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ABSTRACT 
In this paper, we address the computational chal- lenges associated with video recognition tasks, where video 

transformers have shown impressive results but come with high computational costs. We introduce Opt-

STViT, a token selection framework that dynamically chooses a subset of informative tokens in both 

temporal and spatial dimensions based on the input video samples. Specifically, we frame token selection as 

a ranking problem, leveraging a lightweight scorer network to estimate the importance of each token. Only 

tokens with top scores are retained for downstream processing. In the temporal dimension, we identify and 

keep the frames most relevant to the action categories, while in the spatial dimension, we pinpoint the most 

discriminative regions in feature maps without affecting the spatial context used hierarchically in most video 

transformers. To enable end-to-end training despite the non-differentiable nature of token selection, we 

employ a perturbed-maximum-based dif- ferentiable Top-K operator. Our extensive experiments, primar- ily 

conducted on the Kinetics-400 and something-something-V2 datasets using the recently introduced MViT 

video transformer backbone, demonstrate that our framework achieves similar results while requiring 20 

percent less computational resources. We also establish the versatility of our approach across different 

transformer architectures and video datasets. 

 

1. Introduction 

Research in video recognition, which involves classifying video based content in actions and events, has been 

acceler- ated by the quick growth of online videos. Applications like content-based retrieval [1, 2] and 

recommendation systems [3- 6] are supported by this research. The model used for video recognition is spatial-

temporal modeling which detects the movement of humans and moving objects for the interaction of each other 

over time. Vision transformers [7, 8] playing a vast role for the capturing long range dependencies in Natural 

Language processing (NLP) [9, 10]. But for video recognition these transformers [11-14] are computationally 

expensive. The issue arises from the fact that as the number of frames in a Identify applicable funding agency 

here. If none, delete this. 

Should be handled sequentially, first focusing on salient frames throughout the whole time horizon, and then 

delving into those frames to find the most significant geographical region. 

We shall overcome this limitation by introducing a novel ViT called Optimized Spatial Temporal Video Vision 

Transformer (Opt-STViT) plug-and-play ViT that may be used to learn how to video clip increases, the number 

of input tokens also increases linearly. This, in turn, leads to a quadratic cost in computing self-attention. 

Consequently, video transformers often require substantial computational resources, making them impractical 

for deployment in scenarios with limited computing capabil- ities. The previous studies of CNNs [15-24] for 

the video based recognition have many limitations and cannot performed well for the detection of video 

frameworks and architectures. The transformers take a picture and convert it into small patches that tokenize a 

sequence image processing. Self- attention layers are used to relate the modeled patches. Given that transformers 

have been demonstrated to be resistant to patch drop behaviors [25], a few fairly recent approaches have 

attempted to lower the computational cost of transformers in the picture domain by training them to drop 

redundant tokens [26, 27]. The transformer-based models were created for video categorization that are 

motivated by ViT and the fact that attention-based architectures are an obvious choice for representing long-

range contextual interactions in video. The most effective models at the moment are built using deep 3D 

convolutional architectures [20, 21, 28], a logical progression from image classification CNNs [29, 30]. In order 

to better capture long-range relationships, these models have recently been improved by adding self-attention 

to their later layers [31-34] The idea of generalizing the transformers from image to video is non-trivial. For 

tokenization layer 3D cubes of the token are used for the video transformers which set all the tokens in a 
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sequence in the form of 3D vectors. Because of this, learning what to maintain in the sequence alone through 

sampling-based methods [26, 27]. always results in a set of spatially and temporally discontinuous tokens, 

obliterating the structural information in movies. The latest design of video transformers, which processes 3D 

tokens in a hierarchical fashion while maintaining both spatial and temporal context, likewise runs counter to 

this [12, 13]. We propose that the selection of spatial-temporal tokens in video transformers manage 

computational resources both physically and temporally in video transformers as shown in figure below. 

 

Figure 1: Fig a presents video frames at different temporal intervals for input. Of all the 07 frames only 03 

frames are meaningful as far as recognition is concerned. Hence only 03 temporal frames are shortlisted in the 

first stage. Fig b performs spatial filtration over selected frames and keeps ROI based on anchors proposed. 

While fig c depicts the final recognized scene. 

To employ the fewest number of tokens possible, Opt-STViT comprises of two networks: a temporal token 

selection network and a spatial token selection network. Each selection network is a multi-layer perceptron 

(MLP) that may be coupled to any point on a transformer model and forecasts the relevance score of each 

syllable. We select a few tokens with better values for further processing based on these scores. More 

specifically, Opt-STViT first chooses a few significant frames throughout the whole time horizon given a series 

of input tokens. We next divide the token sequences into anchors with regular forms for each frame and choose 

the single anchor that contributes the most to video recog- nition. It is important to note that choosing tokens 

with the highest scores is not differentiable, which creates difficulties for training. We use a recently suggested 

differentiable Top-K selection algorithm [35] to make selection end-to-end trainable using the perturbed 

maximum technique in order to address this issue. Additionally, this enables us to specify the number of tokens 

that are used. By presenting frame preference as a computational cost challenge, we would develop a frame 

preference technique to increase the inference effectiveness of video transformers. Each frame is designated 

with a significant score using a lightweight scorer network, and only those with top scores ratings are preserved 

for computation. We choose the most informative frames in the temporal dimension, while in the spatial 

dimension, the primarily employ the cutting- edge video transformer MViT [12] as our basic model and assess 

the performance of Opt-STViT using HPC. We shall be performing our experiments on Kinetics-400 [36] which 

is made up of 240k training films and 20k validation videos that fall into 400 different activity categories. After 

performing experiments on datasets by both methods, the results will demonstrate their accuracy by using Opt-

STViT model can effectively improve the efficiency at the cost of only a slight loss of accuracy. Specifically, 

using MViT [12] as testing method, Opt-STViT reduces the computational cost by more than 33 Percent with 

a drop in accuracy of 0.7 Percent on Kinetics-400. 

2. Literature Review 

Current plant disease classification systems primarily rely on traditional machine learning models and manual 

feature extraction techniques. These methods often face limitations in accuracy due to the challenges of data 

diversity and class imbalance. Many systems use basic convolutional neural networks (CNNs) which, while 
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effective, struggle to generalize across different plant species and disease variations. Additionally, existing 

systems often require extensive labeled datasets, which are not always available. This reliance on limited data 

and manual intervention results in slower and less precise disease detection, highlighting the need for more 

advanced and automated solutions. 

