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ABSTRACT 
Accurate crop yield prediction is essential for optimizing agricultural resource allocation and supporting 

farmers in making informed crop management decisions. This study investigates the effectiveness of various 

machine learning and deep learning models for predicting crop yields based on key agricultural parameters, 

including Nitrogen (N), Phosphorous (P), Potassium (K), temperature, humidity, pH, and rainfall. We apply 

multiple algorithms—Logistic Regression, Multilayer Perceptron, Sequential Minimal Optimization (SMO), 

J48, Random Forest, REP Tree, and a proposed deep learning model—to evaluate their predictive accuracy 

in classifying agricultural items. Each model’s performance is assessed using metrics such as Kappa statistic, 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), Root 

Relative Squared Error (RRSE), and the time taken to build the model. Findings reveal that while traditional 

machine learning models like Random Forest and REP Tree show robust performance, the proposed deep 

learning model demonstrates enhanced accuracy and efficiency, making it highly promising for crop yield 

prediction applications. This study underscores the potential of advanced learning algorithms to improve 

agricultural productivity by providing actionable insights for crop planning and resource management. 

  

 

1. Introduction and Background 

Machine learning models have emerged as powerful tools for agricultural applications, including yield 

prediction, crop classification, and disease detection, due to their ability to model complex, non-linear 

relationships in data (Jha et al., 2019). A range of machine learning algorithms has been applied to CYP, such 

as decision trees, support vector machines (SVM), and ensemble methods like Random Forest, each showing 

varying degrees of accuracy and reliability (Ali & Chaudhary, 2020). Agriculture, as a foundational component 

of global economies and food systems, is witnessing a shift toward more data-driven practices, driven by the 

rise of machine learning (ML) and artificial intelligence (AI). Traditional agricultural practices, reliant on 

historical data and heuristic-based forecasting, often fall short in accurately predicting crop yields due to the 

complex and dynamic nature of agricultural environments (Shinde & Shah, 2020). 

By analyzing various environmental and soil parameters, such as temperature, humidity, nutrient levels, and 

rainfall, these models can forecast outcomes with precision, helping farmers optimize resources and reduce risks 

associated with unpredictable factors like weather and soil variability (Kamilaris & Prenafeta-Boldú, 2018). 

Studies show that integrating machine and deep learning in agriculture leads to significant improvements in crop 

management and sustainability. For instance, DL models have been successfully applied to identify crop diseases 

with high accuracy, assisting farmers in timely interventions and reducing crop loss (Zha et al., 2021). 

Agriculture is a cornerstone of global economies, with crop yield playing a critical role in food security and 

economic stability. With an increasing global population and the rising need for sustainable agricultural 

practices, farmers are challenged to optimize yield within existing constraints of land, climate, and resources 

(Patil & Shirkhedkar, 2018). Crop yield prediction (CYP), which seeks to estimate production outcomes based 

on environmental and soil factors, has become essential for guiding farmers in planning and resource allocation. 

This need has led to the adoption of machine learning (ML) and deep learning (DL) technologies, which offer 

the potential for more accurate, data-driven predictions than traditional models based on historical averages 

(Kumar et al., 2019; Chlingaryan et al., 2018). 

Modern CYP models leverage diverse input parameters such as soil nutrients (Nitrogen, Phosphorous, 

Potassium), climate factors (temperature, humidity, rainfall), and soil pH to generate yield predictions (Sarker 

et al., 2020). These parameters capture critical environmental conditions that influence crop growth, offering a 
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more comprehensive basis for analysis. Existing studies demonstrate that machine learning techniques, 

including Random Forest, Logistic Regression, and decision tree models like J48 and REP Tree, are effective in 

modeling such complex interactions (Feng et al., 2019). However, recent advancements in deep learning, with 

architectures like multilayer perceptrons, have shown promising results in capturing nonlinear relationships in 

data, further enhancing predictive accuracy (Ramesh & Rao, 2021). 

