

Applications of Rapid Prototyping in Dentistry

Dr. Harnisha Patel¹, Dr. Dakshana Varma², Dr. Amin Maknojia³, Dr. Swati Praveena Kurra⁴, Dr. Neha⁵, Dr. Mahita Konakalla⁶

1 BDS, Vadodara, Gujarat, India. harnisha1692 @gmail.com

2 BDS, Dhule, Maharashtra, India. 92dakshanavarma@gmail.com

3 BDS, MDS, Mumbai, Maharashtra, India. draminmaknojia@gmail.com

4 BDS, Guntur, Andhra Pradesh, India. swatikurra18@gmail.com

5 BDS, MDS, Punjab, India. nehamengii@gmail.com

6 BDS, Vijayawada, Andhra Pradesh, India. konakallamahita@gmail.com

KEYWORDS ABSTRACT

computer-aided printing, CAD/CAM in dentistry, digital dentistry.

Rapid Prototyping, Rapid prototyping (RP) technology has revolutionized dentistry by integrating computer-aided design and manufacturing (CAD/CAM) to enhance precision, design (CAD), 3D efficiency, and customization in dental applications. RP enables the fabrication of accurate anatomical models, surgical guides, prostheses, and orthodontic devices, reducing manual intervention and improving patient outcomes. The key RP techniques include stereolithography (SLA), selective laser sintering (SLS), inkjet-based 3D printing, and fused deposition modeling (FDM), each offering unique advantages in dental applications. While RP significantly enhances treatment planning, fabrication speed, and accuracy, challenges such as high costs, equipment maintenance, and material limitations remain. The continuous advancements in RP, including AI integration and bioprinting, promise to further transform digital dentistry.

Introduction to Rapid Prototyping in Dentistry

As early as the 1980s, the first rapid prototyping method using computer files to fabricate solid models was introduced in engineering. As technology has advanced, dentistry has become more digitized, and digitized medical treatment has become an integral part of the treatment process.¹ The shortcomings of subtractive digital techniques have been addressed by rapid prototyping (RP) techniques, also known as "generative manufacturing techniques," RP has suggested a range of applications in dentistry, including the creation of surgical guides for implants, zirconia prostheses, molds for metal castings, and frameworks for both fixed and removable partial dentures. Additionally, they have focused on designing wax patterns for dental prostheses and complete dentures. Prosthetics designed for facial restoration must be tailored to match the individual's anatomy as closely as possible. The use of advanced fabrication technologies has significantly minimized the reliance on human factors, effectively addressing the constraints of traditional methods, which often involve considerable manual operations and the challenges presented by material shrinkage or expansion.

WHAT IS RAPID PROTOTYPING?

Intricate designs that are often unattainable through traditional manufacturing methods. Additionally, this technique allows object testing and visualization before final prosthesis fabrication, which lowers costs. After its introduction in the biomedical field, several applications were raised for the fabrication of models to facilitate surgical planning and simulation, in implantology, and orthodontics, and orthodontics.

Technologies Used in Dental Rapid Prototyping

Broadly rapid prototyping may be categorized into:

- Additive method which is widely used
- Subtractive less effective.⁶

The subtractive approach is primarily carried out using computer numerical control (CNC) milling. This process relies on data collected from an optical or contact probe surface digitizer, which captures only the external surface details of the intended anatomy rather than the internal tissue surface, making it less effective. In this method, a CNC machine mills a larger blank to create the final product. The CAM software automatically converts the CAD model into a tool path for the CNC machine, following a series of steps such as sequencing, selecting milling tools, and determining tool movement direction and magnitude. Dental CNC machines use multi-axis milling systems to enable the three-dimensional fabrication of dental prostheses. In contrast, the additive approach allows for the creation of highly complex shapes, including structures with internal cavities, such as human anatomical features, through rapid prototyping. Additive manufacturing involves layering materials to build objects based on 3D model data. After finalizing the CAD design, the model is divided into multiple slice images. The machine then deposits 5–20 layers per millimeter of material in succession, using a liquid or powder that fuses to form the desired shape. Once the structure is complete, refinement processes are carried out to remove excess material and supporting structures.

