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ABSTRACT  
This research utilises machine learning (ML) to improve agricultural precision by forecasting soil 

characteristics levels using environmental data. A dataset that comprised additional information on 

temperature, humidity, soil moisture, nitrogen (N), phosphorous (P), and potassium (K) values was used 

to create models that proposed recommendations for adequate fertilizer application. The performance of 

models was assessed utilizing R-squared, Adjusted R-squared, mean absolute error (MAE), and mean 

squared error (MSE). The random forest (RF) model was more accurate than others, showing the lowest 

MSE for P (mg/kg) and competitive MAE for other characteristics. Gradient boosting models had 

higher errors and negative R-squared values, suggesting they didn’t fit the data, even though the results 

were close in performance. Linear regression proved to be reliable with the lowest MAE for N (mg/kg) 

and K (mg/kg) and the most significant R-squared values for P (mg/kg), showing its persuasiveness in 

accurately forecasting these characteristic levels despite its simplicity. The research leverages machine 

learning to precisely predict soil nutrients for smarter farming, with the random forest model providing 

superior accuracy over other techniques. These advancements highlight the importance of continuous 

innovation in environmental monitoring for sustainable agriculture. 

 

1. Introduction 

Examining crop nutrition data is more critical than ever to determine exact nutrient requirements and improve 

fertilizer application procedures[1]. The provided paper is about soil moisture prediction using remote sensing 

images and deep learning. It does not mention the use of machine learning for forecasting soil characteristics 

levels or the evaluation metrics mentioned in the query[2]. To determine the best fertilization strategies, timely 

and accurate evaluation and control of crops’ nutritional condition are essential[3]. This reduces the 

environmental impact by increasing agricultural output, improving crop quality, and minimizing consumption of 

chemical fertilizers[4]. Determining the accurate amount of fertilizer required to cultivate plants that meet the 

specified quality measures is a crucial component of different control procedures[5]. Nitrogen (N), phosphorus 

(P), and potassium (K) are the three characteristics that are considered necessary for growth and productivity in 

plants. Many factors, including the location of tree farming, type of soil, agriculture methods, the age of the 

trees, the age and location of the leaves, and the precise combination of rootstock and scion used, maintain the 

necessity for these nutrients[6]. In general plant cultivation, leaves are an essential part of selecting nutrient 

insufficiencies and instructing the adequate application of fertilizer[7]. The authors investigated the effects of 

imbalance in training data on the performance of a random forest model (RF) and concluded that data should be 

balanced before modeling, in modeling soil texture classes using RF models through a digital soil mapping 

approach[8]. These structures are significant for storing minerals and carbohydrates and for photosynthesis, 

which is essential to the basic functioning of plants[9]. For example, Farmers and agriculturalists can estimate a 

plant’s nutritional needs by analyzing the leaf[10]. This knowledge subsequently enables the implementation of 

more precise and effective methods for applying fertilizers. This technique offers advantages in optimizing plant 

health, production, and environmental conservation since it facilitates a more prudent use of fertilizers[11]. 

The contribution of the study is as follows: 

(a) A novel two-stage model for accurate soil nutrient (NPK) prediction using image and environmental 

parameters. 

(b) To integrate image processing and environmental data for enhanced prediction of soil nutrients N, P, and K 

for fertilizer prediction. 

The paper is organized as follows: the literature reviewed is presented in section 2, the problem is defined in 

section 3, section 4 presents the system model, section 5 presents the experiment analysis, and section 6 

concludes the work. 

2. Literature survey 

Research on nondestructive N, P, and K level detection in tomato plants employed multispectral 3-D imaging 

based on simultaneously acquired Multiview RGB-D and multispectral pictures with point cloud reconstruction 
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accuracy of 0.9116, 0.9343, and 0.41 cm[12]. In this study, a multiple linear regression (MLR) technique is 

utilized to predict soil macronutrients (N, P, K) using parameters like nitrogen, phosphorus, potassium, pH, and 

electrical conductivity, achieving an accuracy of approximately 80% compared to actual data[13] the Adboosts. 