Nutrient availability and environmental conditions are fundamental to agricultural productivity, influencing crop 

growth, yield, and quality. Key nutrients such as Nitrogen (N), Phosphorous (P), and Potassium (K), often 

referred to as macronutrients, play essential roles in plant development. Nitrogen is crucial for photosynthesis 

and chlorophyll synthesis, and its deficiency can lead to stunted growth and reduced leaf production (Sarker et 

al., 2020). Environmental parameters such as temperature, humidity, pH, and rainfall further influence crop yield 

and quality by affecting physiological and biochemical processes within plants. Temperature, for instance, 

impacts growth rates and metabolic activity, with most crops having an optimal temperature range for maximum 

yield. Excessive heat or cold can hinder development or cause crop failure, especially during critical stages like 

flowering or fruiting (Lal et al., 2019). Humidity, which determines water vapor levels in the atmosphere, plays 

a critical role in transpiration and water transport within plants. High humidity levels can also increase the risk 

of fungal diseases, whereas low humidity may lead to dehydration and reduced growth rates (Ravi et al., 2020). 

Analysis of different data mining algorithms implemented within the Weka tool. The authors focus on evaluating 

and comparing decision tree algorithms, such as J48, Random Tree, and REP Tree, in terms of their classification 

accuracy, speed, and efficiency in handling various datasets. Using the Weka software suite, the study analyzes 

how each algorithm performs with different datasets, aiming to identify the most suitable algorithm for specific 

types of data mining tasks (Rajesh and Karthikeyan, 2017). The performance of decision tree algorithms in 

analyzing chronic disease indicators. The study leverages various decision tree methods to classify and predict 

chronic disease outcomes based on CDI data, focusing on metrics such as classification accuracy, efficiency, 

and computational cost. Using decision tree algorithms like J48, CART (Classification and Regression Tree), 

and Random Forest, the authors assess each method’s performance on chronic disease datasets (Rajesh et al., 

2019). explore data mining techniques to identify key factors that influence agricultural development. The 

authors employ a stochastic model within a data mining framework to analyze agricultural data, aiming to predict 

factors that could enhance crop yield and productivity. 

Evaluate the performance of several machine learning and deep learning models for crop yield prediction, 

specifically Logistic Regression, Multilayer Perceptron, SMO, J48, Random Forest, REP Tree, and a proposed 

deep learning model. The models are assessed using key performance metrics: Kappa statistic, Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error 

(RRSE), and model training time. These performance indicators provide insights into the models' accuracy, 

reliability, and efficiency, facilitating comparison across diverse algorithms (Zhou et al., 2017). 

By identifying the model with the best predictive performance, this study contributes to the field of precision 

agriculture, offering a robust framework for crop yield prediction that can assist farmers in optimizing their 

agricultural outputs. The findings underscore the potential of advanced machine learning and deep learning 

models to support efficient and sustainable farming practices, ultimately promoting food security and economic 

resilience. 

2. Backgrounds and Methodologies 

2.1. Logistic Regression 

Logistic Regression is a supervised learning algorithm often used for binary classification. It predicts the 

probability that a given input belongs to a specific class, using the logistic function to map predictions between 

0 and 1 (Hosmer et al., 2013). The process is as follows: 

1. Data Preparation: Data is pre-processed, and features are normalized if needed. 

2. Model Initialization: Initialize weights and bias parameters. 

3. Hypothesis Calculation: Apply a linear combination of the input features and weights, followed by the 

logistic function to produce probabilities. 

4. Cost Function: Use the binary cross-entropy loss to measure error in predictions. 
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5. Gradient Descent Optimization: Adjust weights iteratively by calculating the gradient of the cost 

function with respect to each parameter to minimize error. 

6. Prediction: After training, use the model to classify new data points based on learned weights. 

2.2. Multilayer Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a type of artificial neural network with multiple layers of nodes. It’s well-

suited for tasks that involve complex, non-linear relationships (Rosenblatt, 1958). Here’s the step-by-step 

process: 

1. Data Preprocessing: Normalize or scale input data. 

2. Network Architecture: Define the number of layers, neurons per layer, activation functions (commonly 

ReLU for hidden layers and softmax or sigmoid for output). 

3. Forward Propagation: Pass inputs through each layer; apply weights, biases, and activation functions to 

get the output. 

