emergency supplies, personnel, and transportation by dynamically adjusting 

resource allocation based on real-time data (Lu et al., 2020).AI-Based Routing Uses heuristic algorithms to 

optimize the movement of emergency responders and supplies (Gao et al., 2018)[13].Automated Decision 

Support Systems: AI-powered dashboards provide emergency coordinators with real-time situational analysis 

(Sun et al., 2021).Drone-Assisted Resource Delivery: AI-controlled UAVs (unmanned aerial vehicles) 

enhance last-mile delivery of medical supplies and relief materials (Jawhar et al., 2020)[14]. 

Fog-AI Hybrid Systems: Combining fog computing with AI reduces processing time for emergency 

predictions and decision-making (Wang et al., 2020).Edge Intelligence: AI-powered edge computing 

enables real-time decision-making at disaster sites without relying on remote cloud infrastructure (Xu et al., 

2022) and blockchain-based AI-fog architectures ensure data integrity and prevent cyber threats in 

emergency management systems (Singh et al., 2021). 

While edge computing and AI-ML present promising advancements, large-scale emergency response 

networks requires infrastructure investments (Yousefpour et al., 2019) , sensitive emergency data require 

secure handling to prevent misuse (McMahan et al., 2017)[16] with existing emergency management 
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frameworks requires standardization efforts (Deng et al., 2020)[12] and  optimize power consumption to 

function reliably in disaster-hit areas with limited energy sources (Mahmud et al., 2018). 

 

3. RESEARCH METHODOLOGY 

This literature review identifies key challenges in emergency response network implementation. To address 

these challenges, the AI-Driven Optimization Model (AIDOM) facilitates a systematic evaluation of their 

relative significance, offering valuable insights for decision-making. By leveraging this approach, the 

research aims to quantitatively assess and prioritize the obstacles associated with emergency response 

systems. This contributes to the development of enhanced strategies for emergency prediction and decision-

making, ultimately improving resource allocation and crisis management efficiency. 

To address the challenges of emergency resource allocation using Fog Computing with AI/ML, the proposed 

an AI-driven Optimization Model (AIDOM). This model integrates Reinforcement Learning (RL), Federated 

Learning (FL), and Blockchain to dynamically allocate resources while ensuring security, efficiency, and 

real-time adaptability. 

 

Fog Nodes 

Distributed computing real-time decision-making 

AI-ML Agent 

dynamically optimize resource distribution. 

Federated Learning 

improve learning without centralized data 

Blockchain Layer 

Ensures secure, transparent, and tamper-proof tracking of allocated resources 

IoT Sensors 

Real-time data collection 

Priority Classifier 

classifier that prioritizes emergency requests 

 

Fig 3.1: Optimized Model of AIDOM 

1) . Optimization Model Framework 

• R={r1,r2,...,rn}R = \{r_1, r_2, ..., r_n\}R={r1,r2,...,rn} be the set of available resources (e.g., medical 

supplies, personnel). 

• D={d1,d2,...,dm}D = \{d_1, d_2, ..., d_m\}D={d1,d2,...,dm} be the set of emergency demand nodes 

(e.g., hospitals, disaster zones). 

• F={f1,f2,...,fk}F = \{f_1, f_2, ..., f_k\}F={f1,f2,...,fk} be the set of fog computing nodes handling real-

time data processing. 

• P(di)P(d_i)P(di) be the priority score of demand node did_idi, computed using AI-based classifiers. 

Maximize the efficiency of resource allocation while minimizing response time and network overhead. The 

optimization function is: 

max⁡∑i=1m∑j=1nAij⋅P(di)−λCij\max \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} \cdot P(d_i) - \lambda 

C_{ij}maxi=1∑mj=1∑nAij⋅P(di)−λCij 

where: 

• AijA_{ij}Aij is the allocation decision (1 if resource rjr_jrj is allocated to demand did_idi, else 0). 

• P(di)P(d_i)P(di) is the AI-prioritized emergency demand score. 