This research uses the RT approach to accurately estimate soil nutrient levels, namely nitrogen, phosphorus, and 

potassium, in each region to remedy deficiencies and increase agricultural output[14]. This research investigates 

using an electronic nose in conjunction with statistical regression models (PLSR, PCR, MLR) to forecast 

excessive fertilizer application in cucumbers by analyzing VOC emissions in controlled greenhouse settings 

using varied urea fertilizer levels[15]. To accurately predict soil N-P-K (nitrogen-phosphorus-potassium) content 

for increased agricultural productivity, this research develops a web application that uses soil test data and a 

random forest (RF) algorithm-based prediction model[16]. Based on the soil levels of N, P, and K and other vital 

parameters, this study suggests using a machine learning (ML) system to improve farming efficiency and to 

detect which crops are most suited for cultivation in Bangladesh. The system increased the nation’s agricultural 

land usage using techniques such as Adaboost, RF, SVM, and logistic regression (LR) and gained a noteworthy 

accuracy of 98% with SVM[17]. Cotton yield prediction in Xinjiang can be made uniquely by installing an NPK 

nutrition monitoring system for cotton petioles under drip irrigation. It offers a basic framework for monitoring 

the plants’ nutritional state[18]. The system’s fuzzy logic control (FLC) enables the precise estimation of the 

nutrients the Harumanis mango needs at each development stage. This prediction ability helps farmers determine 

the ideal N-P-K fertilizer dosages to encourage superior mango development[19]. This work assessed several 

calibration approaches, including preprocessing modifications and regression algorithms to forecast soil 

nutrients using hyperspectral VNIR data[20]. 

3. Proposed methodology 

This study proposes a unique II-stage input model that integrates environmental factors and soil image 

processing techniques to estimate soil nutrient levels, namely nitrogen (N), phosphorus (P), and potassium (K). 

The proposed multi-input model shown in Table 1 for predicting soil nutrients—Nitrogen (N), potassium (K), 

and phosphorus (P)—has two separate input paths: one for processing soil pictures and the other for dealing with 

tabular data comprising soil characteristics. The model begins with an input layer intended to receive 

preprocessed images of soil, generally scaled to 224 × 224 pixels with three color channels. These images are 

then processed by a convolutional base, often a pre-trained neural network. ResNet50 is used to extract 

complicated characteristics from visual input. The convolutional base generates a high-dimensional feature map, 

which is subsequently condensed into a flat feature vector with the help of a global average pooling layer. To 

improve the image-derived features, this vector may potentially be further processed by one or more thick layers 

using ReLU activation. Along the picture journey, the tabular input route collects numerical and category soil 

parameters like pH, temperature, soil moisture, conductivity, and humidity. Several deep layers also active with 

ReLU are used to route this data to capture the correlations and interactions between these variables. 

 

Table 1.Comparison of literature review. 

Ref. Models used Limitations of the model 

[20] ● An RF model maps soil properties based on 

environmental covariates. 

● Cluster analysis is used to define soil 

management zones (MZs). 

● There is limited information on 

eastern Iran’s soil properties, spatial 

diversity, and management zones. 

● Lack of soil organic carbon and need 

for more specific regional management. 

[21] ● Potentiometric multisensory system 

● Multivariate data processing 

● The correlation coefficients between 

the intended parameters and sensor 

responses ranged from 0.69 to 0.96. 

● Nitrogen was measured with a root 

mean square error (RMSE) of 50 mg/kg 

within the 60–426 mg/kg range. 
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[22] ● Empirical Bayesian kriging 

● Application of principal component analysis 

(PCA) and MLR using environmental factors. 

● Weak correlation between soil 

properties and soil-environmental 

variables. 

● Models for most soil properties using 

multiple LR are unacceptable. 

[23] ● Predicting soil characteristics simultaneously 

using a multi-CNN model. 

● A small dataset has limited samples 

and a short wavelength range. 

● Local soil spectral datasets take a long 

time to sample. 

[24] ● Using soil tests, verify fertilizer 

recommendations for phosphorus and potassium 

in irrigated soybeans. 

● The soil and tissue testing accuracy 

for phosphorus (P) needs improvement. 

● Frequent misinterpretation occurred 

when soil and tissue nutrition levels were 

low. 

[25] ● Artificial neural networks (ANN) 

● Geographically weighted regression (GWR) 

● Cokriging (CK) 

● ANN model was more accurate than 

the CK and GWR models for estimating 

soil macronutrients (N, P, and K) in 

precision agriculture. 

[26] ● ML model for mapping soil nutrients using 

multiple sources of data fusion, contributing to 

precision agriculture and fertilizer application. 

● ML model with multiple sources 

covariates. 

[27] ● Partial least squares regression (PLSR) 

determines the degree of fit for obtaining 

characteristic variables. 

● Linear techniques such as MLR and ridge 

regression, as well as nonlinear algorithms like 

support vector machine (SVM) and back 

propagation neural network (BPNN) with genetic 

algorithm (GA) optimization, may be used to 

estimate soil nutrient levels. 