Rapid Prototyping systems commonly used in dentistry are:

- Stereolithography (SLA)
- Inkjet-based system (3D printing 3DP)
- Selective laser sintering (SLS and selective laser melting)
- Fused deposition modeling (FDM)⁷

Stereolithography

Stereolithography has been used since the mid-1980s and is considered one of the most advanced and preferred rapid prototyping (RP) technologies. It utilizes a computer-controlled laser beam to construct objects layer by layer from a liquid resin through additive manufacturing or 3D printing. The key components of this process include a bath of photosensitive liquid resin, a model-building platform, and an ultraviolet (UV) light or laser for curing the resin. The layers are processed sequentially, binding them together to form a solid structure from the bottom of the model to upwards. When resin is exposed to UV light, each thin layer of resin hardens. After curing one layer, the platform lowers by a set distance in the resin bath, and the process repeats until the entire object is formed. Finally, the completed object is removed from the bath and undergoes further curing in a UV cabinet.⁸

Stereolithography offers several advantages, including high accuracy, good surface finish, the ability to create transparent objects, 100 percent density, high mechanical strength, and fine building details. However, it also has some disadvantages, such as the high cost of equipment and materials, its limitation to polymer-based materials, and the need for a post-curing process.⁷

Advantages Disadvantages

Great detailing and accuracy	Cost of the equipment
Mechanically strong and good surface	Expensive materials
finish	
Can be made transparent and with 100%	Can only be used for polymers and requirements
density	for the post-curing process.

Inkjet-based system or 3DP

In this technique, a controlled amount of the raw powder-form material is initially dispensed from a container using a moving piston. A roller then spreads and compresses the powder at the top of the fabrication chamber. Liquid adhesive is subsequently deposited in a 2D pattern from a multi-channel jetting head, binding the powder to form a layer of the object. Once a layer is completed, the piston facilitates the spreading and bonding of the next powder layer. This layer-by-layer process continues until the full prototype is formed. After a heating process, any unbound powder is removed, leaving the final fabricated part intact.⁹

The inkjet-based system offers several advantages, including fast fabrication time, low material cost, the ability to produce colored models, suitability for casting applications, low toxicity, and a relatively diverse range of materials. However, it also has some disadvantages, such as large tolerances, lower model strength, and a rough surface finish.⁷

Advantages Disadvantages

Decreased time of fabrication	Increased tolerance
Inexpensive materials	Roughness of surface finish
Build models can be used for casting	Models are of lower strength
Variety of options for materials	
Low toxicity	

Selective Laser Sintering (SLS)

This additive manufacturing technique involves fusing layers of powdered material into a 3D model using a computer-controlled laser. It creates the desired solid structure by sintering fine particles of materials such as plastic, metal, ceramic, or glass with a high-power CO₂ laser. The laser slightly raises the temperature of the powder to enable sintering, significantly accelerating the process. This layering continues until the entire object is fabricated. Once completed, the piston lifts the object, the excess powder is removed, and final manual finishing may be performed if necessary.¹⁰

Selective Laser Sintering offers several advantages, including fast fabrication time, low material cost, the ability to produce colored models, suitability for direct casting applications, low toxicity, and a relatively wide range of materials. However, it also has disadvantages, such as large tolerances, lower strength models, and a rough surface finish.⁷

Advantages Disadvantages

A quick time of fabrication	High tolerance
Reasonable cost of materials	Roughness in Surface finish
Can be colored and options for materials	Models are of lesser strength
Low toxicity	
Casting purposes directly	

Fused Deposition Modelling (FDM)

FDM is a rapid prototyping technique where thermoplastic material is extruded layer by layer through a temperature-controlled nozzle. In this process, a filament of thermoplastic polymer

is fed into the heated FDM extrusion nozzle, where it is transformed into a semi-liquid, free-flowing state. The nozzle head's motion, controlled by a processor, precisely traces and deposits the material in ultra-thin layers onto a supporting platform. The material builds up layer by layer, solidifying within 0.1 seconds after being ejected from the nozzle, bonding to the layer below. Supporting structures are created for overhanging geometries and are later removed by cutting them out from the object.⁹

FDM offers advantages such as the ability to create direct wax patterns, multi-color parts, and a speedy procedure, but it also has drawbacks, including the need to remove support structures, rough surface finishes, limited material use to thermoplastics, and the inability to achieve 100% density.⁷

Advantages. Disadvantages

Time efficiency	Removal of support structure
Direct wax pattern	Surface finish roughness
Multi-color part	Density is not 100%
	Thermoplastic material only

From yielding excellent visual aids in medical, and dental fields to increasing efficiency by reducing the intermediate steps in prosthodontics, Rapid Prototyping has shaped the future of innovations in dentistry.¹¹ It allows for increased time efficiency in the laboratory and design procedures with reduced manual time. Furthermore, they are a greater means of fabricating highly precise, cost-competent, and lower material intake of all ceramic restorations⁶. Even though the RP technology is very accurate and reliable. However, there are some limitations like, obstacles due to inconsistent source images or model integrity and expensive equipment, and their maintenance is another factor to be considered.