2.1 Vision Transformers 

Transformers [10] are being used as the backbone archi- tectures in place of convolutional neural networks 

(CNNs) in the computer vision community as a result of the excep- tional successes of Transformer models in 

the field of natural language processing (NLP) [7, 37-39]. Vision transformers have emerged as a result of this 

change, and they have demonstrated superior performance in a range of image-related tasks, including image 

classification [37], object detection [40], and semantic segmentation [41]. The use of a large amount of pre-

training data in the image domain allowed for the achievement of these amazing results. have inspired the 

Computer vision community after the success of the NLPs and CNNs through the backbone architecture used 

in transformers. According to a number of methods, researchers have recently been looking at the use of vision 

transformers in the field of movies [11-13, 42-45]. For instance, TimeSformer [11] which concatenates patches 

from several frames along the temporal dimension, introduces modifications to the basic transformer design 

specifically for movies. To capture multiscale visual information necessary for video recognition, MViT [12] 

uses a hierarchical transformer design that gradually increases the channel size while decreasing the spatial 

resolution. A further method, VideoSwin [13], uses the natural bias towards locality in video data to apply the 

idea of window-based local self- attention [46] to video modelling. 

2.2 Efficient Vision Transformers 

Efficient Transformers are a class of neural network archi- tectures designed to optimize the computational 

efficiency of traditional Transformers [47]. They are particularly relevant to spatial-temporal video recognition, 

where they aim to reduce computational complexity and improve the efficiency of pro- cessing video data. By 

streamlining the architecture, efficient Transformers help address the computational challenges posed by video 

recognition tasks, including real-time processing, multi-modal data fusion, and scalability to handle longer 

video sequences and higher resolutions. In essence, they enable more effective and efficient analysis of video 

data, making them a crucial component in advancing the field of spatial-temporal video recognition. 

2.3 Comparative Analysis 

Video Vision Transformers (ViTs) represent a critical ad- vancement in spatial-temporal video recognition. 

Tailored for processing video data, ViTs excel at capturing temporal dy- namics, efficiently extracting spatial 

and temporal features, and facilitating multi-modal fusion, all crucial elements for recog- nizing complex 

patterns and actions in videos. Their scalability to longer video sequences, ability to leverage pre-training for 

transfer learning, and potential for real-time processing make them a valuable asset in various video recognition 

applica- tions[48]. With competitive performance and the capacity to model both spatial and temporal 

information effectively, ViTs have emerged as a pivotal tool in addressing the challengesof video understanding 

and recognition in computer vision research and applications. 

2.4 Efficient Video Transformer 

Convolutional neural networks (CNNs) have considerably increased video recognition since their adoption. 

Using 3D- CNN, such as C3D [49], I3D [28], and ResNet3D [50], that model both temporal and spatial 

information simultaneously, is one frequent strategy. In a separate strategy, frame-level features are extracted 

and aggregated at various time points using techniques such temporal averaging [51], LSTM net- works [52], 

or channel shifting [53]. Despite the success of these methods, their applicability may be constrained by the 

computational expense of CNNs, particularly 3D-CNNs. Recent studies have concentrated on developing 

lightweight architectures [22, 24, 53-56] or carrying out dynamic comput- ing on a per-video basis [16, 57-61] 

in order to increase the effectiveness of video recognition. With a focus on resolving spatial redundancy, our 

method is in line with the latter idea of decreasing intrinsic redundancy in video data. Convolutional neural 

networks (CNNs) and transformer models have been extensively studied in a number of recent studies on video 

recognition [20, 50, 62, 63] and [11-13]. However, because these models are frequently computationally 

intensive, effec- tive video recognition techniques have been developed [24, 25, 58, 64-66] to reduce the amount 

of time needed for inference. By compressing 3D CNNs, certain studies [20, 21, 24, 67, 68] have concentrated 

on developing compact models for video recognition. While using these methods results in significant memory 
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savings, the computational complexity is not reduced because each temporal clip of the incoming video must 

still be processed. The most pertinent temporal clips to feed into backbone models, on the other hand, are 

suggested by a few recent techniques [16, 23, 51, 65] allowing for resource-effective video recognition. These 

methods, however, largely focus on speeding up CNN-based video recognition algorithms. Our study is the first 

to examine effective recog- nition for video transformers, as far as we are aware. It is crucial to remember that 

the Optimized Spatial-Temporal Video Vision Transformers (Opt-STViT) method we present is distinct from 

and enhances current initiatives to build effective vision transformers [69, 70]. 

2.5 Temporal Spatial Video Vision Transformer 

In recent years, there has been a noticeable trend in the field of object detection, particularly in the context of 

video object detection. This trend involves the use of context frames to improve the performance of object 

detection algorithms. However, existing methods in this domain typically aggregate features in a single step, 

which has limitations. One key drawback is the lack of spatial information from neighbor- ing frames, leading 

to insufficient feature aggregation. To address these issues, a novel approach has been proposed. This approach 

takes a progressive approach to integrate both temporal and spatial information, enhancing the overall object 

detection process. Temporal information is introduced through a specialized model called the Temporal Feature 

Aggregation Model (TFAM). TFAM incorporates an attention mechanism that focuses on the relationships 

between the context frames and the target frame, which is the frame where the object detection is performed. 

Additionally, a Spatial Transition Awareness Model (STAM) is employed in this approach. STAM’s role is to 

capture and convey information about the spatial transitions between each context frame and the target frame. 

This is crucial for understanding how objects move or change positions between frames. This entire approach 

builds upon a transformer-based object detector known as DETR. Importantly, it maintains an end-to-end 

fashion, which means that it avoids the need for extensive post-processing steps. As a result of these innovations, 

this proposed method, referred to as PTSEFormer, achieves an impressive mean Average Precision (mAP) of 

88.1 percent on the ImageNet VID dataset, demonstrating its effectiveness in video object detection. In 

summary, recent advancements in object detection, particularly in video detection, involve using context frames 

to improve performance. The proposed PTSEFormer introduces temporal information through TFAM and 

spatial information through STAM, working in conjunction with the DETR detector in an end-to-end manner, 

ultimately leading to substantial improve- ments in mAP on the ImageNet VID dataset. 

3. Proposed Methodology 

An overview of video transformers is provided in the first paragraph of this section (Sec. 3.1). Then, we discuss 

our token selection module, which adaptively selects a small number of significant tokens, and introduce a 

crucial method, the perturbed maximum method.in Section 3.2, ”Model End-to- End Optimization,” Finally, 

we go into detail regarding Create instances of the token selection modules in the temporal and spatial 

dimensions. (Sec. 3.3). Figure 2 and 3 displays the overarching framework. 

 

Fig 1: Overview of the Optimized Temporal Spatial Transformer 
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Fig 2: Expended view of the Temporal and Spatial Optimizers Respectively 

3.1 Video Transformer 

Let we have an input video of V∈R^(T×H×W×3) with size of H x W and T RGB frames video transformers 

typically employ one of two primary methods to convert these video frames into a sequence of patch embedding. 