4. Loss Calculation: Calculate the loss using cross-entropy or MSE (Mean Squared Error) for regression 

tasks. 

5. Backpropagation: Compute gradients of the loss concerning each parameter using the chain rule. 

6. Optimization: Use a gradient descent or similar algorithm to update weights iteratively to minimize the 

loss. 

7. Prediction: After training, the network can classify or predict values for new data. 

2.3. Sequential Minimal Optimization (SMO) 

Sequential Minimal Optimization (SMO) is an efficient algorithm for training Support Vector Machines 

(SVMs). It simplifies the quadratic programming problem by breaking it down into smaller, manageable 

problems (Platt, 1998). 

1. Data Preparation: Ensure data is labeled and, if necessary, standardized. 

2. Initialization: Set initial Lagrange multipliers for each data point. 

3. Decomposition: Select pairs of Lagrange multipliers to optimize at each step. 

4. Update Multipliers: Solve for two selected multipliers by setting up and solving a simplified 

optimization problem for them. 

5. Recalculate Parameters: Update the SVM parameters based on the optimized multipliers. 

6. Repeat: Continue adjusting pairs of multipliers until convergence, i.e., until the SVM's decision 

boundary is optimally placed. 

7. Prediction: Use the optimized decision boundary to classify new instances. 

2.4. J48 (C4.5) 

J48 is an implementation of the C4.5 decision tree algorithm, commonly used for classification tasks. It 

recursively splits the dataset into subsets based on the attribute that provides the best split, using information 

gain (Quinlan, 1993). 

1. Data Preparation: Clean and preprocess data to handle missing values or categorical attributes. 

2. Select Attribute: Choose the attribute with the highest information gain or lowest entropy as the decision 

node. 

3. Split Data: Partition the data based on the selected attribute's values. 

4. Recursive Splitting: Repeat the attribute selection and splitting process for each subset, creating 

branches and nodes until each subset is homogeneous or other stopping criteria are met. 

5. Tree Pruning: Simplify the tree by removing branches that contribute little to predictive power, 

preventing overfitting. 
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6. Prediction: For new data, traverse the decision tree based on feature values to reach a classification. 

2.5. Random Forest 

Random Forest is an ensemble learning method that builds multiple decision trees and combines their predictions 

for a more accurate and stable output (Breiman, 2001). 

1. Data Sampling: Create multiple subsets of the data through bootstrapping (sampling with replacement). 

2. Tree Building: For each subset, construct a decision tree by selecting random features at each split, 

which helps reduce correlation between trees. 

3. Voting: Aggregate predictions from each decision tree (for classification, use majority voting; for 

regression, use average values). 

4. Ensemble Prediction: Use the combined predictions as the final output, which is generally more accurate 

than individual trees. 

2.6. REP Tree (Reduced Error Pruning Tree) 

REP Tree, or Reduced Error Pruning Tree, is a decision tree algorithm that prunes branches of the tree to reduce 

error and prevent overfitting (Frank & Witten, 1998). 

1. Data Preparation: Preprocess data and handle any missing or categorical values. 

2. Tree Construction: Build an initial decision tree, similar to J48, by choosing the attribute with the best 

split at each node. 

3. Error Pruning: Evaluate each branch of the tree on a separate validation set, pruning branches that do 

not reduce classification error. 

4. Final Tree: Retain branches that contribute positively to predictive accuracy, resulting in a simpler 

model that generalizes well. 

5. Prediction: Classify new instances by traversing the pruned tree, using only significant branches. 

2.7. Proposed Deep Learning Approaches (GAN-ES) 

Deep learning methodologies primarily revolve around training complex neural networks to capture intricate 

patterns in data. The methodologies involve various architectures, training protocols, and optimization 

techniques to enhance learning efficiency, model accuracy, and generalizability. Here is an overview of deep 

learning methodologies and the optimization techniques commonly used to improve performance. 

2.7.1 Generative Adversarial Networks (GANs): 

Generative Adversarial Networks (GANs) are powerful models that consist of two neural networks, a generator 

and a discriminator competing against each other. This adversarial framework enables the generator to produce 

data that closely resembles the training data, while the discriminator learns to differentiate between real and fake 

data. Here is a step-by-step breakdown of the GAN algorithm (Goodfellow et al., 2014, Arjovsky et al., 2017). 