Applications of Rapid Prototyping in Dentistry

Rapid prototyping (RP) technology has transformed dentistry by enabling precise, customized, and efficient treatment planning and prosthesis fabrication. Integrating computer-aided design and manufacturing (CAD/CAM), RP enhances accuracy while minimizing procedural complexities across various dental specialties.

1. Orthodontics:

RP streamlines the production and positioning of brackets, ensuring high precision and personalization in orthodontic treatment.¹² It also supports the fabrication of clear plastic aligners through stereolithography, allowing for a customized fit that gradually shifts teeth into alignment.¹³

2. Oral Surgery:

Three-dimensional anatomical models generated using RP technology aid in surgical planning by providing a tangible representation of complex structures, such as the skull. ¹⁴ This helps surgeons better understand anatomical relationships before performing procedures like autotransplantation. ¹⁵

3. Implantology:

RP plays a crucial role in implant placement by utilizing 3D imaging and specialized software for precise treatment planning. It facilitates the creation of computer-guided surgical templates and all-ceramic restorations, improving the accuracy and longevity of implants. ¹⁶The use of CAD/CAM technology in implant dentistry has gained significant traction, supporting applications such as 3D imaging, treatment planning software, additive RP for surgical guide fabrication, and subtractive RP for all-ceramic restorations. ¹⁷ RP enables the industrial production of customized 3D structures based on CAD data. ¹⁸

4. Maxillofacial Prostheses:

RP enhances the creation of facial prostheses, including ear and nasal prosthetics, by accurately replicating anatomical features. It also aids in duplicating maxillary and mandibular prostheses, producing surgical stents for tumor excision, and manufacturing burn stents with minimal trauma to delicate tissues. However, since individual anatomical proportions vary, using the non-affected side as a reference for unilateral defects is often more practical⁸. Traditional duplication methods for prostheses can be unreliable, as they are time-consuming, require significant artistic skill for an esthetic match, and may introduce errors at multiple production stages.²⁰

Overall, rapid prototyping has significantly advanced dental and surgical procedures by improving precision, customization, and patient outcomes.

5. Comparative Analysis with Conventional Methods

The fit of the RPD prosthesis has been improved by the use of rapid prototyping ^[1] RP utilizes additive manufacturing like three-dimensional (3D) printing, selective laser sintering (SLS), selective laser melting (SLM), and selective laser stereolithography (SLA) while CAD/CAM uses subtractive manufacturing such as milling techniques RP constructs RPDs automatically and quickly with high accuracy making them more comfortable and acceptable to the patients.²²

Rapid prototyping is widely being used because of its time effectiveness for the construction of prostheses. It also provides a clean workplace for the technician, not having to deal with plaster or dust.²³ This technique has prevented the use of impression materials in the mouth which causes gag reflex and hence more comfortable for the patient. This highly advanced technology is acceptable for patients who avoid using conventional impressions.²⁴

Both methods of manufacturing, i.e., conventional and digital, yield satisfactory results, but the digital method of construction of RPDs is less time-consuming, with simple technique less chances of laboratory or clinical errors, and better accuracy and fit.^{25,26}

Successful endodontic therapy requires a thorough understanding of root canal anatomy and its variations. In cases of complex root canal anatomies, 3D visualization of the canal through digital reconstruction of the tooth model can be simulated through RP technology to achieve the precise working path of the root canal, this is difficult to do conventionally.¹⁴

A new approach for surgical planning and simulating anatomical models is to build with RP technology. 3D physical anatomical models of the skull or other structures provide a realistic impression of that structure before the surgical intervention. A novel introduced interaction called "touch to comprehend" caused a shift from the visual to the visual-tactile representation of anatomical model.²⁷

Computer-aided rapid prototyping shortens the process of autotransposition. Extraoral injury and injury to the transplanted tooth are less in computer-aided RP rather than doing in a conventional method.¹⁴

The size of the apical lesion and root resorption can also be diagnosed with the RP model.²⁷ reported a case of replicating multiple invasive root resorption using RP technology.