The first method involves dividing the 2D patches within each frame independently using 2D convolutions and 

then concatenating all these patches along the time dimension. The second approach is to directly extract 3D 

tubes from the input videos and apply 3D convolutions to transform them into 3D embedding. In both of these 

approaches, the quantity of tokens generated changes directly to the temporal duration and spatial dimensions 

of the input video. We represent the resulting spatial-temporal patch embedding as x∈R^(H×W×d) where ‘H’ 

and ‘W’ are the lengths of the token sequence in the time and spatial dimensions, respectively, and ‘d’ denotes 

the embedding dimension. To introduce location information into these embedding, positional encodings are 

incorporated. To capture both the visual appearance and motion cues within videos, the patch embedding 

denoted as x are input into a series of transformer blocks. These transformer blocks perform spatial and temporal 

self-attention calculation as Let we have an input video of V∈ 

ℝ𝑻×𝑯×𝑾×𝟑 with size of H x W and T RGB frames video transformers typically employ one of two primary 

methods to convert these video frames into a sequence of patch embedding. The first method involves dividing 

the 2D patches within each frame independently using 2D convolutions and then concatenating all these patches 

along the time dimension. The second approach is to directly extract 3D tubes from the input videos and apply 

3D convolutions to transform them into 3D embedding. In both of these approaches, the quantity of tokens 

generated changes directly to the temporal duration and spatial dimensions of the input video. We represent the 

resulting spatial-temporal patch embedding as 𝒙 ∈ ℝ𝑯×𝑾×𝒅 where ‘H’ and ‘W’ are the lengths of the token 

sequence in the time and spatial dimensions, respectively, and ‘d’ denotes the embedding dimension. To 

introduce location information into these embedding, positional encodings are incorporated. To capture both 

the visual appearance and motion cues within videos, the patch embedding denoted as x are input into a series 

of transformer blocks. These transformer blocks perform spatial and temporal self-attention calculation as 

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑾𝒒,𝑾𝒌,𝑾𝒗)  =  𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑾𝒒𝑾𝒌

𝑻

√𝑪
)𝑾𝒗 (1) 

Here, 𝑾𝒒,𝑾𝒌,𝑾𝒗represent the query, key, and value embedding derived from x, respectively. The softmax 

function is applied for normalization purposes, ensuring that the attention scores are appropriately scaled. 

3.2 Algorithm for Video Vision Transformer 

Algorithm-I for Opt-STViT: 𝑷
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑉𝑖𝑑𝑒𝑜𝑉𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑽, 𝑰, 𝒛, 𝒙|𝜽) 

Input: 𝑽 ∈ ℝ𝑇×𝐻×𝑊×3, 𝑰 ∈ ℝ𝐻×𝑊×3, 𝒛𝒊,𝒋 ∈ ℝ𝐻𝟐×3; 𝑽, 𝑰, 𝒛, 𝒙 are RGB input video, 3D frames, (𝑖, 𝑗)𝑡ℎ patch 

and sequence of token IDs. 

Output: 𝑷 ∈ (𝟎, 𝟏), 𝑷 is Binary Cross Entry Loss Function based conditional probability such that video object 

exist or not. 

Hyperparameters: 𝑙𝑚𝑎𝑥 , 𝐿, 𝐻, 𝑑𝐸 , 𝑑𝑀𝐿𝑃 , 𝑑𝑓 ∈  ℕ 

Parameters: 𝜽 represents all the parameters as follows: 
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| 𝑾𝑬 ∈ ℝ𝑑𝐸×𝑁𝑉 , token embedding matrix 

For 𝑙 ∈ [𝐿]: 

| 𝑾𝑶 ∈ ℝℎ𝑑𝑣×𝒅𝒎𝒐𝒅𝒆𝒍, multi-head attention 

| 𝑾𝒊
𝑸
∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝑄, Query weight 

| 𝑾𝒊
𝑲 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝐾, Key weight 

| 𝑾𝒊
𝑽 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝑉, Value weight 

| 𝜸𝒏, 𝜷𝒎 ∈ ℝ𝑑𝐸, sets of norm-layer 

| 𝑾𝑴𝑳𝑷𝒌
𝒍 ∈ ℝ𝑑𝑀𝐿𝑃×𝒅𝑬, weight matrix for MLP layer 

| 𝒃𝑴𝑳𝑷 ∈ ℝ𝒅𝒌, bias matrix for MLP layer 

| 𝜸, 𝜷 ∈ ℝ𝒅𝑬, 𝑾𝒖 ∈ ℝ𝑁𝑉×𝒅𝑬 final norm-layer & unembedding weight 

3.3 Pseudo Code for Opt-STViT 

1. ## Extraction of 3D Frames I RGB from input Video 𝑽 ∈ ℝ𝑇×𝐻×𝑊×3 

2. for input video 𝑽 ∈ ℝ𝑇×𝐻×𝑊×3 do 

3. for 𝑘th second frames 𝑰 ∈ ℝ𝐻×𝑊×3 do 

4. 𝑰 ∈ ℝ𝐻×𝑊×3

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑅𝐺𝐵𝐹𝑟𝑎𝑚𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑽 ∈ ℝ𝑇×𝐻×𝑊×3|𝜽) 

5. end 

6. end 

7. ## Feed into ViTs 

8. for 3D RGB frames 𝑰 ∈ ℝ𝐻×𝑊×3 do 

9. for 𝑋𝑖
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      3𝐷𝐶𝑜𝑛𝑣(𝑰 ∈ ℝ𝐻×𝑊×3|𝜽) do 

10. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝 𝑿𝒊+𝟏
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      3𝐷𝐶𝑜𝑛𝑣(𝑰 ∈ ℝ𝐻×𝑊×3|𝑿𝒊) 

11. for 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝 𝑿𝒊+𝟏 do 

12. 𝑬
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      3𝐷𝑃𝑎𝑡𝑐ℎ𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑰 ∈ ℝ𝐻×𝑊×3|𝑿𝒊+𝟏,𝑊𝐸) 

13. 𝑿̃𝒊𝒋𝑾𝒊𝒋
𝑶

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐴𝑡𝑡𝑛(𝑬, 𝑿𝒊𝒋|𝑾𝒊𝒋

𝑸, 𝑿𝒊𝒋𝑾𝒊𝒋
𝑲, 𝑿𝒊𝒋𝑾𝒊𝒋

𝑽) 

14. 𝑿̃𝒊+𝟏
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐶𝑜𝑛𝑐𝑎𝑡(𝑿̃𝒊𝒋|𝑾𝒊𝒋

𝑶) 

15. end 

16. for 𝑿𝒊𝒋, 𝑿̃𝒊(𝒋−𝟏) do 

17. 𝑿′𝒊𝒋 = 𝑿𝒊𝒋 + 𝑿̃𝒊(𝒋−𝟏) while 𝟏 < 𝒋 ≤ 𝒉 

18. end 

19. end 

20. end 

21. for 𝑿′
𝒊𝒋 𝒅𝒐 

22. 𝑿𝒊𝒋
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑹𝒆𝑳𝒖(𝑾𝒇𝑿

′
𝒊𝒋) 

23. end 



2109 | P a g 

e 

OPT-STVIT: Video Recognition through Optimized Spatial-Temporal Video Vision Transformers 

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

24. return 𝑷(𝟎, 𝟏) = 𝑺𝒐𝒇𝒕𝑴𝒂𝒙(𝑾𝒖𝑿𝒊𝒋 

3.4 Dynamic Token Selection 

As shown in Equation 1, the computational complexity of a video transformer increases quadratic ally with the 

number of tokens used in the self-attention blocks. Given the inherent spatial and temporal redundancies present 

in videos, a natural approach to mitigate this computational burden is to reduce the number of tokens. However, 

the challenge lies in determining which tokens should be retained and which ones can be discarded, and this is 

a non-trivial task. Reducing the number of tokens while preserving critical information is essential for efficient 

video processing. This involves striking a balance between computational efficiency and maintaining the 

representational power needed to address the target task effectively. Achieving this balance often requires 

innovative token selection methods that take into account the specific characteristics of the input data and the 

objectives of the task at hand. It is a decision closely tied to both the specific input sample and the target task at 

hand. Drawing inspiration from recent research on patch selection for high-resolution image recognition, we 

frame token selection as a ranking problem. Here's a detailed explanation of this approach. 