Here’s a concise, step-by-step algorithm for training Generative Adversarial Networks (GANs): 

1. Initialize Networks: Set up the generator and discriminator networks with appropriate architectures and 

hyperparameters like learning rate, batch size, and latent space size. 

2. Sample Training Data: Prepare batches of real data from the training set to train the discriminator. 

3. Train Discriminator: 

o a. Generate Fake Data: Sample noise and feed it to the generator to create fake data samples. 

o b. Discriminator Prediction: Feed real and generated (fake) data to the discriminator. 

o c. Calculate Loss: Compute discriminator loss based on its ability to distinguish real from fake 

samples. 

o d. Update Discriminator: Backpropagate and update discriminator weights to improve real/fake 

classification. 
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4. Train Generator: 

o a. Generate Fake Data: Use new noise samples to generate more fake data. 

o b. Discriminator Prediction for Generator: Feed fake data into the discriminator but label it as 

real. 

o c. Calculate Generator Loss: Compute loss based on the discriminator's performance at 

identifying fake data as real. 

o d. Update Generator: Backpropagate and adjust generator weights to improve generated sample 

realism. 

5. Repeat: Alternate between training the discriminator and generator for several epochs until the generator 

produces high-quality data. 

6. Save Best Model: Save the generator model when it generates samples that resemble real data 

effectively. 

Here are short definitions of GAN hyperparameters: 

1. Learning Rate: Determines the pace of model updates; a balanced rate can stabilize GAN training. 

Learning rates of 0.0002 are commonly used for both generator and discriminator (Goodfellow et al., 2014). 

2. Batch Size: Number of samples in each training iteration, affecting stability and memory usage. Batch 

sizes of 64 or 128 are typical, offering a balance of stability and efficiency (Radford et al., 2016). 

3. Latent Space Dimensionality: The size of the random noise vector input to the generator, influencing 

generated data variety. A 100-dimensional noise vector is standard in image GANs for adequate diversity 

(Salimans et al., 2016). 

4. Number of Epochs: The number of full training set passes, necessary for GANs to converge to high-

quality outputs. GANs often require hundreds or thousands of epochs for fine detail in generated images 

(Arjovsky et al., 2017). 

5. Optimizer and Parameters: The algorithm and specific settings for updating weights; common choices 

are Adam or RMSprop. Adam with parameters β1=0.5 and β2=0.999 supports stable GAN training (Goodfellow 

et al., 2014). 

6. Regularization Parameters: Techniques like gradient penalties to maintain GAN stability and prevent 

overfitting. WGAN-GP often uses a gradient penalty of 10 for added stability (Gulrajani et al., 2017). 

7. Discriminator-to-Generator Update Ratio: Ratio of discriminator to generator updates per training step, 

affecting balance. WGANs commonly use a 5:1 update ratio for discriminator to generator (Arjovsky et al., 

2017). 

8. Activation Functions: Non-linear functions in the networks; common choices include Leaky ReLU in 

layers and Tanh in outputs. Leaky ReLU for generator layers and Tanh for output layers in normalized images 

(Radford et al., 2016). 

9. Loss Function Type: Guides model performance; cross-entropy or Wasserstein loss is commonly used. 

WGAN uses Wasserstein loss to enhance stability (Arjovsky et al., 2017). 

10. Noise Distribution: The distribution type for the generator's noise input (e.g., Gaussian or uniform), 

impacting sample quality. Gaussian noise (mean 0, standard deviation 1) is common in GANs (Salimans et al., 

2016). 

2.7.2 Early Stopping (ES)  

Early stopping is an optimization technique that halts training once the model’s performance on a validation set 

ceases to improve. This approach is widely used to prevent overfitting, ensuring the model generalizes well to 

unseen data. GANs often suffer from instability during training, and early stopping helps prevent overfitting to 

seasonal or temporary patterns in weather data, which can lead to more realistic generation of synthetic weather 

or crop yield data. For agricultural data, which can be influenced by highly variable and often stochastic weather 

conditions, early stopping aids in avoiding mode collapseand promotes stability in GANs for Agriculture. When 
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the objective is generating realistic weather patterns, crop yield, or disease prediction based on diverse 

environmental conditions, early stopping helps prevent the GAN model from over-optimizing on specific 

weather events that may not recur (Goodfellow et al., 2014, Zhang et al., 2019). 

