

# A COMPARITIVE STUDY OF FUNCTIONAL OUTCOME OF DISPLACED ULNAR STYLOID FRACTURES TREATED CONSERVATIVELY VS OPERATIVELY ASSOCIATED WITH DISTAL END RADIUS FRACTURES TRETAED SURGICALLY

Dr Prateek Agrawal<sup>1</sup>, Dr Paresh V Patil<sup>2</sup>, Dr Ismail Pandor<sup>3</sup>, Dr Swapnil Chitnavis<sup>4</sup>

#### **KEYWORDS**

#### **ABSTRACT**

ULNAR STYLOID, fracture, TFCC, Surgical.

**Introduction**: Ulnar styloid fractures, a common injury associated with distal radius fractures, are often a subject of debate regarding their optimal management. The ulnar styloid process, situated at the distal end of the ulna, plays a significant role in the stability and function of the wrist joint, particularly influencing the function of the triangular fibrocartilage complex (TFCC). Surgical repair and conservative treatment are two major management strategies widely adopted in ulnar styloid fracture patients, but the consensus of the optimal treatment strategy is still debated. Aim and objective: The aim of this study is to assess potential differences in clinical and radiological outcomes between surgical and conservative management of ulnar styloid fractures that occur alongside distal radius fractures treated with volar plating. This evaluation will focus on the duration of fracture union and the PRWE (Patient-Rated Wrist Evaluation) score. Materials and Methods: Group A underwent conservative management and Group B underwent surgical management for ulnar styloid fracture while distal end radius fracture was operated with volar plating for both the groups. Each group has 20 patients of distal end radius fracture with ulnar styloid fracture. Patient follow up was carried at 1.5 months, 3 months and 6 months and were clinically and radiologically assessed and outcomes were graded according to PRWE Score. Results: A significant difference was observed in non-union between 2 groups with non union occurring in 45% of conservative cases, compared to 15% in the operative group .Functional outcome assessed using mean changes in the PRWE score which was  $27.96 \pm 10.90$  for rotella type 1,  $22.21 \pm 7.10$  for type 2,  $30.77 \pm 8.19$  for type 3 in Group A while  $20.28 \pm$ 12.13in rotella type 1,  $14.73 \pm 7.64$  in type 2,  $22.36 \pm 8.40$  in rotella type 3 in Group B at 6 months follow up. Conclusion: Patients who underwent operative treatment for ulnar styloid fractures showed a statistically significant improvement in functional outcomes using PRWE Score compared to those who were treated conservatively. The incidence of complications like non-union was higher in the conservative treatment group. Radiological union of the ulnar styloid fracture was achieved more consistently and predictably in the operative group.

<sup>&</sup>lt;sup>1</sup>Department of Orthopaedics, University- Krishna Vishwa Vidyapeeth

<sup>&</sup>lt;sup>2</sup>Email id - drpareshpatil@gmail.com, Department of Orthopaedics, University- Krishna Vishwa Vidyapeeth

<sup>&</sup>lt;sup>3</sup>Department of Orthopaedics, University- Krishna Vishwa Vidyapeeth

<sup>&</sup>lt;sup>4</sup>Department of Orthopaedics, Seth GS Medical College and KEM Hospital, Mumbai



# **Introduction:**

Ulnar styloid fractures, a common injury associated with distal radius fractures, are often a subject of debate regarding their optimal management. The ulnar styloid process, situated at the distal end of the ulna, plays a significant role in the stability and function of the wrist joint, particularly influencing the function of the triangular fibrocartilage complex (TFCC). Displaced fractures of the ulnar styloid are particularly concerning due to their potential effect on wrist biomechanics and the risk of associated TFCC injuries. Ulnar styloid fractures are commonly associated with distal radius fractures, representing a significant portion of wrist injuries worldwide. These fractures occur in approximately 50% of distal radius fractures, making them a frequent concern in orthopaedic practice. According to some previous studies, ulnar styloid fractures in adults have been identified as a significant predictive factor for poorer functional outcomes in cases of distal radius fractures. Studies suggest that the presence of an ulnar styloid fracture can lead to complications such as increased pain, reduced range of motion, decreased grip strength, and overall impairment in wrist function. These adverse effects highlight the importance of addressing ulnar styloid fractures to ensure optimal recovery and patient satisfaction. In orthopaedic practice, ulnar styloid fractures are often treated conservatively with immobilization using casts or splints, particularly when these fractures occur with distal radius fractures. This method is favored because it allows for natural healing and maintains wrist function without the risks of surgery. The conservative approach is generally effective for many ulnar styloid fractures, especially those without major displacement. However, a recent study by Robles C. et al. has challenged this perspective. The research indicates that surgical treatment for ulnar styloid fractures results in a 2.76 times higher rate of bone union compared to conservative management. Despite this significant improvement in bone union rates with surgery, there were no notable differences in patientreported outcomes, such as DASH scores and pain levels, between the surgical and conservative treatment groups.

# AIM:

The aim of this study is to assess potential differences in clinical and radiological outcomes between surgical and conservative management of ulnar styloid fractures that occur alongside distal radius fractures treated with volar plating.

# **OBJECTIVES:**

- 1. To evaluate duration of fracture union in both groups.
- 2. To evaluate functional outcome of wrist in both the groups using PRWE Score

# MATERIAL AND METHOD

Source of data: This was a hospital based cross sectional study and carried out at the Department of Orthopaedics and casualty at a Krishna Institute of Medical Sciences and Hospital, Karad. This study was carried out over a period from May 2022 to May 2024.

Place of study: Krishna Hospital and Research Centre, Krishna Institute of Medical Sciences, Karad.

Sample size: 40 cases (20 cases in each group).

Design of study: Prospective comparative study

Sample technique: The patients to be divided in 2 groups for Conservative treatment or surgical treatment of Ulna Styloid Fracture was by randomized technique.

All participants were given both oral and written explanations regarding the purpose and procedures of the study and provided their written informed consent.