3.4.1 Estimating Importance Scores 

We begin by estimating importance scores for the input tokens. To accomplish this, we employ a lightweight 

scorer network. This network evaluates each token and assigns an importance score based on its relevance to 

the task. 

3.4.2 Selecting Top Scorers 

After the importance scores are calculated, we proceed to select the top scoring tokens. These tokens are 

considered the most informative and relevant for the downstream processing tasks. The described two-step 

process is used for both spatial and temporal token selection. In spatial token selection, it helps identify 

significant spatial patches within frames, while in temporal token selection, it assists in determining the most 

relevant frames over time. This approach is valuable for reducing computational complexity while preserving 

critical information for video analysis and understanding. 

3.4.3 Scorer network. 

The objective of the scorer network is to generate importance scores for each token in an input sequence 

represented as q, where q is a matrix with dimensions (L, C). Here, L signifies the length of the sequence when 

flattened, and ‘d’ represents the embedding dimension. To accomplish this, we employ a conventional two-

layer fully connected (FC) neural network to compute these scores. 

More specifically, we start by mapping the input tokens to a local representation denoted as f_l through a linear 

projection: 

𝒇𝒍𝒐𝒄𝒂𝒍  
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←       𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑣(𝒒|𝜽) 

𝒔 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑣(𝒇𝑖|𝜽) 

where θ denotes the network weights and f^local is a vector of importance scores for all tokens, which 

has a dimension of ‘d’. These scores have been normalized using the min-max normalization technique. 

3.5 Selection of Top Highest scorer 

After obtaining the importance scores, denoted as "s," from the scorer network, we proceed to select the highest 

scores and extract the corresponding tokens. This operation is referred to as the "Top scorer" operator, and it 

returns the indices of the largest entries. In mathematical terms, it is represented as follows: 

𝑦 =  𝑇𝑜𝑝 𝑠𝑐𝑜𝑟𝑒𝑟(𝑠)  ∈  𝑁^𝐾. 

To train the parameters of the scorer network through an end-to-end training process without the need for 

additional loss functions, we employ the perturbed maximum method. This allows us to create a differentiable 

version of the Top scorer operator, ensuring that gradients can be computed throughout the training process. 

3.5.1 Forward 

A smoothed variant of the Top scorer operation as described in below can be achieved by computing the 

expectation with respect to random perturbations. This is represented as follows: 
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Y= expect_argmax(rand| (y,s)) 

For testing, we apply the Top scorer algorithm for n iterations (typically set to 500 in all our experiments), and 

then calculate the expectation by averaging over the results of these n independent samples. 

3.5.2 Backward 

During the training process, we simultaneously train both the backbone models and the token selection networks 

using the cross-entropy loss in an end-to-end manner. However, during inference, we aim to further enhance 

efficiency by employing the hard Top scoring operation, where only a single Top scorer operation is performed 

(instead of n perturbed repetitions), and token selection is accomplished through tensor slicing. 

However, it's important to note that using hard Top-scoring during inference can lead to a difference between 

the training and testing phases. To address this issue, we introduce a linear decay of the hyper-parameter d_E 

towards zero during the training process. It's worth emphasizing that when d_E equals zero, the differentiable 

Top scoring operation becomes equivalent to hard Top scorer, and the gradients flowing into the scorer network 

become negligible or vanish. 

3.6 Temporal and Spatial Token Selection 

The unique characteristics of appearance and motion information in videos, we adopt a two-step approach for 

token selection. First, we focus on selecting salient frames, and then we further refine our attention to identify 

the most crucial spatial regions within those frames. This approach involves separating the processing of spatial 

and temporal information, attending to significant frames initially and subsequently delving into these frames 

to pinpoint the most important spatial regions. 

3.6.1 Temporal selection 

Given the input tokens x with dimensions W×H×d, the objective of temporal selection is to choose Top scoring 

matrix out of the W frames and disregard the remaining ones. Here's how this process is carried out: Initially, 

we perform average pooling on x along the spatial dimension. This results in a sequence of frame-based tokens 

denoted as xt with dimensions W×d. Next, we pass xt through the scorer network and the Top Scorer operator 

to generate an indicator matrix Yt. This matrix identifies the frames with the top K highest scores and has 

dimensions H×Top Scorer. Afterward, we reshape the input x back to its original form, so it becomes x with 

dimensions W×(H×d). Finally, we extract the selected top scoring frames from x using the indicator matrix Yt 

by performing a matrix multiplication: z = Yt^T x, resulting in a matrix z with dimensions Top scoring 

matrix×(H×d). The selected tokens are then reshaped to form` with dimensions Top scoring matrix ×H×d for 

further processing in downstream tasks. 

3.6.2 Spatial selection 

Unlike temporal selection, spatial selection is conducted independently for each frame, with the goal of selecting 

best scoring token out of N tokens for each frame. To clarify, we first input the tokens of a given frame, denoted 

as x_m and residing in an H x d matrix, into a scorer network to generate importance scores s_m, both of which 

vary across frames but are described here without frame subscripts for simplicity. To identify the top Scoring 

spatial tokens, one might initially consider directly applying the Top Scoring operator to the token-based scores 

s. However, this approach disrupts the spatial arrangement of input tokens, which is particularly problematic 

for spatial selection in video transformers for two key reasons. 

First, modern video transformers, employ a hierarchical architecture that progressively reduces spatial 

resolutions through multiple stages. Abruptly removing tokens disrupts the spatial structure, which is 

detrimental to local operations like convolutions and pooling used for spatial down-sampling. Second, the 

misalignment of spatial tokens along the temporal dimension complicates temporal modeling significantly. 

Instead of relying on token-based selection, we introduce an innovative anchor-based approach for spatial 

selection. Here's how it works: 

Once we have obtained importance scores, denoted as 's,' for each frame, we start by reshaping these scores into 

a 2D score map, 's_s,' which takes the shape of s_s ∈ R √N x √N. Next, we partition this score map into a grid 

of overlapping anchors, referred to as 'e_s_s,' which forms a matrix of size e_s_s ∈ R G x K. Each anchor covers 

a region of K tokens. The parameter G represents the total number of anchors, and it is calculated as G = (√N- 

√Kα+ 1)^2, where α denotes the stride between anchors. After the anchors are defined, we proceed to aggregate 

the importance scores within each anchor using average pooling. This aggregation results in anchor-based 
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scores, denoted as 's_a,' which exist in the space R G. This transformation effectively transforms the original 

problem of selecting the top scoring tokens into a simpler task of selecting the token with the highest score 

within each anchor, essentially becoming a Top-1 selection problem. To identify the highest-scoring token 

within each anchor, 

We once again make use of the Top Scoring operator, setting K to 1. This process generates an indicator matrix 

and allows us to extract the anchor with the highest score, achieving our goal of spatial selection. 