Steps for Early Stopping 

1. Split the Data: Partition the training data into a training set and a validation set. Allocate 80% of the 

data for training and 20% for validation (Prechelt 1998). 

2. Monitor Validation Performance: Train the model and assess its performance on the validation set at 

each epoch. Track metrics such as validation loss or accuracy (Goodfellow et al. 2016). 

3. Set Patience Parameter: Establish a patience value, which determines the number of epochs to wait 

without improvement before stopping. With a patience value of 10, training halts if there is no improvement in 

validation metrics for 10 epochs (Yao et al. 2007). 

4. Check for Improvement: At each epoch, compare the current validation metric with the best value 

recorded. If an improvement is found, reset the patience counter. Update the best score whenever a new lowest 

validation loss is recorded (Prechelt 1998). 

5. Stop Training: Cease training when the validation metric has not improved for the specified number of 

epochs (patience) to avoid overfitting. If no improvement is observed after 10 continuous epochs, stop training 

and revert to the model with the best recorded performance (Goodfellow et al. 2016). 

6. Save the Best Model: Preserve the model with the highest validation performance for subsequent tasks. 

Save the model parameters at the best-performing epoch (Hinton et al. 2012). 

2.8 Generative Adversarial Networks (GANs): 

Here are simple definitions and formulas for the Kappa statistic, and error rates (MAE, RMSE, RAE, RRSE): 

2.8.1 Kappa Statistic (κ) 

The Kappa statistic measures the agreement between a model's classifications and the true classifications, 

adjusting for agreement that could happen by chance. It provides a value between -1 and 1, where 1 represents 

perfect agreement, 0 means chance-level agreement, and negative values indicate disagreement. 

k =
p0 − pe
1 − pe

 

Where po: the observed agreement (proportion of instances the model classified correctly) and pe: the expected 

agreement by chance. 

2.8.2 Mean Absolute Error (MAE) 

MAE represents the average of absolute differences between the model's predictions and actual values. Lower 

values indicate better model performance. 

MAE =
1

n
∑ |yi − ŷi|
n
i=1   

Where yi: actual value, ŷi: predicted value, and n: total number of observations. 

2.8.3 Root Mean Square Error (RMSE) 

RMSE is the square root of the average squared differences between the predicted and actual values. RMSE 

penalizes large errors more than MAE, making it sensitive to outliers. 

RMSE =
1

n
∑ (yi − ŷi)

2n

i=1
  

2.8.4 Relative Absolute Error (RAE) 

RAE is the total absolute error of the model’s predictions relative to the total absolute error of a simple mean-

based prediction. Lower RAE indicates a more accurate model. 

RAE =
∑ |yi−ŷi|
n
i=1

∑ |yi−y̅|
n
i=1
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Where y̅: Mean of the actual values. 

2.8.5 Root Relative Squared Error (RRSE) 

RRSE compares the RMSE of the model to the RMSE of a baseline model (mean prediction). It provides a 

relative measure, with lower RRSE indicating better performance. 

RRSE =
∑ (yi−ŷi)

2n

i=1

∑ (yi
n

i=1
−y̅)2

   

These metrics help evaluate a model's accuracy, robustness, and overall performance, offering insight into how 

well the model's predictions match actual values. 