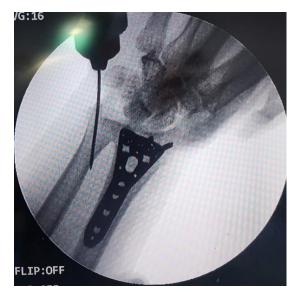


#### **INCLUSION CRITERIA:**

- 1. Patients with distal radius fractures associated with ulnar styloid fractures, classified according to the Frykman Classification as types 2, 4, 6, or 8 (for distal radius fractures with ulnar styloid fractures) and Rottela Classification as types 1, 2, or 3 (for ulnar styloid fractures).
- 2. Age group: 18 and above and who underwent ORIF for distal end radius fractures with volar plates
- 3. Patients of both sexes
- 4. Patient medically fit for surgery
- 5. Patient willing to participate in study.

#### **EXCLUSION CRITERIA:**

- 1. Age group: Below 18
- 2. Pathological Fracture
- 3. Compound Fracture
- 4. Patient requiring revision surgery for distal end radius fracture
- 5. Patient with distal neurovascular deficit


This prospective comparative study, conducted over two years from May 2022 to May 2024, investigated ulnar styloid fractures associated with distal radius fractures. Participants were selected based on predefined inclusion and exclusion criteria. The study involved 40 patients, all of whom had ulnar styloid fractures treated either conservatively (Group I) or surgically (Group II) using Kirschner wires (K-wires) and tension band wiring (TBW). Distal radius fractures were classified using the Frykman classification, while ulnar styloid fractures were categorized according to Rotella's classification, which includes tip, proximal, and base fractures.

#### PROCEDURE:

In conservative group, distal end radius fractures were operated with volar plating using modified henry approach while ulnar styloid fracture was conserved while in Operative group distal end radius fracture were operated with volar plating with modified henry's approach while ulnar styloid fracture were operated with K wiring and tension band wiring.

• The percutaneous K-wire fixation of ulnar styloid was performed with the patient in a supine position, preferably under regional anesthesia (e.g., a brachial plexus block) or general anesthesia, depending on the patient's condition and the surgeon's preference. The fluoroscopy unit (C-arm) was positioned accordingly. Sterile scrubbing, painting, and draping were conducted. Maintaining the reduction, a single 1.5 mm smooth K-wire was inserted into the detached styloid fragment percutaneously and used as a joystick to achieve reduction under direct vision. The wire was inserted using a T-handle. Once reduction was satisfactory, the K-wire was advanced until it just engaged the radial cortex of the distal ulnar metaphysis. The K-wire was left protruding through the skin, bent, and cut. The skin was then protected with sterile padding prior to the application of a splint.







C ARM IMAGE OF ULNAR STYLOID K WIRING

INTRA OP IMAGE OF ULNAR STYLOID K WIRING

• Tension band wiring of ulnar styloid was performed with open reduction and internal fixation. Patients were anesthetized using general anesthesia and then positioned supine. The limb was exsanguinated, and a tourniquet was



C ARM IMAGE OF ULNAR STYLOID TENSION BAND WIRING



INTRA OP IMAGE OF ULNAR STYLOID TENSION BAND WIRING

applied. A longitudinal incision was made over the ulnar styloid, extending distally from the ulnar head. Careful dissection through the subcutaneous tissue was performed, ensuring the



protection of the dorsal sensory branch of the ulnar nerve. The fracture site was identified and exposed. Anatomical reduction of the ulnar styloid fragment was achieved, and confirmed with fluoroscopy. Two parallel Kirschner wires (K-wires) were drilled across the fracture site, anchoring into the distal fragment. An 18-gauge stainless steel wire was inserted through a predrilled hole in the ulnar styloid fragment and looped around the K-wires. The wire was tightened in a figure-of-eight configuration, converting tensile forces into compressive forces at the fracture site. Stability of the fixation was ensured by manipulating the wrist, confirming no displacement occurred at the fracture site with fluoroscopy. The ends of the K-wires were cut, bent, and buried beneath the skin to prevent irritation. The wound was cleansed with a saline solution, the subcutaneous layer was sutured with absorbable stitches, and the skin was sealed with either non-absorbable sutures or staples.

#### FOLLOW UP PROTOCOL:

In cases where ulnar styloid fractures were treated operatively with K-wire fixation, the K-wire was typically removed at four weeks post-operatively. Subsequently, the plaster slab was removed, and a crepe bandage was applied, allowing for the initiation of active wrist movements. Follow-up was done at 1.5 months, 3month and 6 months post- operatively. At each follow-up clinical examination of operated limb was done and radiographs were taken. PRWE score was calculated at each follow up. Complications were noted if any.

#### **OUTCOME MEASURES:**

The functional outcomes of both operative and conservative treatments were assessed using validated scoring systems such as, the Patient-Rated Wrist Evaluation (PRWE) as represented as follows:

Patient Rated Wrist Evaluation score (PRWE)

There are 3 steps to score PRWE

Step 1: Measure the pain score of all 5 items (Pain over wrist on ulnar styloid/ulnar aspect wrist

# 1. PAIN

Rate the **average** amount of pain in your wrist over the past week by circling the number that best describes your pain on a scale from 0-10. A zero (0) means that you **did not** have any pain and a **ten (10)** means that you had the **worst pain you have ever experienced** or that **you could not do the activity because of pain.** 

| RATE YOUR PAIN: Sample Scale ☞                   | 0<br>No Pain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   | 10<br>Vorst Ever |
|--------------------------------------------------|--------------|---|---|---|---|---|---|---|---|---|------------------|
| At rest                                          | 0            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10               |
| When doing a task with a repeated wrist movement | 0            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10               |
| When lifting a heavy object                      | 0            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10               |
| When it is at its worst                          | 0            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10               |
| How often do you have pain?                      | 0<br>Never   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   | 10<br>Always     |

Step 2: Measure the function score of all the 10 items and divide it by 2



#### 2. FUNCTION

# A. SPECIFIC ACTIVITIES

Rate the **amount of difficulty** you experienced performing each of the items listed below - over the past week, by circling the number that describes your difficulty on a scale of 0-10. A **zero** (0) means you did not experience any difficulty and a **ten** (10) means it was so difficult you were unable to do it at all.

| Sample scale →                               | 0<br>No Difficulty |   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10<br>Unable<br>To Do |
|----------------------------------------------|--------------------|---|---|---|---|---|---|---|---|---|-----------------------|
| Turn a door knob using my affected hand      | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |
| Cut meat using a knife in my affected hand   | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |
| Fasten buttons on my shirt                   | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |
| Use my affected hand to push up from a chair | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |
| Carry a 10lb object in my affected hand      | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |
| Use bathroom tissue with my affected hand    | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                    |

#### **B. USUAL ACTIVITIES**

Rate the **amount of difficulty** you experienced performing your **usual** activities in each of the areas listed below, over the past week, by circling the number that best describes your difficulty on a scale of 0-10. By "usual activities", we mean the activities you performed **before** you started having a problem with your wrist. A **zero** (0) means that you did not experience any difficulty and a **ten** (10) means it was so difficult you were unable to do any of your usual activities.

| Personal care activities (dressing, washing) |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------------------------------------------|--|---|---|---|---|---|---|---|---|---|---|----|
| Household work (cleaning, maintenance)       |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Work (your job or usual everyday work)       |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Recreational activities                      |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Step 3: Add pain and function score.