• CijC_{ij}Cij is the cost (network latency, energy consumption, transportation delay). 

• λ\lambdaλ is the penalty factor for high-cost allocations. 

 

Constraints: 

1. Resource Availability: 

∑i=1mAij≤Rj,∀j\sum_{i=1}^{m} A_{ij} \leq R_j, \quad \forall ji=1∑mAij≤Rj,∀j 

(A resource cannot be allocated beyond availability.) 

 

2. Demand Satisfaction: 

∑j=1nAij≥Di,∀i\sum_{j=1}^{n} A_{ij} \geq D_i, \quad \forall ij=1∑nAij≥Di,∀i 

(Demand at a priority site should be met.) 
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3. Fog Node Capacity: 

∑i=1mWi≤Cf,∀f\sum_{i=1}^{m} W_{i} \leq C_f, \quad \forall fi=1∑mWi≤Cf,∀f 

(Fog nodes should not be overloaded beyond capacity CfC_fCf.) 

 

2) 3. Model Workflow 

Step 1: Data Collection (IoT Sensors & Fog Nodes) 

• IoT sensors at emergency sites collect real-time environmental data (e.g., patient vitals, crowd density). 

• Fog nodes process this data and classify emergency levels using AI-based priority scoring. 

 

Step 2: AI-Based Optimization for Resource Matching 

• Reinforcement Learning (RL) optimizes dynamic resource allocation based on real-time demand. 

• Federated Learning (FL) ensures continuous model improvement without requiring centralized data. 

 

Step 3: Secure & Transparent Tracking with Blockchain 

• All allocations are recorded in a blockchain ledger, preventing fraud and misallocation. 

• Smart contracts ensure automatic resource dispatch when predefined emergency conditions are met. 

 

4. Results and discussion 

Simulation Procedure for AI-Driven Resource Allocation in a Fog Computing Environment 

To validate the proposed AI-driven Optimization Model (AIDOM) for strategic resource allocation in 

emergency situations, we conducted a simulation using a combination of: 

• AI-based Optimization (Reinforcement Learning - RL) 

• Fog Computing for Low-Latency Processing 

• Blockchain for Secure Allocation Tracking 

• Network Simulation (NS3) for Performance Evaluation 

 

Simulation Procedure 

4.1 Experimental Setup 

Parameter Value 

Simulation Environment 
Python (TensorFlow, NumPy), NS3 (Network Simulation), 

Hyperledger Fabric (Blockchain) 

Optimization Algorithm Deep Q-Learning (Reinforcement Learning) 

Fog Nodes 10 - 50 distributed nodes 

IoT Devices 500+ emergency sensors 

Blockchain Network 5 Hyperledger Fabric Peers 

Evaluation Metrics Response Time, Latency, Resource Utilization, Security 

Emergency Scenarios Earthquake, Flood, Urban Fire 

 

4.1.2 Simulation Phases 

Step 1: Data Generation and Preprocessing 

• IoT sensors detect emergency events and generate real-time data (e.g., number of injured individuals, 

location severity). 

• AI models classify demand sites based on severity scores (1-10 scale). 

• Data is processed at fog nodes to minimize latency before being sent to the cloud. 

 

Step 2: Reinforcement Learning-Based Resource Allocation 

• State (S): Current emergency demand, available resources. 

• Action (A): Allocate or reallocate resources to emergency nodes. 

• Reward Function: Maximizing response time efficiency and resource utilization while minimizing 

latency. 

• Training: RL agent trains for 5000 episodes to optimize decision-making. 

Step 3: Network Simulation via NS3 

• Fog node-to-cloud communication is modeled to analyze network latency. 

• Latency measurements are taken for traditional cloud-based and AI-driven fog-based models. 
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Step 4: Blockchain Integration for Secure Resource Tracking 

• Hyperledger Fabric smart contracts ensure tamper-proof records of resource allocations. 

• Unauthorized transactions are blocked, ensuring fraud prevention. 