3.7 Algorithm for Temporal and Spatial Token Selection 

Algorithm-II for Opt-STViT: 𝑷
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑉𝑖𝑑𝑒𝑜𝑉𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑽, 𝑰, 𝒛, 𝒙|𝜽) 

Input: 𝒒 ∈ ℝ𝐿×𝐶 , 𝑰 ∈ ℝ𝐻×𝑊×3, 𝒛𝒊,𝒋 ∈ ℝ𝐻𝟐×3; 𝑽, 𝑰, 𝒛, 𝒙 are RGB input video, 3D frames, (𝑖, 𝑗)𝑡ℎ patch and 

sequence of token IDs. 

Output: 𝑷 ∈ (𝟎, 𝟏), 𝑷 is Binray Cross Entry Loss Function based conditional probability such that video object 

exist or not. 

Hyperparameters: 𝑙𝑚𝑎𝑥 , 𝐿, 𝐻, 𝑑𝐸 , 𝑑𝑀𝐿𝑃 , 𝑑𝑓 ∈  ℕ 

Parameters: 𝜽 represents all the parameters as follows: 

| 𝑾𝑬 ∈ ℝ𝑑𝐸×𝑁𝑉 , token embedding matrix 

For 𝑙 ∈ [𝐿]: 

| 𝑾𝑶 ∈ ℝℎ𝑑𝑣×𝒅𝒎𝒐𝒅𝒆𝒍, multi-head attention 

| 𝑾𝒊
𝑸 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝑄, Query weight 

| 𝑾𝒊
𝑲 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝐾, Key weight 

| 𝑾𝒊
𝑽 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝑑𝑉, Value weight 

| 𝜸𝒏, 𝜷𝒎 ∈ ℝ𝑑𝐸, sets of norm-layer 

| 𝑾𝑴𝑳𝑷𝒌
𝒍 ∈ ℝ𝑑𝑀𝐿𝑃×𝒅𝑬, weight matrix for MLP layer 

| 𝒃𝑴𝑳𝑷 ∈ ℝ𝒅𝒌, bias matrix for MLP layer 

| 𝜸, 𝜷 ∈ ℝ𝒅𝑬, 𝑾𝒖 ∈ ℝ𝑁𝑉×𝒅𝑬 final norm-layer & unembedding weight 

25. ## Token Score-Ranking of input token 𝒒 ∈ ℝ𝐿×𝐶 

26. for input video 𝒒 ∈ ℝ𝐿×𝐶 do 

27. for 𝒇𝒍𝒐𝒄𝒂𝒍
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑣(𝒒|𝜽𝑙𝑜𝑐𝑎𝑙) do 

28. for 𝒇𝑮𝒍𝒐𝒃𝒂𝒍
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐴𝑣𝑔(𝒇𝒊

𝒍𝒐𝒄𝒂𝒍) do 

29. for 𝒇𝒊
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐶𝑜𝑛𝑐𝑎𝑡(𝒇𝑙𝑜𝑐𝑎𝑙 , 𝒇𝐺𝑜𝑙𝑏𝑎𝑙) do 

30. 𝒔 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑣(𝒇𝑖|𝜽) 

31. end 

32. end 

33. end 

34. end 

35. ## Top-Scored token selection 

36. for Top-Scored token 𝒔 do 
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37. for 𝒚 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑇𝑜𝑝𝑆𝑐𝑜𝑟𝑒(𝒔) do 

38. 𝒛 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑇𝑒𝑚𝑝𝑆𝑒𝑙𝑒𝑐𝑡(𝒚) 

39. end 

40. end 

41.  

42. ## Top-Scored token selection 

43. for Top-Scored token 𝒔 do 

44. for 𝒚 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑇𝑜𝑝𝑆𝑐𝑜𝑟𝑒(𝒔) do 

45. 𝒛 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
←      𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡(𝒚) 

46. end 

47. End 

4. Results and Discussion 

In this section, we assess the performance of Opt-STViT through a comprehensive series of experiments carried 

out on two substantial video recognition datasets. We employ two modern video transformer backbones for this 

evaluation. Our experimental setup is detailed in Section 4.1, followed by the presentation of key results in 

Section 4.2. Additionally, we conduct ablation studies in Section 4.3 to get the significance of various 

components used in our research. 

4.1 Experimental Setup 

Our primary base model for evaluation is the MViT-B16, which represents a state-of-the-art video transformer 

architecture. We assess the effectiveness of Opt-STViT using the Kinetics-400 dataset [36]. However, it's worth 

noting that our approach is designed to be versatile and applicable to various transformer architectures and 

datasets. To demonstrate this versatility, we also conduct experiments with the Video Swin Transformer on both 

the Kinetics-400 dataset and the Something-SomethingV2 (SSV2) dataset [71]. 

Different Opt-STViT variations are represented by the notation B-T_R^L-S_R^L where B denotes the backbone 

network and T and S denote the token selection operations carried out along the temporal and spatial dimensions, 

respectively. The positions of the token selection modules and the related ratios of the chosen tokens are 

indicated by the letters L and R. For instance, MViT-B16-T^0-S^4 specifies using MViT-B16 as the base model 

and doing temporal token selection before the 0th self-attention block with a selection ratio of 0.4 and spatial 

token selection before the 4th block with a ratio of 0.6. 

4.2 Implementation 

In our experiments, we fine-tuned pre-trained video transformer models with our Opt-STViT modules, 

initializing Opt-STViT module parameters randomly and setting σ in Equation 7 to 0.1. The learning rate for 

backbone layers was 0.01 times that of Opt-STViT modules. For MViT models on Kinetics-400, we used 16-

frame video clips with a temporal stride of 4, spatial size 224x224, AdamW optimizer for 20 epochs (with 3 

epochs of linear warmup), initial learning rates of 1e-4 for Opt-STViT and 1e-6 for the backbone, and a mini-

batch size of 16. A cosine learning rate schedule was applied. For Video Swin Transformer, we used 32-frame 

clips with a temporal stride of 2, the learning rate for selection networks was 3e-4, and the backbone model had 

a learning rate 0.01 times smaller, with a batch size of 64. Training protocols varied for Kinetics-400 and 

Something-Something-V2, with AdamW optimizer and warm-up epochs. During inference, we followed 

original backbone model testing strategies for equitable performance comparison. 
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Fig 2: Comparison between Arbitrary and MVit-B16 Token Selection 

4.3 The efficiency of Opt-STViT 

In our initial comparison, we evaluate Opt-STViT against common token selection baselines, including: 

Random (Rand.): This baseline randomly selects K tokens from the input, disregarding their visual content. It 

represents a simplistic, non-contextual token selection approach. 