Total Score = Sum of pain+ function scores (Best Score = 0, Worst Score = 100) Less score = better outcome

# **CASE ILLUSTRATION**

# **GROUP A**







POST OP

# **GROUP B**



PRE OP

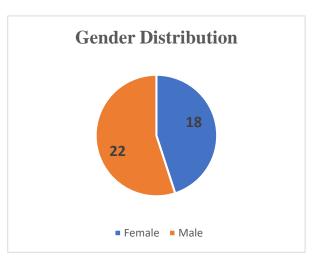


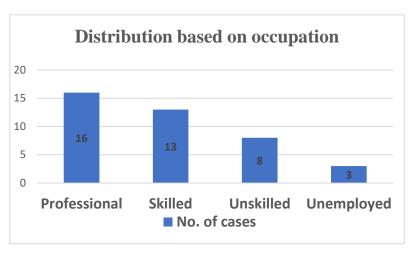
**POST OP** 



POD 1.5 MONTHS AFTER K WIRE REMOVAL




**POD 6 MONTHS** 

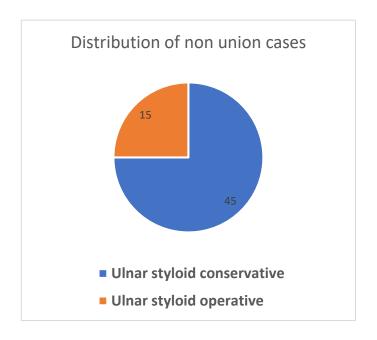

# **RESULTS**

The demographic characteristics of the study group revealed a mean age of 47.48 years with a standard deviation of 10.19 years. The gender distribution showed 55.00% male and 45.00% female participants. In terms of occupation, professionals constituted 40.00%, skilled workers 32.5%, unskilled workers 20.00%, and unemployed individuals 7.5%.

| Age (Mean ± SD) | $47.48 \pm 10.19$ |            |  |  |  |  |  |
|-----------------|-------------------|------------|--|--|--|--|--|
|                 | No of cases       | Percentage |  |  |  |  |  |
| Gender          |                   |            |  |  |  |  |  |
| Female          | 18                | 45.00%     |  |  |  |  |  |
| Male            | 22                | 55.00%     |  |  |  |  |  |
| Occupation      |                   |            |  |  |  |  |  |
| Professional    | 16                | 40.00%     |  |  |  |  |  |
| Skilled         | 13                | 32.5%      |  |  |  |  |  |
| Unskilled       | 8                 | 20.00%     |  |  |  |  |  |
| Unemployed      | 3                 | 7.5%       |  |  |  |  |  |



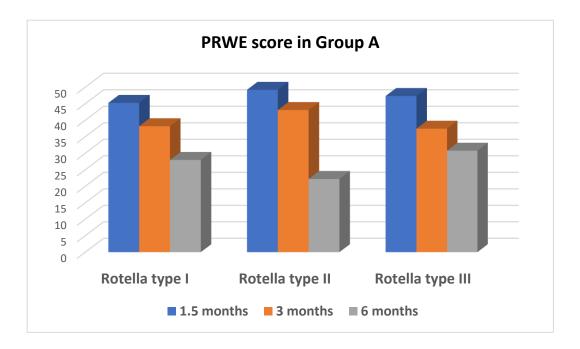





The distribution of cases in the study cohort was evenly divided, with 50.00% of the cases involving ulnar styloid fractures treated conservatively and 50.00% treated surgically. Specifically, the study included 20 cases of ulnar styloid fractures managed conservatively and 20 cases treated surgically, out of a total of 40 cases.

Among the cases reviewed, 95% of ulnar styloid fractue were treated with K-wire fixation in operative group making it the most commonly used approach. Additionally, 5% of cases were managed with tension band wiring (TBW).

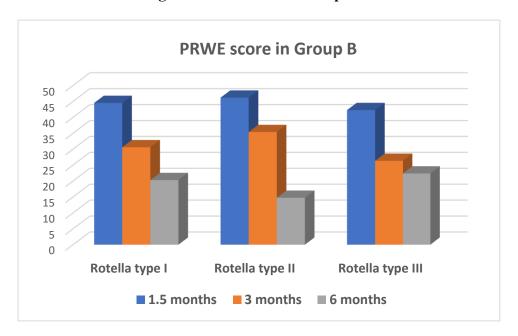
Among those treated conservatively, 45% experienced non-union, whereas in the operative group, the rate was 15%. Statistical analysis using chi-square testing yielded a p-value of 0.08, indicating a trend towards significance but not reaching conventional levels.


| complications | Ulnar<br>conservat | styloid<br>tive | Ulnar styl  | oid operative | Chi-   | P-    |
|---------------|--------------------|-----------------|-------------|---------------|--------|-------|
| complications | No of cases        | Percentage      | No of cases | Percentage    | square | value |
| Non-union     | 9                  | 45.00%          | 3           | 15.00%        | 3.00   | 0.08  |