3. Experimental Results  

Table 1: Crop Recommendation System using Nutrients and Weather 

Nitrogen 
(N) 

Phosphorous 
(P) 

Potassium 
(K) 

temperature Humidity ph rainfall label 

90 42 43 20.8797 82.0027 6.5030 202.9355 rice 

85 58 41 21.7705 80.3196 7.0381 226.6555 rice 

60 55 44 23.0045 82.3208 7.8402 263.9642 rice 

83 60 36 25.5970 80.1451 6.9040 200.8349 rice 

71 54 16 22.6136 63.6907 5.7499 87.7595 maize 

61 44 17 26.1002 71.5748 6.9318 102.2662 maize 

40 72 77 17.0250 16.9886 7.4860 88.5512 chickpea 

23 72 84 19.0206 17.1316 6.9203 79.9270 chickpea 

13 60 25 17.1369 20.5954 5.6860 128.2569 kidneybeans 

25 70 16 19.6347 18.9071 5.7592 106.3598 kidneybeans 

14 67 15 19.5638 24.6739 5.6901 139.2921 kidneybeans 

7 56 18 18.3136 24.3299 5.6984 76.1415 kidneybeans 

3 72 24 36.5127 57.9289 6.0316 122.6540 pigeonpeas 

40 59 23 36.8916 62.7318 5.2691 163.7267 pigeonpeas 

33 73 23 29.2354 59.3897 5.9858 103.3302 Pigeonpeas 

27 57 24 27.3353 43.3580 6.0919 142.3304 pigeonpeas 

55 67 16 34.3733 69.6937 6.5967 70.2718 blackgram 

23 70 15 34.6008 63.113 7.4036 60.4179 blackgram 

53 74 15 29.4346 64.9433 7.5171 72.1782 blackgram 

32 76 15 28.0515 63.498 7.6041 43.358 lentil 

13 61 22 19.4408 63.2777 7.7288 46.8313 lentil 

38 60 20 29.8482 60.6387 7.4912 46.8045 lentil 

31 25 38 24.9627 92.405 6.4974 109.4169 pomegranate 

21 21 38 22.5526 89.3259 6.3277 104.8956 pomegranate 

108 92 53 27.4005 82.9622 6.2768 104.9378 banana 

86 76 54 29.3159 80.1159 5.9268 90.1098 banana 

80 77 49 26.0543 79.3965 5.5191 113.2297 banana 

21 26 27 27.0032 47.6753 5.6996 95.8512 mango 

25 22 25 33.5615 45.5356 5.9774 95.7053 mango 

34 15 34 27.0583 91.1051 5.6773 224.7007 coconut 

14 23 25 26.1855 96.9664 5.6121 135.4186 coconut 

18 19 29 27.5938 92.4852 6.2061 162.8433 coconut 

135 43 16 23.4799 81.7305 6.7204 86.7629 cotton 

100 46 18 24.1859 76.042 6.4317 69.0806 cotton 

Table 2: Correctly and incorrectly classified instance 

ML 
Approaches 

Correctly Classified Instances (%) Incorrectly Classifies Instances (%) 

Logistic Regression 97 3 

Multilayer Perceptron 98 2 

SMO 96 4 

REP Tree 99 1 

GAN-ES 100 0 
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Figure 1: Accuracy of correctly and incorrectly classified instances in (%) 

Table 3: Kappa statistic 

ML 
Approaches 

Kappa Statistic 

Logistic Regression 0.9732 

Multilayer Perceptron 0.9892 

SMO 0.9276 

REP Tree 0.9985 

GAN-ES 1.0000 

 

Figure 2: Performance of Kappa statistic 

Table 4: Performance MAE and RMSE 

ML Approaches MAE RMSE 

Logistic Regression 0.0815 0.7216 

Multilayer Perceptron 0.0084 0.0282 

SMO 0.3826 0.4800 

REP Tree 0.0012 0.0042 

GAN-ES 0.0000 0.0000 

 

Figure 3: Performance of MAE and RMSE 
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Table 5: Performance of RAE and RRSE 

ML Approaches RAE RRSE 

Logistic Regression 1.0498 10.3635 

Multilayer Perceptron 0.4888 9.9471 

SMO 95.2452 96.0077 

REP Tree 0.8457 7.8545 

GAN-ES 0.0000 0.0000 

 

Figure 4: Performance of RAE and RRSE 

Table 6: Time taken to build the model 

ML Approaches Time Taken (Seconds) 

Logistic Regression 59.11 

Multilayer Perceptron 160.70 

SMO 1.77 

REP Tree 5.53 

GAN-ES 45.11 

 

Figure 5: Time taken to build the model 

4. Results and Discussions  

The experimental results evaluated five machine learning and deep learning models - Logistic Regression, 

Multilayer Perceptron, SMO, REP Tree, and GAN-ES on a crop classification dataset using nutrient and weather 

data. Key performance metrics included classification accuracy, Kappa statistic, error rates (MAE, RMSE, RAE, 

RRSE), and model-building time. Below is a detailed presentation of these findings. 