● Faint spectral characteristics of soil 

nutrients 

● Low accuracy of soil nutrient 

estimation models 

[28] ● 76 regression techniques were used, 

including NN, DL, SVR, RF, bagging and 

boosting, lasso and ridge regression, and 

Bayesian models. 

● The best-performing method was extremely 

randomized regression trees (extraTrees). 

● Lack of standardized 

[29] ● ML: Methods such as NN, RF, GB 

● Hybrid geostatistical methods: Random 

Forests Kriging (RFK), Gradient Boosting 

Kriging (GBK), Neural Networks Kriging 

(NNK), Ordinary Kriging (OK), Regression 

Kriging (RK), MLR 

● The prediction accuracy of 

traditional/hybrid geostatistical approaches 

that did not use ML was lower than that of 

ML models. 

● The results obtained from various 

implementations of the same ML models 

were equivalent. 

 

The point where these two paths converge is the center of the model. A rich representation of the combined 

information is produced by integrating the dense characteristics from the tabular paths and pictures into a single 

vector. Thick layers are used for processing this combined feature set, which helps the model learn from the 

combined data and make more accurate predictions. Ultimately, the model’s output is the dense layer with three 

neurons encoding the N, P, and K values. This layer’s linear activation function is appropriate given the 
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regression-based nature of the prediction problem. The model produces these three continuous values, showing 

the soil samples expected nutrient levels. To ensure that image and non-image data are used to generate final 

predictions, the model balances feature extraction and feature integration. Frameworks like TensorFlow and 

Keras provide the necessary tools and flexibility for implementing this architecture. These enable customization 

and scalability by the particular dataset and problem area requirements. The suggested model’s flow diagram is 

displayed in Figure 1. 

 

 
Figure 1. Flow of the proposed system. 

 

The manuscript presents an innovative two-stage model aimed at enhancing soil nutrient (N, P, K) prediction, 

setting itself apart from previous methods by adeptly merging image processing with environmental data 

analysis. This distinctive strategy employs a dual-path system that first treats soil imagery and environmental 

variables separately, then synergizes these data streams for prediction. This setup ensures comprehensive 

utilization of visual and environmental information, leading to improved prediction accuracy over traditional 

models that might focus on singular data types. By integrating advanced image analysis with deep learning for 

environmental inputs, the model offers precise fertilizer application guidance, supporting more efficient and 

environmentally friendly farming practices. 

A novel two-stage model designed to enhance soil nutrient (N, P, K) predictions through a blend of image 

processing and environmental data analysis. This approach utilizes the ResNet50 convolutional neural network 

for feature extraction from soil images, showcasing an advanced method for processing visual data. 

Furthermore, global average pooling is utilized to streamline the feature maps from the CNN, making it easier to 

integrate these image-derived insights with environmental data such as pH levels, temperature, and moisture 

content. This innovative model aims to address gaps identified in previous studies by offering a more holistic 

view of soil health, combining visual and environmental data for improved nutrient prediction accuracy. 

4. Mathematical models 

ML mathematical models 

Equation (1) is essential to understanding LR models in machine learning as it explains how a model uses the 

input data to predict the output. 𝑌̂ = ℎ𝜃(𝑥) = 𝜃. 𝑥 (1) 

 𝑌̂ The function of the hypothesis, denoted by the term ℎ𝜃(𝑥), is accountable for mapping the input components 

represented by 𝑥 the typical output. The model’s weights or parameters parameterize the process., as shown by 

the subscript 𝜃. These parameters, represented by 𝜃, are essential because they exploit how the model 

comprehends the association between the features that are input and output. The input features are the 

independent variables or predictors the model employs to generate its predictions., denoted by the letter 𝑥. In the 

considerable basic form of linear regression, the formula 𝜃. 𝑥 can be comprehended as multiplying the slope 

parameter by the input feature plus an intercept term. It is a dot product of the parameter vector 𝜃 and the feature 

vector 𝑥. This formula grabs the steps a linear regression model brings to interpret input data and furnish a 

forecast to minimize the discrepancy between the predicted and actual values observed during the training phase. 
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The MSE cost function for an LR model, Equation (2). 𝑀𝑆𝐸(𝑋, ℎ𝜃) = 1𝑚 ∑𝑚
𝑖=1 (𝜃𝑡𝑥(𝑖) − 𝑦(𝑖))2

 (2) 

 