While calculating PRWE score for both the groups, In group A For Rotella type I fractures, mean values were  $45.24 \pm 8.12$  at 1.5 MONTHS,  $38.17 \pm 7.45$  at 3 months, and  $27.96 \pm 10.90$  at 6 months. ANOVA testing revealed highly significant differences across these time points (p < 0.0001), indicating variability in outcomes throughout the recovery process. Similarly, for Rotella type II fractures, mean values were  $49.20 \pm 8.08$  at 1.5 MONTHS,  $43.07 \pm 9.11$  at 3 months, and  $22.21 \pm 7.10$  at 6 months, with significant differences observed (p < 0.0001). For Rotella type III fractures, mean values were  $47.32 \pm 11.28$  at 1.5 MONTHS,  $37.43 \pm 10.44$  at 3 months, and  $30.77 \pm 8.19$  at 6 months, with significant differences observed (p < 0.0001).

| Follow up        | 1.5<br>MONTHS    | 3 Months         | 6 Months          | ANOVA | P-value |
|------------------|------------------|------------------|-------------------|-------|---------|
| Rotella type I   | $45.24 \pm 8.12$ | $38.17 \pm 7.45$ | $27.96 \pm 10.90$ | 18.85 | <0.0001 |
| Rotella type II  | $49.20 \pm 8.08$ | $43.07 \pm 9.11$ | $22.21 \pm 7.10$  | 60.46 | <0.0001 |
| Rotella type III | 47.32 ± 11.28    | 37.43 ± 10.44    | 30.77 ± 8.19      | 13.72 | <0.0001 |


# Distribution according to PRWE Score in Group A on consecutive follow up



In Group B, For Rotella type I fractures, the mean values were  $44.51 \pm 9.48$  at 1.5 MONTHS,  $30.60 \pm 8.16$  at 3 months, and  $20.28 \pm 12.13$  at 6 months. Statistical analysis using t-tests demonstrated highly significant differences across these time points (p < 0.0001), indicating varying outcomes over the recovery period. Similarly, for Rotella type II fractures, the mean values were  $46.17 \pm 8.09$  at 1.5 MONTHS,  $35.37 \pm 9.17$  at 3 months, and  $14.73 \pm 7.64$  at 6 months, with significant differences observed (p < 0.0001). For Rotella type III fractures, the mean values were  $42.26 \pm 7.14$  at 1.5 MONTHS,  $26.33 \pm 11.15$  at 3 months, and  $22.36 \pm 8.40$  at 6 months, with significant differences observed (p < 0.0001).

| Follow up        | 1.5<br>MONTHS    | 3 Months          | 6 Months         | t-test | P-value  |
|------------------|------------------|-------------------|------------------|--------|----------|
| Rotella type I   | $44.51 \pm 9.48$ | $30.60 \pm 8.16$  | 20.28 ±12.13     | 29.22  | < 0.0001 |
| Rotella type II  | $46.17 \pm 8.09$ | $35.37 \pm 9.17$  | $14.73 \pm 7.64$ | 73.64  | < 0.0001 |
| Rotella type III | $42.26 \pm 7.14$ | $26.33 \pm 11.15$ | $22.36 \pm 8.40$ | 27.06  | < 0.0001 |

# Distribution according to PRWE Score in Group B on consecutive follow up



While comparing according to PRWE Score between ulnar styloid conservative and ulnar styloid operative at 3 months follow up, For Rotella type I fractures, patients managed conservatively had an average PRWE score of  $38.17 \pm 7.45$ , whereas those treated operatively scored  $30.60 \pm 8.16$ , demonstrating a statistically significant difference (t = -3.06, p = 0.004). Similarly, for Rotella type II fractures, conservative management resulted in a mean PRWE score of  $43.07 \pm 9.11$  compared to  $35.37 \pm 9.17$  with operative treatment (t = -2.67, p = 0.011). The most substantial disparity was seen in Rotella type III fractures, where conservative management yielded a mean PRWE score of  $37.43 \pm 10.44$  versus  $26.33 \pm 11.15$  for operative treatment (t = -3.25, p = 0.002).

While comparing according to PRWE Score between ulnar styloid conservative and ulnar styloid operative at 6 months follow up, For Rotella type I fractures, patients treated conservatively had a mean PRWE score of  $27.96 \pm 10.90$ , which was significantly higher than the score of  $20.28 \pm 12.13$  for those who underwent operative treatment (t = -2.11, p = 0.042). Similarly, for Rotella type II fractures, conservative management resulted in a mean PRWE score of  $22.21 \pm 7.10$ , compared to  $14.73 \pm 7.64$  for operative treatment (t = -2.31, p = 0.003). For Rotella type III fractures, conservative treatment yielded a mean PRWE score of  $30.77 \pm 8.19$ , whereas operative treatment resulted in a lower score of  $22.36 \pm 8.40$  (t = -3.21, p = 0.002).

#### **DISCUSSION**

Ulnar styloid fractures often occur alongside distal radius fractures, and the approach to managing these fractures can greatly influence patient outcomes. The primary treatment approaches for displaced ulnar styloid fractures include conservative management (immobilization) and surgical intervention (fixation). Our study compares the functional outcomes of these two approaches in patients who have undergone surgical treatment for distal radius fractures. This study aims to provide evidence on the functional outcomes of conservative versus operative treatment, including percutaneous K-wire, tension band wire of ulnar styloid fractures in this context, contributing to more informed clinical decision-making.