The accuracy of correctly classified and incorrectly classified instances for each model is presented in Table 2 

and Figure 1. GAN-ES achieved the highest accuracy, with 100% of instances correctly classified. REP Tree 
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also performed well, with 99% accuracy. These results indicate that GAN-ES is the most accurate model for 

crop classification based on the provided data. 

The Kappa statistic (Table 3 and Figure 2) reflects each model's agreement with actual classifications. GAN-ES 

achieved a perfect Kappa statistic of 1.000, indicating complete alignment with the ground truth. REP Tree 

closely followed with a Kappa statistic of 0.9985. The Kappa statistics suggest that GAN-ES and REP Tree 

provide the most reliable classification results in the dataset. 

MAE and RMSE, presented in Table 4 and Figure 3, measure the prediction errors for each model. GAN-ES 

demonstrated zero error values, indicating the highest level of precision. REP Tree and Multilayer Perceptron 

also had low error rates. The low MAE and RMSE values for GAN-ES and REP Tree highlight their robustness 

in accurately predicting crop classifications. 

Table 5 and Figure 4 display the relative errors, with GAN-ES achieving zero for both RAE and RRSE, followed 

by Multilayer Perceptron and REP Tree with minimal error rates. In contrast, SMO exhibited the highest RAE 

and RRSE, suggesting less predictive accuracy. These relative error results further validate GAN-ES as the most 

effective model for classification in this study. 

Table 6 and Figure 5 shows the time each model required for training. SMO completed training in the shortest 

time, at 1.77 seconds, while GAN-ES required 45.11 seconds, balancing high accuracy with moderate 

computational efficiency. Although SMO was the fastest, GAN-ES demonstrated the best overall performance 

across other metrics, making it suitable for scenarios requiring both accuracy and efficiency. 

The experimental results confirm GAN-ES as the top-performing model with perfect classification accuracy, 

zero errors, and high Kappa agreement. This model’s performance makes it an ideal candidate for accurate and 

efficient crop classification based on environmental and nutrient data. In summary, GAN-ES is identified as the 

optimal choice for crop classification due to its unparalleled accuracy, zero error rates, and robustness. For 

applications prioritizing both speed and accuracy, REP Tree is a viable alternative. These findings suggest that 

deep learning models, particularly GAN-ES, offer promising potential for accurate agricultural predictions and 

decision-making processes in precision agriculture. 

5. Conclusion  

The study evaluated the effectiveness of various machine learning (ML) and deep learning models for crop 

classification using environmental and nutrient data. Key performance metrics included classification accuracy, 

Kappa statistic, error rates (MAE, RMSE, RAE, RRSE), and model-building time. The conclusions derived from 

the analysis are Superior Performance of GAN-ES, High Reliability of REP Tree, Multilayer Perceptron as a 

Balanced Model, Limitations of SMO, and Trade-Offs Between Accuracy and Computational Time.  

6. Further Research  

The findings from this study highlight areas for future research to enhance crop classification accuracy and 

optimize model performance. Building on the analysis of machine learning (ML) and deep learning approaches, 

the recommendations can guide further research namely the Exploration of Hybrid and Ensemble Models, 

Incorporating More Environmental and Biophysical Factors, Evaluating Temporal and Seasonal Variability, 

Real-Time Data Processing and Prediction, Comparative Studies Across Diverse Crop Types, and Economic 

and Environmental Impact Assessment. These future research directions aim to refine classification models, 

adapt them to diverse agricultural contexts, and maximize their practical applications in precision agriculture. 

By addressing these areas, future studies could contribute to the development of reliable, adaptable, and efficient 

models for enhanced crop management and agricultural productivity. 
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