Gumbel-Softmax (GS): GS employs a Gumbel-softmax trick for token selection. It's important to note that GS 

cannot be applied to spatial token selection due to the presence of spatial down sampling in recent video 

transformers. 

In Table 1, we provide a summary of results for temporal-only, spatial-only, and joint token selection. In cases 

where baseline settings are unfeasible, denoted as N/A, we present this information accordingly. Our 

observations indicate that Opt-STViT consistently achieves the highest accuracy when compared to all baseline 

methods, despite operating within a similar computational budget. Particularly noteworthy is Opt-STViT 

significant performance advantage over GS, even though both methods employ the same scorer network design. 

These results underscore the efficiency of our differentiable Top Token Selector operator for dynamic token 

selection, which contributes to Opt-STViT superior performance. 

Table I: Comparison of Opt-STVit with Random Tokens 

Configuration 
Random 

Token 

Gumbel 

Softmax 

Opt-ST 

ViT 

Temporal (Only) T 0.5ˆ0 74.1 74.1 75.7 

Spatial (Only) S 0.9ˆ4 74.9 N/A 76.3 

Temporal and Spatial T 0.8ˆ0-S 0.9ˆ4 75 N/A 77.1 

Temporal and Spatial T 0.9ˆ0-S 0.9ˆ4 76.2 N/A 78.8 

In our further comparison, we compared Opt-STViT with the Rand. baseline under various computational 

budgets, as depicted in Figure 4. The results consistently demonstrate the superior performance of Opt-STViT, 

especially in settings with significant reductions in computation. For example, in the case of MViT − B16 −
T0.8
0 − S0.9

4 , Opt-STViT outperforms Rand. by an impressive margin of 2.7% while using a similar computational 

budget of 12 GFLOPs. This confirms that our dynamic token selection modules effectively preserve informative 

tokens. Additionally, it's worth noting that the computational overhead introduced by our token selection 

module is negligible. In fact, the parameters and FLOPs of the scorer network in Opt-STViT constitute only 

1.0% and 0.7% of those in the original MViT-B16 backbone, underscoring the efficiency of our approach. 

4.4 Results Comparison 

In Table 2, we present a comparative analysis between Opt-STViT and state-of-the-art video recognition models 

using the Kinetics-400 dataset. This comparison encompasses a range of models, including both CNN-based 

and Transformer-based architectures. Our goal is to illustrate the efficacy and competitiveness of our approach 

alongside these top-performing models. In this paper, we provide the computational cost for inference, which 

is calculated as the cost for a single view multiplied by the number of views in both spatial and temporal 
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dimensions. This cost is expressed in Giga-FLOPs (GFLOPs). To facilitate a clear comparison, we categorize 

the models into two groups and specifically compare Opt-STViT with models having similar GFLOPs. It's worth 

noting that our default Opt-STViT settings are based on MViT-T0-S4, which presents a particularly challenging 

scenario for spatial as well as temporal selection 

Table II: Result Comparison of Kinetics-400 

Models Pre-Train GFLOPS Top-1 

X3D-L - 0.81 78.2 

TimeSformer IN-21K 0.62 78.6 

MViT-B16 - 0.38 79.3 

MViT-B16-T 0.8ˆ0-S 0.9ˆ4 - 0.29 80.5 

MViT-B16-T 0.8ˆ0-S 0.9ˆ4 - 0.35 79.4 

The table 3 presents a comparison of four video interference detection models: TSM, STM, TEA, and MVIT-

B16, evaluated on the IN-1K video interference detection dataset. MVIT-B16 emerges as the top performer in 

terms of Top-1 Val Accuracy (%), achieving an impressive 68.6%, followed by the TEA model at 66.1%, the 

STM model at 65.3%, and the TSM model at 64.2%. Regarding computational demands measured in GFLOPS 

(Giga-Floating Point Operations Per Second), MVIT-B16 ranks highest with 2.41 GFLOPS, followed by TEA 

at 2.24 GFLOPS, STM at 0.65 GFLOPS, and TSM at 0.41 GFLOPS. GFLOPS serves as an indicator of the 

computational resources needed to execute a model. These results highlight a trade-off between model accuracy 

and computational cost. MVIT-B16 excels in accuracy but demands the most computational resources. TEA 

and STM, while slightly less accurate, are more resource-efficient options. On the other hand, the TSM model 

offers the lowest accuracy among the four but is the most resource-efficient. 

Table III: Result Comparison of Something-Something-400 

Models Pre-Train GFLOPS Top-1 

TSM K400 0.41 64.2 

STM IN-1K 2.24 65.3 

TEA IN-1K 2.41 66.1 

MViT-B16 K400 0.65 68.6 

4.5 Result Discussion 

4.5.1 Different Token Selection 

The flexibility of our Opt-STViT module allows for various token selection configurations to achieve a 

comparable reduction in computational load. To illustrate, in the case of reducing the computational demands 

of MViT-B16 by approximately 50%, one can adopt one of the following strategies: 

(1)  implementing spatial-only or temporal-only token selection at earlier stages with a higher selection ratio 

(e.g., -S0.6 or -T0.6); 

(2)  applying spatial-only or temporal-only token selection at later stages with a lower selection ratio (e.g., -

S40.3 or -T40.3); 

(3)  conducting joint token selection (e.g., -T0.6-S40.9), 

In this section, we research into a comprehensive analysis of these choices, using MViT-B16 as an example and 

assessing their performance on the Kinetics-400 dataset. The inference cost is reported for a single view. It's 

evident from our observations that temporal selection significantly outperforms spatial selection, underscoring 

the greater importance of mitigating temporal redundancy in videos compared to spatial redundancy. 

Furthermore, the most favorable outcome is achieved with joint token selection, where temporal token selection 

occurs early in the model, and spatial token selection occurs in the deeper layers (i.e., -T0.6-S40.9). We also 

examine the scenario of conducting token selection in a multi-step manner, involving multiple token selections 
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at various layers of a transformer network, each with a higher selection ratio. 

We present visualizations of the outcomes of temporal-only, spatial-only, and joint token selection in Figure 5 

and 6, showcasing the frames and regions that are discarded by Opt-STViT. Our observations reveal that Opt-

STViT excels in not only accurately identifying the most informative frames within a video clip but also 

pinpointing the discriminative regions within each frame. By effectively pruning tokens in both the temporal 

and spatial dimensions, Opt-STViT retains only those tokens crucial for accurate action recognition. These 

selected tokens are subsequently fed into the subsequent video transformers, resulting in a reduced 

computational cost while maintaining minimal loss in classification accuracy. This demonstrates the efficiency 

and effectiveness of Opt-STViT in optimizing token selection for video analysis tasks. 

 

Fig 1: Girl exploring the Beauty of Nature 

 

Fig 2: Chameleon Changing 

5. Conclusion and Future Work 

In this research paper, we introduced Opt-STViT, a dynamic spatio-temporal token selection framework 

designed to alleviate both temporal and spatial redundancies within video transformers, enhancing the efficiency 

of video recognition. We framed token selection as a leading problem, using a lightweight selection network to 

predict token importance, and preserving only those tokens with top scores for further processing. In the 

temporal dimension, we selected a subset of frames most relevant to the action category, while in the spatial 

dimension, we retained the most discriminative regions within each frame to maintain structural information. 