- In this study, a total of 40 participants were enrolled with ulnar styloid fractures. Among them, the majority were male participants, accounting for 55% of the cohort, while the remaining 45% were female participants. The mean age of the participants was 47.48 ± 10.19 years. This distribution was consistent with the findings of **Sebaey AA et al.** (2019), who studied ten cases of ulnar styloid fractures and observed a similar gender distribution, with males accounting for 60% and females for 40% of the cases. Similarly, a study conducted by **Robles C**, et al., in 2019 presented findings that were comparable to those of the present study. In **Robles'** study, the mean ages were reported as 49.38 years for Group I and 50.71 years for Group II, while our study reported a mean age of 47.48 years for Group I. Both studies found no significant differences in age between the treatment groups. However, **Robles' study** highlighted a significant difference in gender distribution between the groups (p = 0.0435), with a higher proportion of women in Group II. In contrast, the present study observed a slight male predominance, with 55.00% of the participants being male. This variation in gender distribution highlights an interesting aspect that requires further investigation.
- In this current investigation, out of the 40 cases examined, 20 cases were managed through conservative treatment methods, while the remaining 20 cases were managed using operative procedures. The findings of the present study closely comparable with study done by **Iglesias CR**, et al., (2019). On the other hand, **Robles C**, et al., (2019) observed a statistically significant disparity in the distribution of surgical cases between their study groups (p = 0.0501). Specifically, Group II exhibited a higher incidence of surgical interventions (42%) compared to Group I (28%).
- Our study revealed that, the complication of non-union was predominantly observed in the conservatively treated group compared to the operatively treated group. Specifically, among patients treated conservatively for ulnar styloid fractures, 9 cases (45%) exhibited non-union. On the other hand, in the operatively treated group, only 3 cases (15%) presented with non-union. In 2019, **Robles C, et al.**, reported a higher success rate in achieving bone union with surgical intervention (Group II: 68%) compared to conservative management (Group I: 48%). Similarly, the present study demonstrated a trend towards statistical significance towards operative management for achieving bone union (p = 0.08). Furthermore, **Sebaey AA, et al.**, (2019) findings highlighted that in the operatively treated group, one case (10%) was complicated by non-union, another case (10%) developed an infection, two cases (20%) experienced injury to the dorsal cutaneous branch of the ulnar nerve, and one case (10%) resulted in dislocation of the distal radioulnar joint (DRUJ). These observations underscore the higher incidence of complications associated with conservative treatment, particularly non-union, compared to surgical intervention.
- Robles et al. in his study, evaluated functional outcomes using Disabilities of the Arm, Shoulder, and Hand (DASH) scores. The results revealed a lower mean score in Group II (3.67) compared to Group I (4.10) without statistical significant (p = 0.276). While the functional outcomes evaluated in our study using the Patient-Rated Wrist Evaluation (PRWE) scores. At the 3-month follow-up, patients with Rotella type I fractures treated conservatively had a PRWE score of 38.17 ± 7.45, whereas the group that underwent operative treatment scored 30.60 ± 8.16 (t = -3.06, p = 0.004). For Rotella type II fractures, conservative management resulted in scores of 43.07 ± 9.11, compared to 35.37 ± 9.17 with operative treatment (t = -2.67, p = 0.011). Rotella type III fractures exhibited scores of 37.43 ± 10.44 for conservative treatment and 26.33 ± 11.15 for operative treatment (t = -3.25, p = 0.002). At the 6-month follow-up, Rotella



type I fractures managed conservatively scored  $27.96 \pm 10.90$ , whereas operative treatment yielded a score of  $20.28 \pm 12.13$  (t = -2.11, p = 0.041). For Rotella type II fractures, conservative management resulted in scores of  $22.21 \pm 7.10$  compared to  $14.73 \pm 7.64$  for operative treatment (t = -2.31, p = 0.003). Lastly, Rotella type III fractures showed scores of  $30.77 \pm 8.19$  for conservative treatment and  $22.36 \pm 8.40$  for operative treatment (t = -3.21, p = 0.002). These results revealed that, operative management were associated with better wrist function and reduced disability across all Rotella fracture types at both the 3-month and 6-month follow-up periods compared to conservative treatment approaches.

# **CONCLUSION**

- Our study highlighted that, Patients who received operative treatment for ulnar styloid fractures demonstrated a statistically significant improvement in functional outcomes compared to those who were treated conservatively. This was evaluated using standardized scoring systems Patient-Rated Wrist Evaluation (PRWE) score.
- The incidence of complications like non-union was higher in the conservative treatment group. Radiological union of the ulnar styloid fracture was achieved more consistently and predictably in the operative group. Conservative treatment often resulted in delayed or incomplete union.
- Patient satisfaction scores were greater in the operative treatment group, suggesting improved perceived outcomes and functionality.
- Further research with a larger sample size and extended follow-up is needed to confirm these results.

#### **REFERENCES:**

- 1. Mulders, M. A. M., Fuhri Snethlage, L. J., de Muinck Keizer, R.-J. O., Goslings, J. C., & Schep, N. W. L. (2017). Functional outcomes of distal radius fractures with and without ulnar styloid fractures: a meta-analysis. Journal of Hand Surgery (European Volume), 43(2), 150–157.
- 2. Ajit Singh V, Jia TY, Devi Santharalinggam R, Gunasagaran J. Relationship of ulna styloid fracture to the distal radio-ulnar joint stability. A clinical, functional, and radiographic outcome study. PLoS One. 2023 Jan 20;18(1):e0279210.
- 3. Maniglio M, Park IJ, Zumstein M, Kuenzler M, McGarry MH, Lee TQ. The Critical Size of Ulnar Styloid Fragment for the DRUJ Stability. J Wrist Surg. 2021 Oct;10(5):385-391.
- 4. Amadio PC, Beckenbaugh RD, Bishop AT, et al. Fractures of the hand and wrist. In: Jupiter JB, ed. *Flynn's hand surgery*. Baltimore, MD: Williams & Wilkins, 1991:152-153
- 5. Meena S, Sharma P, Sambharia AK, Dawar A. Fractures of distal radius: an overview. J Family Med Prim Care. 2014 Oct-Dec;3(4):325-32.
- 6. Ye J, Li Q, Nie J. Prevalence, Characteristics, and Associated Risk Factors of Wrist Fractures in Americans Above 50: The Cross-Sectional NHANES Study. Front Endocrinol (Lausanne). 2022 Apr 25;13:800129.
- 7. Ando J, Takahashi T, Ae R, Ajiki T, Matsumura T, Sasao W, Abe M, Takeshita K. Epidemiology of distal radius fracture: a regional population-based study in Japan. BMC Musculoskelet Disord. 2023 Jun 13;24(1):478.
- 8. The World Health Organization (WHO) report on injuries and violence. <a href="https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence">https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence</a> [Available from 2024 June 19]