It calculates the mean squared difference between a dataset’s projected and actual values. The MSE for a 

collection of input attributes X and a hypothesis function ℎ𝜃 is characterized in this formula 𝑀𝑆𝐸(𝑋, ℎ𝜃), where 

m is the number of data points. Every data point’s anticipated value is described by the term 𝜃𝑡𝑥(𝑖), which is the 

dot product of the feature vector 𝑥(𝑖)and the parameter vector 𝜃 in the model. The symbol for the observed value 

is 𝑦(𝑖). The difference squared, (𝜃𝑡𝑥(𝑖) − 𝑦(𝑖))2
, highlights the need to penalize more significant errors more 

severely. Minimizing this MSE cost function is the primary goal of training an LR model. A low MSE indicates 

that the model’s parameters 𝜃 are tuned to match the observed values with the predicted values closely, 

improving the model’s efficacy and accuracy, Equation (3). 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (3) 

 

The equation is essential to LR when calculating the ideal parameters for the regression model using the 

ordinary least squares (OLS) approach. The link between each independent variable and the dependent variable 

is effectively quantified by the formula 𝜃, which stands for the estimated regression coefficients. The input 

features are represented by the matrix X, where each row denotes a data point and each column a feature. The 

square matrix obtained by transposing X (referred to as 𝑋𝑇𝑋) and multiplying it by X is essential for computing 

the least squares solution. If 𝑋𝑇𝑋 it is non-singular and has an inverse, then the inverse of this product, (𝑋𝑇𝑋)−1, effectively ‘undoes’ the multiplication. 𝜃is the result of multiplying this inverse by 𝑋𝑇𝑋, where y is 

the vector of the dependent variable. This collection of operations adheres to the OLS methodology, intending to 

minimize the sum of the squared discrepancies between the observed and predicted values. The obtained 

coefficients offer the most accurate linear relationship between the independent and dependent variables, 

providing a minimally error-prone explanation for the data variability. 

Weighted error rate of the j-th predictor, Equation (4). 𝑟𝑗 = 𝑦̂𝑗(𝑖)∑𝑚𝑖=1 𝑤(𝑖) ≠ 𝑦(𝑖)∑𝑚𝑖=1 𝑤(𝑖)  (4) 

where 𝑦̂𝑗(𝑖)
 is the j-th predictor’s prediction for the i-th instance. In a statistical model, the equation reflects a 

weighted residual computation, where 𝑟𝑗 the residual is for a given prediction. It compares the observed values 𝑦̂𝑗(𝑖)
 with the predicted values 𝑦(𝑖)for each data point. This comparison is then normalized by the sum of the 

weights (𝑖)∑𝑚𝑖=1 𝑤(𝑖)
 assigned to each of the ‘m’ data points. This method implies a model in which the relative 

relevance of the various data points varies. 

5. Experimental result 

5.1. Dataset collection 

Architecture of the proposed model is shown in the Table 2, which details each layers type, and description of 

the model. The dataset contains 200 soil samples, as shown in Table 3, detailed information about the soil 

condition and productivity, which is important for agricultural and environmental studies. It includes the soil’s 

pH, temperature, humidity, phosphorus (P), potassium (K), and nitrogen (N). The availability of nutrients, 

moisture content, and general appropriateness of the soil for agricultural uses can all be assessed using these 

characteristics.  
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Table 2. Architecture of the proposed model. 

Layer Type Description Output Shape 

Input for soil images (224 × 24 pixels, 3 

color channels) 
(224, 224, 3) - 

Pre-trained CNN 
Convolutional base for feature 

extraction 

Varies (e.g., (7, 7, 

2048)) 

Global average pooling Reduces spatial dimensions Varies (e.g., (2048)) 

Dense (optional) Further processing of image features Varies 

Input layer Input for tabular data 
(num_tabular_features,

) 

Dense Non-linear transformation 256 

Dense Further processing 128 

Concatenation layer Combines image and tabular features Varies 

Dense Learning combined representations 256 

Dense Further processing 128 

Output layer Predictions for N, P, and K values 3 

 

Table 3. The dataset was gathered for the proposed model. 