To facilitate end-to-end training of the backbone model with the token selection module, we incorporated a 

perturbed-maximum-based differentiable Top Scoring operator. Our extensive experiments across various video 

recognition benchmarks confirmed that Opt-STViT achieves competitive efficiency-accuracy trade-offs, 

highlighting its practical utility in video analysis tasks. 

 

References: 

[1]  Dong, J., et al. Dual encoding for zero-example video retrieval. in Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition. 2019. 

[2]  Yuan, L., et al. Central similarity quantization for efficient image and video retrieval. in Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. 2020. 

[3]  Davidson, J., et al. The YouTube video recommendation system. in Proceedings of the fourth ACM conference on 

Recommender systems. 2010. 

[4]  Mei, T., et al., Contextual video recommendation by multimodal relevance and user feedback. ACM Transactions on 

Information Systems (TOIS), 2011. 29(2): p. 1-24. 

[5]  Lee, J. and S. Abu-El-Haija. Large-scale content-only video recommendation. in Proceedings of the IEEE International 

Conference on Computer Vision Workshops. 2017. 

[6]  T.Yuvanth Sai,Sk. Areef,V. Sri Harsha,Gubbala Satya Sai Deepak,Dr. K. Amarendra,Pachipala Yellamma,"A Study on 

Cloud and IoT based Accident Detection & Prevention Systems",2023. 

[7]  Vasamsetti Sri Harsha,Tirumalasetti Yuvanth Sai,Gubbala Satya Sai Deepak,Shaik Areef,Amarendra K.,Pachipala 

Yellamma,"Image Demorpher Using Machine Learning: Removing Fake Layers and Restoring Original Images",2024. 

[8]  Arjun Uddagiri,Pragada Eswar,Tummu Vineetha,"Enhancing Mobile security with Automated sim slot ejection system 

and authentication mechanism",2023 

[9]  Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint 



2116 | P a g 

e 

OPT-STVIT: Video Recognition through Optimized Spatial-Temporal Video Vision Transformers 

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

arXiv:1810.04805, 2018. 

[10] Vaswani, A., et al., Attention is all you need. Advances in neural information processing systems, 2017. 30. 

[11] Bertasius, G., H. Wang, and L. Torresani. Is space-time attention all you need for video understanding? in ICML. 2021. 

[12]  Fan, H., et al. Multiscale vision transformers. in Proceedings of the IEEE/CVF International Conference on Computer 

Vision. 2021. 

[13]  Liu, Z., et al. Video swin transformer. in Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. 2022. 

[14]  Wang, R., et al. Bevt: Bert pretraining of video transformers. in Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. 2022. 

[15]  T.Pranoom, Y. Vamsi , K Rohit . ," Crop Classification analysis using machine learning",2024. 

[16]  Korbar, B., D. Tran, and L. Torresani. Scsampler: Sampling salient clips from video for efficient action recognition. in 

Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. 

[17]  Wang, Y., et al. Adaptive focus for efficient video recognition. in Proceedings of the IEEE/CVF International Conference 

on Computer Vision. 2021. 

[18]  Wang, Y., et al. Adafocus v2: End-to-end training of spatial dynamic networks for video recognition. in 2022 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR). 2022. IEEE. 

[19]  Sun, Z., et al., Human action recognition from various data modalities: A review. IEEE transactions on pattern analysis 

and machine intelligence, 2022. 

[20]  Feichtenhofer, C., et al. Slowfast networks for video recognition. in Proceedings of the IEEE/CVF international 

conference on computer vision. 2019. 

[21]  Feichtenhofer, C. X3d: Expanding architectures for efficient video recognition. in Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. 2020. 

[22] Tran, D., et al. A closer look at spatiotemporal convolutions for action recognition. in Proceedings of the IEEE conference 

on Computer Vision and Pattern Recognition. 2018. 

[23]  Wu, Z., et al. Adaframe: Adaptive frame selection for fast video recognition. in Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition. 2019. 

[24]  Zolfaghari, M., K. Singh, and T. Brox. Eco: Efficient convolutional network for online video understanding. in 

Proceedings of the European conference on computer vision (ECCV). 2018. 

[25]  Naseer, M.M., et al., Intriguing properties of vision transformers. Advances in Neural Information Processing Systems, 

2021. 34: p. 23296-23308. 

[26]  Pan, B., et al., IA-RED $^ 2$: Interpretability-Aware Redundancy Reduction for Vision Transformers. Advances in 

Neural Information Processing Systems, 2021. 34: p. 24898-24911. 

[27]  Rao, Y., et al., Dynamicvit: Efficient vision transformers with dynamic token sparsification. Advances in neural 

information processing systems, 2021. 34: p. 13937-13949. 

[28]  Carreira, J. and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. in proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition. 2017. 

[29]  He, K., et al., Deep residual learning for image recognition. CVPR. 2016. arXiv preprint arXiv:1512.03385, 2016. 

[30]  Sermanet, W.L.Y.J.P., S.R.D.A.D. Erhan, and V.V. Szegedy. Christian and Andrew Rabinovich. Going deeper with 

convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 

[31]  Wu, C.-Y., et al. Long-term feature banks for detailed video understanding. in Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition. 2019. 

[32]  Wang, X., et al. Non-local neural networks. in Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2018. 

[33]  Girdhar, R., et al. Video action transformer network. in Proceedings of the IEEE/CVF conference on computer vision 

and pattern recognition. 2019. 

[34]  Arnab, A., C. Sun, and C. Schmid. Unified graph structured models for video understanding. in Proceedings of the 

IEEE/CVF International Conference on Computer Vision. 2021. 

[35]  Berthet, Q., et al., Learning with differentiable pertubed optimizers. Advances in neural information processing systems, 

2020. 33: p. 9508-9519. 

[36]  Kay, W., et al., The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017. 

[37]  Zhang, D., et al. Feature pyramid transformer. in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, 

UK, August 23–28, 2020, Proceedings, Part XXVIII 16. 2020. Springer. 

[38]  Touvron, H., et al. Training data-efficient image transformers & distillation through attention. in International conference 



2117 | P a g 

e 

OPT-STVIT: Video Recognition through Optimized Spatial-Temporal Video Vision Transformers 

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

on machine learning. 2021. PMLR. 

[39]  Heo, B., et al. Rethinking spatial dimensions of vision transformers. in Proceedings of the IEEE/CVF International 

Conference on Computer Vision. 2021. 

[40]  Zhu, X., et al., Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint 

arXiv:2010.04159, 2020. 

[41]  Zheng, S., et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. in 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021. 

[42]  Arnab, A., et al. Vivit: A video vision transformer. in Proceedings of the IEEE/CVF international conference on computer 

vision. 2021. 