- 9. Candela V, Di Lucia P, Carnevali C, Milanese A, Spagnoli A, Villani C, Gumina S. Epidemiology of distal radius fractures: a detailed survey on a large sample of patients in a suburban area. J Orthop Traumatol. 2022 Aug 30;23(1):43.
- 10. Jawed A, Ansari MT, Gupta V. TFCC injuries: How we treat? J Clin Orthop Trauma. 2020 Jul-Aug;11(4):570-579.
- 11. Sammer DM, Shah HM, Shauver MJ, Chung KC. The effect of ulnar styloid fractures on patient-rated outcomes after volar locking plating of distal radius fractures. J Hand Surg Am. 2009 Nov;34(9):1595-602.
- 12. Raghavendra Shankar Kulkarni 1\*, Rachana A Kulkarni 2 , Ranjani R Kulkarni3 , Raghavendra S. Deshpande4 , SriRam R Kulkarni . Long term trends in the incidence of distal radius fractures in Sindhudurg, west coast of Maharashtra Retrospective analysis of 1776 distal radius fractures (1989 to 1999), hospital based study. / Indian Journal of Orthopaedics Surgery 2024;10(1):48–54
- 13. MacIntyre, N. J., & Dewan, N. (2016). Epidemiology of distal radius fractures and factors predicting risk and prognosis. Journal of Hand Therapy, 29(2), 136–145.
- 14. Sammer DM, Zheng X, Shi HF, Wangyang YF, Yuan H, Xie XX, Li DY, Wang CJ, Qiu XS. Will the untreated ulnar styloid fracture influence the outcome of unstable distal radial fracture treated with external fixation when the distal radioulnar joint is stable. BMC Musculoskelet Disord. 2013 Jun 12;14:186.
- 15. Li S, Wang H, Su B, Han J, Liang H, Sun K, Yin D. Impact of Ulnar Styloid Fractures on the Treatment Effect of Distal Radius Fractures with Volar Plate Fixation: A Case Control Study. Indian J Orthop. 2020 Jan 24;54(1):75-82.
- 16. Robles C, Iglesias S, Allende Nores C, Rotella P, Caloia M, Capomassi M. Conservative vs. surgical management of ulnar styloid fractures associated with distal radius fractures. Rev Asoc Argent Ortop Traumatol 2019;84(4):353-360.
- 17. Breasted JH. The Edwin Smith Surgical Papyrus. Special ed. The Classics of Medicine Library; Birmingham, Ala.: 1984.
- 18. Hippocrates, Adams F, Sydenham Society . The genuine works of Hippocrates. Printed for the Sydenham Society; London: 1849.
- 19. Peltier LF (1984). "Fractures of the distal end of the radius. An historical account". *Clin Orthop Relat Res* (187): 18–22. PMID 6378480.
- 20. Colles A (2006). "On the fracture of the carpal extremity of the radius. Edinb Med Surg J. 1814; 10:181". *Clin Orthop Relat Res.* 445:57. doi: 10.1097/01.BLO.
- 21. Rang M. The story of orthopaedics. W.B. Saunders; Philadelphia: 2000.
- 22. Gordon, A. A treatise on the fractures of the lower end of the radius on fractures of the clavicle and on the reduction of the recent inward dislocations of the shoulder joint. London: Churchill; 1875
- 23. Scudder, CL. The treatment of fractures. Philadelphia: W.B.Saunders, 1902
- 24. Rayhack JM (1993). "The history and evolution of percutaneous pinning of displaced distal radius fractures". Orthop Clin North Am. 24 (2): 287–300. PMID 8479726
- 25. Breasted JH. The Edwin Smith Surgical Papyrus. Special ed. The Classics of Medicine Library; Birmingham, Ala.: 1984.
- 26. Bohler L. Treatment of Fractures. Wilhelm Maudrich; Vienna: 1929
- 27. Murray D. Treatment of fractures of the carpal end of the radius by traction. *Am J Surg*. 1938; 44:135–8
- 28. Anderson R, O'Niel G: Comminuted fractures of the distal end radius. Surg Gynecol Obstet 1944; 78: 434440



- 29. Diaz-Garcia RJ, Chung KC. The evolution of distal radius fracture management: a historical treatise. Hand Clin. 2012 May;28(2):105-11.
- 30. Carter PR, Frederick HA, Laseter GF. Open reduction and internal fixation of unstable distal radius fractures with a low-profile plate: a multicenter study of 73 fractures. *J Hand Surg Am.* 1998;23:300–7.
- 31. Richards TA, Deal DN. Distal ulna fractures. J Hand Surg Am. 2014 Feb;39(2):385-91.
- 32. Geissler WB, Clark SM. Fragment-Specific Fixation for Fractures of the Distal Radius. J Wrist Surg. 2016 Mar;5(1):22-30.
- 33. Han SH, Hong IT, Kim WH. LCP distal ulna plate fixation of irreducible or unstable distal ulna fractures associated with distal radius fracture. Eur J Orthop Surg Traumatol. 2014 Dec;24(8):1407-13.
- 34. Giordano V, Pires RES, Pesántez R, Kojima K, Koch HA. Expanding the Indications for Mini Plates in the Orthopedic Trauma Scenario: A Useful Alternative Technique for Maintaining Provisional Reduction and Improving Stability for Complex Periarticular Fracture Fixation of the Upper Limbs. J Orthop Case Rep. 2018 May-Jun;8(3):42-46.
- 35. Treuting R. Minimally invasive orthopedic surgery: arthroscopy. Ochsner J. 2000 Jul;2(3):158-63.
- 36. Ciccone WJ 2nd, Motz C, Bentley C, Tasto JP. Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg. 2001 Sep-Oct;9(5):280-8.
- 37. Tao J, Yan Z, Bai G, Zhang H, Li J. Enhanced Recovery after Surgery Rehabilitation Protocol in the Perioperative Period of Orthopedics: A Systematic Review. J Pers Med. 2023 Feb 26;13(3):421.
- 38. Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, Fu L, Long H, Huang X, Zhao J, Zhu H. Current advancements in therapeutic approaches in orthopedic surgery: a review of recent trends. Front Bioeng Biotechnol. 2024 Feb 9;12:1328997.
- 39. Bajwa, Sukhminder Jit Singh; Sharma, Veenita; Sharma, Ridhima<sup>1</sup>; Singh, Arvinder Pal<sup>2</sup>. Anesthesia for Day-care Surgeries: Current Perspectives. Medical Journal of Dr. D.Y. Patil University 10(4):p 327-333, Jul–Aug 2017. | DOI: 10.4103/MJDRDYPU.MJDRDYPU 24 17
- 40. Waugh A, Grant A. Ross & Wilson Anatomy and physiology in health and illness E-book. Elsevier Health Sciences; 2014 Jun 25.
- 41. Netter FH. Netter's atlas of human anatomy. Saunders Elsevier; 2010.
- 42. Dennison DG. Open reduction and internal locked fixation of unstable distal ulna fractures with concomitant distal radius fracture. Journal of Hand Surgery. 2007 Jul-Aug;32(6):801-5
- 43. Vezeridis PS, Yoshioka H, Han R, Blazar P. Ulnar-sided wrist pain. Part I: anatomy and physical examination. Skeletal Radiol. 2010 Aug;39(8):733-45.
- 44. May MM, Lawton JN, Blazar PE (2002) Ulnar styloid fractures associated with distal radius fractures: Incidence and implications for distal radioulnar joint instability. J Hand Surg 27A(6):965–971
- 45. Chen YX, Zheng X, Shi HF, Wangyang YF, Yuan H, Xie XX, Li DY, Wang CJ, Qiu XS. Will the untreated ulnar styloid fracture influence the outcome of unstable distal radial fracture treated with external fixation when the distal radioulnar joint is stable. BMC Musculoskelet Disord. 2013 Jun 12;14:186.