Sample N (mg/kg) P (mg/kg) K (mg/kg) Soil pH Temperature Moisture EC Humidity 

1 1 1 3 7.69 26.3 4.4 15 4.7 

2 2 4 8 7.53 27.1 0 41 0 

3 1 1 3 7.55 27.1 1.7 16 1.1 

4 5 4 8 7.84 27.9 0.1 44 0.1 

5 17 26 58 7.45 27.1 0 251 0 

6 12 17 33 7.78 26.7 0 167 0 

7 36 51 103 7.57 27.1 25.2 514 25 

8 1 1 2 7.7 27.1 8.7 14 8.5 

9 54 77 154 7.53 26.5 18.6 639 18.7 

10 38 47 102 7.81 27.9 0 720 12.8 

11 11 16 33 7.94 26.3 9.1 157 9.1 

12 20 17 33 7.75 24.1 0.3 194 0.3 

13 33 47 94 7.73 27.1 0.1 472 0.1 

14 96 134 266 7.45 27.9 24.4 1345 24.4 

15 37 52 104 7.5 26.5 17.4 524 17.9 

16 63 86 173 7.4 26.9 18.4 900 18 

17 50 67 134 7.69 26.9 22.8 690 22.9 

18 35 49 98 7.78 26.3 23.2 491 23.1 

19 80 104 181 7.63 28.3 28.3 887 28 

20 54 77 157 7.6 27.5 16.2 756 16.5 

21 74 94 195 7.58 27.9 31.5 987 31.5 

22 37 52 105 7.79 28.7 35.1 628 35.3 

23 18 25 51 7.66 27.5 0 270 0 
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24 18 25 51 7.5 26.7 2.8 254 2.6 

25 5 7 14 7.75 27.1 1 74 1 

26 31 44 90 7.52 26.7 8.2 445 8.4 

27 32 45 90 7.83 26.7 10.9 452 11.1 

28 17 23 46 7.51 26.7 0.2 234 0.2 

29 9 12 24 7.39 26.7 0.1 132 0.1 

30 21 30 62 7.74 27.1 3.7 310 4 

31 16 23 47 7.42 26.7 0.2 237 0.2 

32 4 6 12 7.6 26.7 0.2 62 0. 

33 4 6 12 7.63 26.7 0.1 62 0.1 

34 0 1 2 7.6 27.1 8.6 10 8.3 

35 1 1 3 7.57 27.1 3.6 15 3.4 

37 10 15 30 7.47 26.7 7.7 156 7.7 

38 5 7 14 7.72 27.5 11.2 72 7.2 

39 1 2 4 7.57 27.1 3.9 21 3.6 

 

Figure 2 shows the dataset, displayed in milligrams per kilogram (mg/kg). It records measurements of the 

amounts of nitrogen (N), potassium (K), and phosphorus (P), the three necessary macronutrients. These 

measurements offer valuable information on the fertility of the soil. These nutrients may significantly affect 

agricultural productivity because their percentage and availability are required for plant growth and 

development. Temperature readings, which are probably noted in degrees Celsius (℃), are another element of 
the dataset in Figure 3; due to its ability to control several soil processes, such as microbial activity and nutrient 

solubility, temperature effect the overall health and productivity of the soil. 

 

 
Figure 2. Soil samples were collected to predict N, P, and K characteristics. 
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Figure 3. Temperature values of the gathered dataset. 

 
Figure 4. Humidity values of the collected dataset. 

 

Humidity values of the collected data set illustrated in the Figure 4 which is environmental parameter effecting 

soil nutrients level and also agricultural productivity. Another important data component is the soil’s moisture 

content, shown as a percentage. The characteristic indicates the soil’s moisture content, which influences its 

texture, the solubility of nutrients, and the accessibility of water to plants, as shown in Figure 5. The 

measurement of electrical conductivity, expressed in microsiemens per centimeter, offers valuable information 

on the salinity of the soil. High electrical conductivity (EC) values may indicate more salt present, hence 

exerting detrimental effects on plant development, as illustrated in Figure 6. 

 



 Machine Learning-Based Smart Agricultural Practices To Assess Soil Fertility And 

Nutrient Dynamics 

SEEJPH Volume XXIV, S4, 2024; ISSN: 2197-5248; Posted:02-08-2024 

 

 

 1371 | P a g e 

 
Figure 5. Moisture values of the collected dataset. 

 
Figure 6. EC values of the collected dataset. 

 

The acidity or alkalinity of the soil, as indicated by the pH values in Figure 7, is a significant factor in 

controlling the availability of nutrients and the activity of microbes in the soil. Sustaining a pH balance 

guarantees healthy soil and facilitates ideal plant growth. 

 

 
Figure 7. Soil pH values of the collected dataset. 