 

Step 5: Performance Evaluation 

• The AIDOM model is compared against: 

o Traditional Cloud-Based Allocation 

o Non-Optimized Fog Allocation 

• Metrics analyzed include response time, security, and resource efficiency. 

B. 4.2. Results Analysis 

4.2.1 Comparison of Response Time (Lower is Better) 

Number of 

Requests 
Cloud-Based Model Non-Optimized Fog 

Proposed AIDOM 

Model 

100 8.2 sec 5.5 sec 3.1 sec 

500 15.6 sec 9.3 sec 4.5 sec 

1000 22.4 sec 12.7 sec 6.2 sec 

 

The AIDOM model reduces response time by up to 72%, ensuring faster emergency response. 

 
4.2.2 Resource Utilization Efficiency (Higher is Better) 

Metric Cloud-Based Model AIDOM Model 

Resource Wastage (%) 38.2% 12.5% 

Successful Allocations (%) 78.6% 96.4% 

 

AIDOM minimizes resource wastage by 25.7%, ensuring efficient use of emergency supplies. 

 
4.2.3 Blockchain Security Evaluation 

Security Metric Without Blockchain With Blockchain (AIDOM) 

Unauthorized Transactions 12% risk 0% (Immutable Ledger) 

Transaction Time (ms) 22ms 28ms (Slight Overhead) 

Blockchain eliminates unauthorized allocations, making emergency response tamper-proof. 
4.2.4 Network Latency Comparison 

Configuration Average Latency (ms) 

Traditional Cloud Model 125 ms 

Non-Optimized Fog Model 80 ms 

Proposed AIDOM Model 42 ms 

AIDOM reduces network latency by 66%, ensuring low-latency emergency response. 

Discussion & Key Findings 

1. Faster Response Time: AIDOM improves response time by up to 72%. 

2. Higher Resource Utilization: 96.4% successful allocations, reducing wastage. 

3. Secure Transactions: Blockchain eliminates fraudulent resource misallocations. 

4. Lower Network Latency: 42ms vs. 125ms (cloud-based) due to fog-layer AI processing. 

5. Conclusions and discussion 

This research demonstrates that AI-driven fog computing, combined with blockchain, provides a scalable, 

efficient, and secure solution for emergency resource allocation. The proposed AIDOM model significantly 

outperforms traditional cloud-based approaches in terms of response time, efficiency, and security. Future 

work will explore lightweight AI models and multi-layer fog networks for large-scale emergency scenarios. 

AIDOM model tried to solve challenges by using adopting digital technology framework. 

The most significant challenge in the process of implementing solutions needs the faster response time. This 

work implemented edge computing which removes the dependency on the cloud which cause the dealy in the 

responces. This decentralization 72% faster response time with AIDOM model.Resource wastage is a critical 

concern in emergency resource allocation, as inefficient distribution can lead to shortages in high-priority 

areas while excess resources remain underutilized elsewhere. In traditional cloud-based systems Reducing 

resource wastage was challenge . Assesing real time demand and priority resources are allocated which 

ensuring 12.5% efficient utilization . 
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unauthorized access, resource mismanagement, and lack of transparency in Traditional systems often suffer 

from data manipulation, duplication of requests, and resource hoarding, leading to inefficiencies and 

inequitable distribution .In this the Resource allocations are validated by multiple nodes and predefined 

conditions for  traceable transactions, allowing real-time audits and preventing manipulation. 

AIDOM the Proposed Model achieves the lowest latency (42 ms) by leveraging real-time AI decision-

making in fog nodes, dynamically optimizing resource distribution, and reducing data transmission to the 

cloud. 

Challenges & Future Improvements 

Blockchain Overhead: Implement lightweight blockchain protocols (e.g.,DAG-based systems). 

Fog Node Scalability: Use dynamic node clustering for large-scale deployments 

AI Model Adaptability: Implement Transfer Learning to generalize across different emergency types. 

Future work can focus on lightweight AI models for real-time deployment in disaster-prone regions. 
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