- 46. Frykman G. Fracture of the distal radius including sequelae–shoulder-hand-finger syndrome, disturbance in the distal radio-ulnar joint and impairment of nerve function. A clinical and experimental study. Acta Orthop Scand. 1967;Suppl:1–153.
- 47. Logan AJ, Lindau TR. The management of distal ulnar fractures in adults: a review of the literature and recommendations for treatment. Strategies Trauma Limb Reconstr. 2008 Sep;3(2):49-56.
- 48. Hagert CG (1996) Current concepts of the functional anatomy of the distal radioulnar joint, including the ulnocarpal junction. In: Büchler U, Dunitz M (eds) Wrist instability, pp 15–21
- 49. Garcia-Elias M. Soft-tissue anatomy and relationships about the distal ulnar. *Hand Clin.* 1998;14(2):165–176. [PubMed] [Google Scholar]
- 50. Bowers W (1999) The distal radioulnar joint. In: Green D (ed) Operative hand surgery. Churchill Livingstone, New York, vol 1, pp 986–1032
- 51. Ekenstam F, Hagert CG. The distal radioulnar joint. The influence of geometry and ligament on simulated Colles' fracture. An experimental study. *Scand J Plast Reconstr Surg.* 1985;19(1):27–31. doi: 10.3109/02844318509052862. [PubMed] [CrossRef] [Google Scholar]
- 52. Ekenstam F, Hagert CG. Anatomical studies on the geometry and stability of the distal radioulnar joint. *Scand J Plast Reconstr Surg.* 1985;19(1):17–25. doi: 10.3109/02844318509052861. [PubMed] [CrossRef] [Google Scholar]
- 53. Palmer AK, Werner FW. The triangular fibrocartilage complex of the wrist. Anatomy and function. *J Hand Surg.* 1981;6A(2):153–162. [PubMed] [Google Scholar]
- 54. Palmer AK. Triangular fibrocartilage complex lesions: a classification. *J Hand Surg.* 1989;14A(4):594–606. [PubMed] [Google Scholar]
- 55. Hagert CG. Stabilization of the distal radioulnar joint. In: Vastamäki V, editor. *Current trends in hand surgery*. Amsterdam: Elsevier; 1995. pp. 197–200. [Google Scholar]
- 56. Chidgey LK, Dell PC, Bittar ES, Spanier SS. Histologic anatomy of the triangular fibrocartilage. *J Hand Surg.* 1991;16A(6):1084–1100.
- 57. Shaw JA, Bruno A, Paul EM. Ulnar styloid fixation in the treatment of posttraumatic instability of the radioulnar joint: a biomechanical study with clinical correlation. *J Hand Surg.* 1990;15A(5):712–720.
- 58. Kim JK, Koh YD, Do NH. Should an ulnar styloid fracture be fixed following volar plate fixation of a distal radial fracture? J Bone Joint Surg Am. 2010 Jan;92(1):1-6.
- 59. Fernández DL. Distal radius fracture: the rationale of a classification. *Chir Main* 2001; : 411–425.
- 60. Ilyas AM, Jupiter JB. Distal radius fractures: classification of treatment and indications for surgery. *Hand Clin* 2010; : 37–42.
- 61. Flinkkila T, Raatikainen T, Hamalainen M. AO and Frykman's classifications of Colles' fracture. No prognostic value in 652 patients evaluated after 5 years. *Acta Orthop Scand* 1998; : 77–81.
- 62. Kural C, Sungur I, Kaya I et al.. Evaluation of the reliability *of* classification systems used for distal radius fractures. *Orthopedics* 2010; : 801
- 63. Ploegmakers JJW, Mader K, Pennig D et al.. Four distal radial fracture classification systems tested amongst a large panel of Dutch trauma surgeons. *Injury* 2007; : 1,268–1,272.