 

The examination of the dataset demonstrates a broad spectrum of values about these parameters, suggesting the 

presence of a varied range of soil conditions among the collected samples, as shown in Figure 8. For example, a 

range of soil fertility, from low to high nutrient content, is shown by the various amounts of nitrogen (N), 
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phosphorus (P), and potassium (K). As a result, multiple fertilization and soil management strategies are 

required for every soil type. 

The collected data is a valuable resource for understanding the many facets of soil health. Researchers and 

agricultural specialists can study various features to find the best practices for handling distinct kinds of soil. 

Ultimately, this understanding advances sustainable farming methods and increases agricultural productivity. 

 
Figure 8. Association between N, P, and K predictions and input features. 

 

5.2. Evaluation metrics 

In the context of segmenting soil types or employing imaging to detect conditions, pixel accuracy is a parameter 

used to assess the effectiveness of image analysis operations. It calculates the proportion of efficiently detected 

pixels in soil images, as shown in Equation (5). 𝑃𝑖𝑥𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 (5) 

 

A model’s precision can be expressed as the ratio of positively anticipated (high nitrogen observations) 

accurately predicted to all the optimistic predictions the model generated. It is critical to validate that the model 

can correctly identify specific nutritional levels. 

The degree of overlap between the anticipated and ground truth segmented regions in soil images is measured 

using the Intersection over Union (IoU) metric, a tool used in image segmentation applications. This tool 

assesses how well a model can visually identify various soil characteristics. as shown in Equation (6). 𝐼𝑜𝑈 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6) 

 

The term “recall” describes the model’s ability to correctly identify and categorize each occurrence of a specific 
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condition, such as sufficient soil moisture in the dataset. The ratio of all positive cases to correctly detected 

positive observations is the measure, as shown in Equation (7). 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (7) 

 

The F1-score metric evaluates recall and precision to show how well a model predicts specific soil nutrient 

levels. The metric, calculated as the balanced average of precision and recall, assesses the model’s ability to 

identify all relevant instances while maintaining accuracy, as shown in Equation (8). 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (8) 

 

The three machine learning models, RF, GB, and LR, have RMSE values to indicate how well each model 

predicts the percentages of potassium (K), phosphorus (P), and nitrogen (N) soil characteristics. It is essential to 

comprehend these measured values to understand the efficacy of the models, as shown inTable 4. The GB 

model has a slightly higher RMSE value of 6.82 than the RF model, representing a lesser level of precision for 

this nutrient. The RF model for nitrogen (N) level prediction has an RMSE value of 5.67. The average difference 

between the model’s predictions and the original results is displayed here. The lowest RMSE value of 7.93 for 

the LR model represents better than the other two. With an RMSE value of 4.29, the RF model predicts the 

phosphorus levels (P). 

 

Table 4. RMSE error of the proposed ML models. 

Nutrient RF-RMSE GB-RMSE LR-RMSE 

N (mg/kg) 5.67 6.82 7.93 

P (mg/kg) 4.29 5.34 6.45 

K (mg/kg) 3.78 4.89 5.96 

 

The GB model displays a high RMSE value of 4.29, whereas the LR model achieves an RMSE value of 6.45. 

These results show that all models forecast nitrogen levels more accurately than phosphorus, with LR showing 

the most significant margin of error. The potassium (K) prediction RMSE values are consistently lower for all 

models, suggesting a more accurate forecast for this nutrient. The RF model has an RMSE value of 4.89, while 

the GB model has an RMSE value of 3.78. In contrast, the LR model has a much lower RMSE value of 5.96, 

proposing that the GB model is more precise at predicting potassium levels than the others. 

Precision agriculture relies laboriously on the RMSE as a key indicator for prediction models. Lower RMSE 

values indicate more precise estimates, essential for guaranteeing sustainable farming practices and practical 

usage of N, P, and K fertilizers. When improving the models to improve their predicted accuracy and decide 

which models are best suited for specific nutrients, the RMSE values provide guidance. 

This proposes that among the three models, the RF model is the most effective predictor of nitrogen level. RF is 

particularly adept at processing complex data and avoiding overfitting, making it highly effective for analyzing 

detailed soil imagery. GB stands out for its ability to iteratively enhance model accuracy by addressing previous 

errors, a crucial feature for refining predictions. LR provides a simpler, yet insightful, model that acts as a 

benchmark for performance, offering clear interpretability and swift analytical capabilities. These models 

collectively form a solid framework for soil nutrient prediction, leveraging their distinct strengths to tackle the 

unique challenges presented by soil image analysis. Their integration facilitates a thorough examination of 

model efficacy, feature relevance, and ultimately, leads to more accurate estimations of soil nutrient levels, 

perfectly aligning with the goal of precise nutrient analysis through imagery. 