[43]  Gabeur, V., et al. Multi-modal transformer for video retrieval. in Computer Vision–ECCV 2020: 16th European 

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16. 2020. Springer. 

[44]  Ryoo, M., et al., Tokenlearner: Adaptive space-time tokenization for videos. Advances in Neural Information Processing 

Systems, 2021. 34: p. 12786-12797. 

[45]  Wang, Y., et al. End-to-end video instance segmentation with transformers. in Proceedings of the IEEE/CVF conference 

on computer vision and pattern recognition. 2021. 

[46]  Liu, Z., et al. Swin transformer: Hierarchical vision transformer using shifted windows. in Proceedings of the IEEE/CVF 

international conference on computer vision. 2021. 

[47]  Chen, S., et al., Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural 

Information Processing Systems, 2022. 35: p. 16664-16678. 

[48]  Huang, Z., et al., Towards training stronger video vision transformers for epic-kitchens-100 action recognition. arXiv 

preprint arXiv:2106.05058, 2021. 

[49]  Wang, Y., et al., Implicit semantic data augmentation for deep networks. Advances in Neural Information Processing 

Systems, 2019. 32. 

[50]  Hara, K., H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? in 

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018. 

[51]  Wu, Z., et al., A dynamic frame selection framework for fast video recognition. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 2020. 44(4): p. 1699-1711. 

[52]  Donahue, J., et al. Long-term recurrent convolutional networks for visual recognition and description. in Proceedings of 

the IEEE conference on computer vision and pattern recognition. 2015. 

[53] Lin, J., C. Gan, and S. Han. Tsm: Temporal shift module for efficient video understanding. in Proceedings of the 

IEEE/CVF international conference on computer vision. 2019. 

[54]  Xie, S., et al. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. in 

Proceedings of the European conference on computer vision (ECCV). 2018. 

[55]  Pan, B., et al., VA-RED $^ 2$: Video Adaptive Redundancy Reduction. arXiv preprint arXiv:2102.07887, 2021. 

[56]  Tran, D., et al. Video classification with channel-separated convolutional networks. in Proceedings of the IEEE/CVF 

International Conference on Computer Vision. 2019. 

[57]  Wu, Z., et al., Liteeval: A coarse-to-fine framework for resource efficient video recognition. Advances in neural 

information processing systems, 2019. 32. 

[58]  Yeung, S., et al. End-to-end learning of action detection from frame glimpses in videos. in Proceedings of the IEEE 

conference on computer vision and pattern recognition. 2016. 

[59]  Meng, Y., et al., Adafuse: Adaptive temporal fusion network for efficient action recognition. arXiv preprint arXiv:2102. 

05775, 2021. 

[60]  Zhu, S., et al., A3d: Adaptive 3d networks for video action recognition. arXiv preprint arXiv:2011.12384, 2020. 

[61]  Li, H., et al. 2d or not 2d? adaptive 3d convolution selection for efficient video recognition. in Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition. 2021. 

[62]  Feichtenhofer, C., A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. in 

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 

[63]  Xu, L., H. Huang, and J. Liu. Sutd-trafficqa: A question answering benchmark and an efficient network for video 

reasoning over traffic events. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

2021. 

[64]  Wang, H., et al. Video modeling with correlation networks. in Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. 2020. 

[65]  Bhardwaj, S., M. Srinivasan, and M.M. Khapra. Efficient video classification using fewer frames. in Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. 



2118 | P a g 

e 

OPT-STVIT: Video Recognition through Optimized Spatial-Temporal Video Vision Transformers 

SEEJPH Volume XXV S1, 2024, ISSN: 2197-5248; Posted: 05-11-2024 

  

 

[66]  Zheng, Y.-D., et al., Dynamic sampling networks for efficient action recognition in videos. IEEE transactions on image 

processing, 2020. 29: p. 7970-7983. 

[67]  Wu, C.-Y., et al. Compressed video action recognition. in Proceedings of the IEEE conference on computer vision and 

pattern recognition. 2018. 

[68]  Kondratyuk, D., et al. Movinets: Mobile video networks for efficient video recognition. in Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 2021. 

[69]  Wang, S., et al., Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020. 8. 

[70]  Kitaev, N., Ł. Kaiser, and A. Levskaya, Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451, 2020. 

[71]  Goyal, R., et al. The" something something" video database for learning and evaluating visual common sense. in 

Proceedings of the IEEE international conference on computer vision. 2017. 

[72]  Arjun Uddagiri,Pragada Eswar,Tummu Vineetha,"Enhancing Mobile security with Automated sim slot ejection system 

and authentication mechanism",2023 

[73]  Divya Nimma, Rajendar Nimma, Arjun Uddagiri,” Advanced Image Forensics: Detecting and reconstructing 

Manipulated Images with Deep Learning.”,2024 

[74]  Nimma, D., Zhou, Z. Correction to: IntelPVT: intelligent patch-based pyramid vision transformers for object detection 

and classification. Int. J. Mach. Learn. & Cyber.(2023). 

[75]  Nimma, Divya & Zhou, Zhaoxian. (2023). IntelPVT: intelligent patch-based pyramid vision transformers for object 

detection and classification. International Journal of Machine Learning and Cybernetics. 1-12. 10.1007/s13042-023-

01996-2.  

[76]  Nimma, D., Zhou, Z. Correction to IntelPVT: intelligent patch-based pyramid vision transformers for object detection 

and classification. Int. J. Mach. Learn. & Cyber. 15, 3057 (2024). https://doi.org/10.1007/s13042-023-02052-9 

[77]  Divya Nimma, “Advanced Image Forensics: Detecting and reconstructing Manipulated Images with Deep Learning. ”, 

Int J Intell Syst Appl Eng, vol. 12, no. 4, pp. 283 –, Jun. 2024. 

[78]  Mithun DSouza, Divya Nimma, Kiran Sree Pokkuluri, Janjhyam Venkata Naga Ramesh, Suresh Babu Kondaveeti and 

Lavanya Kongala, “Multiclass Osteoporosis Detection: Enhancing Accuracy with Woodpecker-Optimized CNN-

XGBoost” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. 

http://dx.doi.org/10.14569/IJACSA.2024.0150889 

[79]  Wael Ahmad AlZoubi, Girish Bhagwant Desale, Sweety Bakyarani E, Uma Kumari C R, Divya Nimma, K Swetha and 

B Kiran Bala, “Attention-Based Deep Learning Approach for Pedestrian Detection in Self-Driving Cars” International 

Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA. 

2024.0150891 

[80]  Divya Nimma, “Deep Learning Techniques for Image Recognition and Classification”, IJRITCC, vol. 12, no. 2, pp. 467–

474, Apr. 2024. 

[81]  Divya Nimma, “Image Processing in Augmented Reality (AR) and Virtual Reality (VR)”, IJRITCC, vol. 12, no. 2, pp. 

475–482, Apr. 2024. 

[82]  Divya Nimma and Arjun Uddagiri, “Advancements in Deep Learning Architectures for Image Recognition and Semantic 

Segmentation” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. 

http://dx.doi.org/10.14569/IJACSA.2024.01508114 