- 64. Andersen DJ, Blair WF, Steyers CM Jr et al.. Classification of distal radius fractures: An analysis of interobserver reliability and intraobserver reproducibility. *J Hand Surg Am* 1996; : 574–582
- 65. Kucuk L, Kumbaraci M, Gunay H et al.. Reliability and reproducibility of classifications for distal radius fractures. *Acta Orthop Traumatol Turc* 2013; :153–157.
- 66. Shehovych A, Salar O, Meyer C, Ford DJ. Adult distal radius fractures classification systems: essential clinical knowledge or abstract memory testing? Ann R Coll Surg Engl. 2016 Nov;98(8):525-531.
- 67. Rotella, C., et al. (2016). A New Classification System for Ulnar Styloid Fractures. Journal of Wrist Surgery, 5(3), 197-204.
- 68. Henry, M. H. (2008). Management of Distal Radius Fractures: Current Concepts. The Journal of Hand Surgery, 33(7), 1231-1233.
- 69. Ruch, D. S., and Papadonikolakis, A. (2006). Distal Radius and Ulnar Styloid Fractures. In Green's Operative Hand Surgery (6th ed.).
- 70. Slutsky, D. J., & Herman, M. (2010). Ulnar Styloid Fractures: Incidence and Implications. Hand Clinics, 26(3), 417-429.
- 71. Douma-den Hamer D, Blanker MH, Edens MA, Buijteweg LN, Boomsma MF, van Helden SH, Mauritz GJ. Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis. PLoS One. 2016;11(5):e0155659.
- 72. Wechsler RJ, Wehbe MA, Rifkin MD, Edeiken J, Branch HM. Computed tomography diagnosis of distal radioulnar subluxation. *Skelet Radiol*. 1987;16(1):1–5.
- 73. Manz MH, Jensen KO, Allemann F, Simmen HP, Rauer T. If there is smoke, there must be fire Isolated distal, non-displaced, intraarticular ulna fracture: A case report. Int J Surg Case Rep. 2019;60:145-147.
- 74. Leng S, Zhao K, Qu M, An KN, Berger R, CH MC. Dynamic CT technique for assessment of wrist joint instabilities. *Med Phys.* 2011;38:S50.
- 75. Moser T, Dosch JC, Moussaoui A, Buy X, Gangi A, Dietemann JL. Multidetector CT arthrography of the wrist joint: how to do it. *Radiographics*. 2008;28(3):787–800.
- 76. Watanabe, A., Souza, F., Vezeridis, P.S. *et al.* Ulnar-sided wrist pain. II. Clinical imaging and treatment. *Skeletal Radiol* **39**, 837–857 (2010).
- 77. Thomas BP, Sreekanth R. Distal radioulnar joint injuries. *Indian J Orthop*. 2012;46(5):493-504.
- 78. Boer BC, Vestering M, van Raak SM, van Kooten EO, Huis In 't Veld R, Vochteloo AJH. MR arthrography is slightly more accurate than conventional MRI in detecting TFCC lesions of the wrist. Eur J Orthop Surg Traumatol. 2018 Dec;28(8):1549-1553
- 79. Steinbach L.S. Baert A.L. In CPPD. Encyclopedia of Diagnostic Imaging. Springer, Berlin2008
- 80. Conti Mica MA, Bindra R, Moran SL. Anatomic considerations when performing the modified Henry approach for exposure of distal radius fractures. J Orthop. 2016 Nov 1;14(1):104-107.
- 81. Chen, A.CY., Lin, YH., Weng, CJ. *et al.* Surgical management of ulnar styloid fractures: comparison of fixation with anchor suture and tension band wire. *J Orthop Surg Res* **15**, 273 (2020). https://doi.org/10.1186/s13018-020-01795-3
- 82. Sanders L, Johnson N, Dias JJ. Kirschner Wire Fixation in Dorsally Displaced Distal Radius Fractures: A Biomechanical Evaluation. J Wrist Surg. 2021 May 11;11(1):21-27.
- 83. Clementsen, Ståle Ørstavik MD<sup>a</sup>; Jakobsen, Rune Bruhn MD, PhD; Hammer, Ola-Lars MD, PhD; Randsborg, Per-Henrik MD, PhD. The Effect of Ulnar Styloid Fractures on



- Patient-Reported Outcomes After Surgically Treated Distal Radial Fractures. JBJS Open Access 7(3):e22.00021, July-September 2022.
- 84. Morisaki, S., Tsuchida, S., Oda, R. *et al.* Conservative treatment of ulnar styloid fractures following volar-plate fixation of distal radius fractures: incidence of nonunion evaluated by computed tomography. *Eur J Trauma Emerg Surg* 48, 2247–2254 (2022).
- 85. Koner Rao T, Nagendra Babu M, Karthik Reddy R, Krishna Kumar V. A comparative study on surgical management of distal end radius fracture with ulnar styloid fracture with and without ulnar styloid fixation. Perspectives in Medical Research 2019; 7(1):14-17.
- 86. Adnan Abd-aleem El sebaey, Galal Mohamed Mansour, Sobhy Taher Sobhy Daoud. Fixation of Fractures of Ulnar Styloid Associated with Distal Radius Fractures by K wires "Tension Band. The Egyptian Journal of Hospital Medicine (July 2019) Vol. 76 (2), Page 3475-3482
- 87. Ansari E, Tank PM, Chawda RV, Patel VJ, Patel NB. Surgical treatment of distal end of radius fracture with volar locking plate: Clinicoradiological outcome of 25 cases. Indian J Orthop Surg. 2018;4(3):264-269.
- 88. Naito K, Sugiyama Y, Obata H, Mogami A, Obayashi O, Kaneko K. Screw Fixation and Autogenous Bone Graft for an Irreducible Distal Ulna Fracture Associated with Distal Radius Fracture. J Hand Surg Asian Pac Vol. 2017 Jun;22(2):236-239.
- 89. Sualp Turan, MD.,1 Deniz Çankaya, MD.,1 Serdar Yılmaz, MD.,1 Dilek Karakuş, Abdurrahim Dündar, MD.,1 Güzelali Özdemir. Effect of ulnar styloid fracture on outcomes after conservative treatment of distal radius fracture. **Eklem Hastalık Cerrahisi.** 2016;27(2):87-93
- 90. van Leerdam RH, Huizing F, Termaat F, Kleinveld S, Rhemrev SJ, Krijnen P, Schipper IB. Patient-reported outcomes after a distal radius fracture in adults: a 3-4 years follow-up. Acta Orthop. 2019 Apr;90(2):129-134.
- 91. Huynh, M. N. Q., Tang, K., & Cheung, K. (2019). A Comparison of Conservative and Operative Management of Thumb Ulnar Collateral Ligament Avulsion Fractures in Children. HAND. 2019:1-6
- 92. Muhammed Ehsan Nazeer1, Jagannath Kamath1, Muhammed Nazeer, Harshit Shetty1, Harish Maheshan1, Manesh Kumar Jain. Comparison of functional outcomes for displaced extra-articular distal radius fractures managed by operative and non-operative methods: A prospective cohort study. Indian Journal of Orthopaedics Surgery 2022;8(2):113–119
- 93. Testa G, Vescio A, Di Masi P, Bruno G, Sessa G, Pavone V. Comparison between Surgical and Conservative Treatment for Distal Radius Fractures in Patients over 65 Years. J Funct Morphol Kinesiol. 2019 May 17;4(2):26.
- 94. Dar IH, Wani IH, Mumtaz U, Jan M. Effect of ulnar styloid fracture on functional outcome of Colle's fractures: a comparative analysis of two groups. Int Surg J 2015;2:556-9.