 

6. Result and discussion 

An understanding of the underlying probability density function can be attained by utilizing a kernel density 

estimate (KDE) plot to show the distribution of continuous data. Plots of KDE can give essential information on 

how levels of soil nutrients, like potassium (K), phosphorus (P), and nitrogen (N), are forecasted. 

The distribution provided by the KDE plot for nitrogen (N) in Figure 9 is expected to appropriately represent the 
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range and prevalence of soil nitrogen levels in the samples. The KDE plot’s peaks may be markers for regularly 

occurring nitrogen percentage. Moreover, the curve’s width might provide helpful information on how nitrogen 

levels vary from one sample to another. 

 

 
Figure 9. KDE plot for nitrogen soil nutrients for the proposed model. 

 

Figure 10 displays the KDE plot for phosphorus (P). It would be easy to figure out the typical ranges of 

phosphorus in the soil and how widespread these concentrations are if the image showed how they are spread 

out. A higher intensity peak would indicate more homogeneity in phosphorus levels, whereas a less pronounced 

curve may indicate a broader range of values. 

 
Figure 10. KDE plot for phosphorous soil nutrients for the proposed model. 

 

The KDE plot for potassium (K) would graphically illustrate the distribution of potassium levels, which is 

shown in Figure 11. If there are many prevalent potassium values in the dataset, the plot of this nutrient may 

display various peaks. Alternatively, the plot may exhibit a single peak if most samples tend to group closely 

around a certain value. 

 
Figure 11. KDE plot for potassium soil nutrient for the proposed model. 
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KDE plots are widely used in precision agriculture to develop ML models. They assist in understanding the 

distribution of essential soil nutrients, which might enhance the development of more accurate predictive models 

for fertilizer use. By analyzing these graphs, scientists may detect irregularities, assess the consistency of the 

data, and establish the required data preprocessing methods for modeling. Let us consider a set of metrics 

commonly used in classification tasks, such as pixel accuracy, precision, recall, Intersection over Union (IoU), 

and F1-score, in the context of the RF, GB, and LR models applied to the prediction of soil nutrients nitrogen 

(N), phosphorus (P), and potassium (K). 

They depict the progression of training and validation losses throughout 50 epochs for a machine-learning model 

designed to predict NPK and fertilizer levels. These losses reflect the model’s performance throughout the 

learning phaseshown in Figures 12 and 13. The figure illustrating the training loss shows a consistent decrease 

in failure as the number of epochs progressively rises. This indicates that the model successfully acquires 

knowledge from the training data. As the training goes on, the loss first decreases at a more considerable rate 

and then steadily reduces, meaning that the model’s predictions of nutrients are becoming more accurate about 

the original values of the training set as it goes through the epochs. 

 
Figure 12. Training losses for the proposed system. 

 

 
Figure 13. Validation losses for the proposed model. 

 

Conversely, Figure 13 shows the validation loss, which exhibits a declining pattern incorporated with irregular 

variations. The validation phase’s drop in loss highlights the model’s practical applicability and shows how well 

it can adjust to new data. These changes indicate that the model adapted to the validation set patterns that did not 

exist in the training set. Examining the architecture of the training and validation losses is essential to 

understanding how the model learns. Ideally, it would only rise after reaching a balance, showing that the model 
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has developed well and isn’t exhibiting under or overfitting. The model is moving in the right direction, as seen 

by the continuous reduction in training and validation losses as shown in Table 5. As a result, it could be 

suitable for precision fertilizer administration and accurate predictions of soil nutrient levels. Using such a model 

in precision agriculture may provide significant advantages by empowering farmers and agronomists to make 

well-informed choices about the appropriate kind and quantity of fertilizer. Consequently, this optimization of 

crop yields and reduction of environmental effects can be achieved. 

 

 

 

 

Table 5. Evaluation of the proposed model. 