Future Trends and Innovations:

The revolution in the usage of 3D printing in the industrial, dental, and healthcare sectors is growing day by day. Future developments and new technologies with 3d printing are usages of

Artificial Intelligence, bioprinting for tissues and organs, multi-material 3D printing 3D printed food for medically compromised patients, 3D printing of complex Surgical Models for Preoperative Planning, and surgical stents.²⁸

Bioprinting and tissue engineering in regenerative dentistry are committed to the creation of patient-specific dental organs and tissues closely resembling natural characteristics. Advances in the development of bio-inks, 3D printing, and stem cell technology are of higher potential for the repair of damaged dental tissues and structures and better treatment results. These technologies provide the doorway to precise and effective solutions for dental tissue regeneration. ^{28,29}

Integrating 3D printing technology with machine learning algorithms and AI has tremendous potential to advance medical therapies. AI analyzes patient data, streamlines diagnosis, and creates personalized treatment plans. It also optimizes surgical implant placement according to patient anatomy and predicts better orthodontic outcomes. This integration provides faster, better, and more personalized healthcare choices, eventually increasing treatment success rates. Research of periodontitis patients divided into groups those provided with AI alone and AI in combination with human counselling. The outcome indicates that AI in combination with human counseling possesses potential results in an increase in soft tissue attachment level and reduction of periodontal pocket depth. 33

3D printing technology in conjunction with robotics technology benefits reconstructive surgery by offering precise control over the process and assisting surgeons with intricate procedures. Robot arms, aided by 3D printers, enter the minute cavities inside the body and accurately deposit biomaterials to prevent human errors. There is also a huge increase in the number of robotic-assisted endoscopic procedures, which are followed by shorter recovery times as well as improved cosmetic outcomes. Implant manufacturers have automated the process of utilizing robot systems to impart post-processing methods like polishing and sterilization to provide better efficiency and uniformity to 3D-printed implants. The process of th

Conclusion

Rapid prototyping has become an integral part of modern dentistry, offering improved accuracy, efficiency, and patient-specific treatment solutions. Its applications range from orthodontics, implant dentistry, maxillofacial prostheses, and surgical planning. Despite some limitations, such as high equipment costs and the need for post-processing, RP continues to advance, bridging the gap between traditional and digital dentistry. The future of RP in dentistry looks promising with innovations in artificial intelligence, multi-material 3D printing, and bioprinting, paving the way for enhanced treatment outcomes and patient care.

References:

- 1. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. *Int J Dent.* 2014;2014:783948.
- 2. Wang JW, Shaw LL. Fabrication of functionally graded materials via inkjet color printing. *J Am Ceram Soc.* 2006;89(10):3285–9.
- 3. Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: Preliminary results. *J Periodontol*. 2005;76(3):503–7.
- 4. D'Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, et al. Custom cranioplasty using stereolithography and acrylic. *Br J Plast Surg*. 2000;53(3):200–4.