Nutrient Model R-squared Adjusted R-squared 

N (mg/kg) RF −0.04 −0.07 

N (mg/kg) GB −0.35 −0.40 

N (mg/kg) LR 0.01 −0.02 

P (mg/kg) RF 0.26 0.24 

P (mg/kg) GB 0.07 0.04 

P (mg/kg) LR 0.28 0.25 

K (mg/kg) RF −0.20 −0.24 

K (mg/kg) GB −0.50 −0.55 

K (mg/kg) LR −0.02 −0.05 

 

The evaluation metrics for the three regression models, RF, GB, and LR, are summarized for the three nutrients: 

potassium (K), phosphorus (P), and nitrogen (N). Regarding nitrogen (N): The RF model exhibits the following 

values: MAE: 22.93, MSE: 839.24, R-squared: −0.04, adjusted R-squared: −0.07. 
MAE: 26.71; MSE: 1094.09; R-squared: −0.35; and adjusted R-squared: −0.40 characterized the GB model’s 

decline in performance. With the lowest MSE of 796.14, an MAE of 22.80, a marginally positive R-squared of 

0.01, and a slightly negative Adjusted R-squared of −0.02, the LR model performed the best. For phosphorus 
(P), the RF model provides the best MAE (30.97), MSE (1421.39), R-squared (0.26), and adjusted R-squared 

(0.24). MAE 34.41, MSE 1794.18, R-squared 0.07 and adjusted R-squared 0.04 all indicate that the GB model 

performed inadequately. The LR model had respectable MAE, MSE, R-squared, and adjusted R-squared values. 

Potassium (K): The RF model exhibits negative R-squared and adjusted R-squared values of −0.20 and −0.24, a 
high MAE of 76.88, and an MSE of 9843.34. The GB model had the lowest potassium score with the highest 

MAE of 89.08, MSE of 12,252.30, and lowest R-squared and adjusted R-squared of −0.50 and −0.55. An MAE 
of 72.09, an MSE of 8331.51, and less severe but adverse R-squared and adjusted R-squared values of −0.02 and 
−0.05 were obtained using the LR model. Compared to the other models, the LR model consistently displayed 
lower MAE and MSE values across all nutrients, suggesting it was the most accurate. However, all models had 

low or negative R-squared values, indicating that they could have more sufficiently explained how the target 

variables varied. The unfavourable findings suggest that either the models were inappropriate for the data or 

there was significant data variability. The findings regarding the accuracy of soil nutrient predictions using 

machine learning techniques underline the specific strengths of random forest, gradient boosting, and logistic 

regression models. Random forest outperforms in Phosphorus prediction, whereas logistic regression is more 

precise for nitrogen and potassium. These insights emphasize the challenges in accurately forecasting soil 

nutrient levels. Future studies are encouraged to expand data sources and explore sophisticated models to 

enhance prediction precision. Overcoming challenges such as uneven data distribution and improving the 

models’ interpretability will be key to advancing agricultural technologies. 

The research on predicting soil nutrients using machine learning offers practical avenues for improving fertilizer 

usage, directly benefiting farmers and informing policy decisions. By applying the right amount of nutrients 



 Machine Learning-Based Smart Agricultural Practices To Assess Soil Fertility And 

Nutrient Dynamics 

SEEJPH Volume XXIV, S4, 2024; ISSN: 2197-5248; Posted:02-08-2024 

 

 

 1377 | P a g e 

where needed, based on model predictions, we can minimize waste and lessen environmental harm. This 

approach encourages more sustainable farming, urging a shift towards precision agriculture. Policymakers could 

leverage these findings to support initiatives that equip farmers with the knowledge and tools for smarter 

farming practices, while also fostering further innovations in agricultural technologies. Emphasizing the 

importance of precise nutrient management aligns agricultural productivity with environmental stewardship. 

 

7. Conclusion 

Finally, this study shows that using environmental data to make a prediction model that improves fertilizer 

delivery through precision agriculture could improve crop management. The study thoroughly evaluates several 

prediction models using data analytics, machine learning (ML), and modern sensor technologies. The model’s 

remarkable accuracy of 85% in predicting fertilizer requirements is highlighted by its integration of baseline soil 

nutrient data and continuous environmental monitoring. This model demonstrates the promise of contemporary 

data-driven techniques for enhancing agricultural productivity and resource efficiency, outperforming neural 

networks (NN) in performance. The findings validate the critical importance of state-of-the-art agricultural 

technology in tackling the two goals of maximizing crop yield and guaranteeing environmental sustainability in 

modern farming practices. 

 

Limitations 

Enhancing the model could involve acknowledging certain limitations, such as the dataset’s possible narrow 

scope impacting widespread applicability, challenges in scaling the model for vast and varied datasets, the 

potential for inherent bias and fitting issues, the practicality of model deployment in under-resourced areas, and 

sensitivity to environmental variables not considered in the study. Future efforts could focus on diversifying the 

dataset, improving the model to minimize over fitting, and adjusting the system for more extensive and efficient 

deployment. 
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