- 5. Gibson I, Cheung LK, Chow SP, Cheung WL, Beh SL, Savalani M, et al. The use of rapid prototyping to assist medical applications. *Rapid Prototyp J.* 2006;12(1)53-58
- 6. Quadri S, Kapoor B, Singh G, Tewari RK. Rapid prototyping: An innovative technique in dentistry. *J Oral Res Rev.* 2017;9(2):96–102. doi: 10.4103/jorr.jorr_9_17.
- 7. Sarita S, Gajavalli SUM, Kiran GK, Srikanth L, Modini C. Rapid prototyping: A frontline digital innovation in dentistry. *Int J Oral Health Dent.* 2021;7(2):97–103.
- 8. Lahoti KS, Kharwade SV, Gade JR. Rapid prototyping: A modernistic era in prosthodontics. *Int J Sci Res (IJSR)*. 2020;120. doi: 10.21275/SR20831195638.
- 9. Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics: A review of literature. *J Dent (Shiraz)*. 2015;16(1):1–9. PMID: 25759851; PMCID: PMC4345107.
- 10. Negi P, Jaikaria A, Kukreja S. Rapid prototyping in dentistry. *Int J Sci Healthc Res.* 2019;4(4):113–6.
- 11. Nayar S, Bhuminathan S, Bhat WM. Rapid prototyping and stereolithography in dentistry. *J Pharm Bioallied Sci.* 2015;7(Suppl 1):S216–9. doi: 10.4103/0975-7406.155913. PMID: 26015715; PMCID: PMC4439675.
- 12. Wu G, Zhou B, Bi Y, Zhao Y. Selective laser sintering technology for customized fabrication of facial prostheses. *J Prosthet Dent.* 2008;100(1):56–60. doi: 10.1016/S0022-3913(08)60138-9.
- 13. Chan DC, Frazier KB, Tse LA, Rosen DW. Application of rapid prototyping to operative dentistry curriculum. *J Dent Educ*. 2004;68(1):64–70.
- 14. Xu F, Wong YS, Loh TH. Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. *J Manuf Syst.* 2000;19(4):283–96.
- 15. Winder J, Bibb R. Medical rapid prototyping technologies: State of the art and current limitations for application in oral and maxillofacial surgery. *J Oral Maxillofac Surg*. 2005;63(7):1006–15. doi: 10.1016/j.joms.2005.03.016.
- 16. Lal K, White GS, Morea DN, Wright RF. Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. *J Prosthodont*. 2006;15(1):51–8. doi: 10.1111/j.1532-849X.2006.00069. x.
- 17. Ruppin J, Popovic A, Strauss M, Spüntrup E, Steiner A, Stoll C. Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: Optical tracking vs. stereolithographic splint systems. *Clin Oral Implants Res.* 2008;19(7):709–16. doi: 10.1111/j.1600-0501.2007.01430.x.
- 18. Papaspyridakos P, Lal K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report. *J Prosthet Dent.* 2008;100(3):165–72. doi: 10.1016/S0022-3913(08)00110-8.
- 19. Sykes LM, Parrott AM, Owen CP, Snaddon DR. Applications of rapid prototyping technology in maxillofacial prosthetics. *Int J Prosthodont*. 2004;17(5):454–9.
- 20. Coward TJ, Watson RM, Wilkinson IC. Fabrication of a wax ear by rapid-process modeling using stereolithography. *Int J Prosthodont*. 1999;12(1):20–7.
- 21. Eggbeer D, Bibb R, Williams R. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. *Proc Inst Mech Eng H*. 2005;219(3):195–202. doi: 10.1243/095441105X9372.
- 22. Bae E, Jeong I, Kim W, Kim J. A comparative study of additive and subtractive manufacturing for dental restorations. *J Prosthet Dent.* 2017;118(2):187–93. doi: 10.1016/j.prosdent.2016.11.004.
- 23. Ye H, Ma Q, Hou Y, Li M, Zhou Y. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: A pilot clinical study. *J Prosthet Dent.* 2017;118(6):790–5. doi: 10.1016/j.prosdent.2017.01.014.

- 24. ISO. Accuracy (trueness and precision) of measurement methods and results Part 1: General principles and definitions. *ISO Standard*; 5725-1; 1994.
- 25. Lee H, Kwon K. A CAD-CAM device for preparing guide planes for removable partial dentures: A dental technique. *J Prosthet Dent.* 2019;122(1):10–3. doi: 10.1016/j.prosdent.2018.06.011.
- 26. Lee SJ, Jang KH, Spangberg LS, Kim E, Jung IY, Lee CY. Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 2006;101(5):668–74.
- 27. Kim E, Kim KD, Roh BD, Cho YS, Lee SJ. Computed tomography as a diagnostic aid for extracanal invasive resorption. *J Endod.* 2003;29(7):463–5.
- 28. Alyami MH. The applications of 3D-printing technology in prosthodontics: A review of the current literature. *Cureus*. 2024;16(9):e68501
- 29. Morrison DG, Tomlinson RE. Leveraging advancements in tissue engineering for bioprinting dental tissues. *Bioprinting*. 2021;23.
- 30. Zhang H, Hong E, Chen X, Liu Z. Machine learning enables process optimization of aerosol jet 3D printing based on the droplet morphology. *ACS Appl Mater Interfaces*. 2023;15(12):14532–45.