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ABSTRACT:  
Accurate identification of the existence of disease in a radiograph by a radiologist is highly essential. 

Various systems are being developed to assist radiologists to diagnose the disease with the best accuracy 

possible. Machine Learning algorithms have been used in classification tasks, particularly 

Convolutional Neural Networks, a variant of Neural Networks has been proven to outperform most 

algorithms. The success is attributed to this variant because they resort to optimal feature construction 

on their own instead of depending on a finite set of feature candidates. But CNNs in their basic form or 

various pre-built models like VGG Net, MobileNet, etc. are able to classify the images based on certain 

conditions i.e. have sufficient training data and expensive computing power. The classification of 

radiographic images for medical diagnosis can also be achieved usinga predefined set of features which 

are calculated via the extraction of quantitative metrics. Such a process is known as radiomics or 

radiogenomics (kumar et al, 2012).  

We have extracted 955 features (shape, texture, transform) from the X-ray images and have identified 

the features that are very effective in the classification of normal vs. Pneumonia. Among such features 

are wavelet transform features particularly low pass (LH) gray level uniformity, Correlation of GLCM, 

Inverse Difference Normalized, High Gray Level Zone Emphasis, Gray Level Non-Uniformity 

Normalized, high pass (HH) gray level uniformity, low pass (LH) run length uniformity, high pass (HH) 

run length gray level uniformity. We were able to achieve accuracy of 99% for our primary dataset and 

90% for the secondary dataset which is unseen by the model in training phase. In this paper we 

particularly discussed and investigated the dataset open sourced by (Khuzani et al, 2021) in a paper 

submitted to Nature journal. We get the same accuracy levels whether we use all the features that were 

calculated after applying wavelet transform or the few above mentioned features. 

 

 

Introduction 

In this paper we have used techniques and a finite set of features to classify the images as normal vs. 

Pneumonia. The goal of this research is to find the few key features that would classify the images 

with optimal accuracy. Deep learning models such as CNNs have produced promising results in 

image segmentation as well as classification (Scapicchio et al, 2021) and many products have been in 

use in the market to diagnose patients (Ridhi et al, 2024). But such successes were achieved at the 

cost of large input datasets which are not so easily available (Hatt et al, 2019) and using very powerful 

or custom-builtalgorithms (Hussein et al, 2024) and were implemented on expensive computing 

infrastructure. So, our approach is to extract all possible features from the images and identify the 

relevant features and use an algorithm well accepted or prominent in the industry and implement 

using reasonable computing power. Images acquired for diagnostics purposes are not just pictures, 

they are really data for analysts and computer science engineers in the form of 2D or 3D arrays. 

Source data for Radiomics is acquired through various modalities like X-ray, ultrasound, MRI, PET 

etc. There is intrinsic variability of the data that gets extracted from images of the above-mentioned 

modalities. The study of radiomics began a few years ago (kumar et al, 2012) but now it is very 

mature, and the results of the studies are being used in the industry settings, and various software and 

hardware products are being built. There are few societies in North America as well as Europe that 

have standardized quantitative imaging in order to ensure reliability (Scapicchio et al, 2021). One 

such initiative is the Image Biomarker Standardization Initiative (IBSI), which we used as the 

standard for this paper. Additionally, we used Pyradiomics, a Python-based package, which was 

developed following the IBSI standard (Griethuysen et al, 2017). 

I. Materials and Methods  

 This data contains a total of 235 images out of which 165 (69 normal images and 96 Pneumonia 

images) images are used for training and 70 images (30 normal images and 40 Pneumonia images) are 

used for testing the model that was developed (Khuzani et al, 2021). Pixel is a short form for a picture 
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element that shows the intensity or the gray value at specified indices in the image array. A 

radiographic image that is of size 1024x750 will have gray level intensities in the form of a 2D 

matrix. A very detailed analysis of anatomy of these images is conducted as the purpose of this study 

was to use data analysis and build machine learning models to classify images into normal and 

pneumonia classes. The data collected in this paper was observed and compared with 2 other datasets 

as shown below. At the most basic level 1) the image sizes of threedifferent datasets are compared to 

each other using scatter plots 2) distribution of data of the pixel intensities using box plots 3) 

Frequency distribution of one feature through histograms are depicted in Fig1, Fig2, and Fig3 

respectively. 

A1. Nature dataset normal - 69 

images 

B1. Kaggle dataset normal - 

153 images 

C1. Mendeley dataset normal 

- 988 images 

   
A2. Nature dataset Pneumonia 

- 96 images 

B2. Kaggle dataset 

Pneumonia - 732 images 

C2. Mendeley dataset 

Pneumonia - 916 images 

   
Fig 1: A1 shows the normal images of Nature paper dataset, B1 shows the normal images of Kaggle dataset, C1 

shows the normal images of Mendeley dataset. A2, B2, C2 are the Pneumonia images of the same datasets 

respectively. An average intensity of two nearby pixels was computed to draw these charts. 

From Fig 1, we can clearly observe that there is a lot of variation in the sizes of images. This intrinsic 

variability is expected among different modalities and even in same modality as X-ray because there 

are many OEMs that make these machines and in addition to that year and model of make also will 

have strong impact on the spatial resolution (Mayerhoefer et al, Pg.491, 2020).  These variations and 

similarities of 3 different datasets are clearly depicted in Fig 2. Intensity values and the data 

distribution of image F are quite different from D and E datasets. Such variations will have to be 

accounted for before being fed into any algorithm of investigator’s choice. 

Further to the above, the pixel intensity distribution of the same 3 datasets above is shown in Fig2. 

D. Nature dataset - 165 

images 

E. Kaggle dataset - 885 

images 

F. Mendeley dataset - 1904 

images 

   

 

Fig 2: D, E, F show the distribution of intensity levels of gray level values of normal images and 

pneumonia images of Nature paper dataset, Kaggle dataset, Mendeley dataset respectively. 1st 
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boxplot is 10th percentile, 2nd boxplot is Mean, 3rd boxplot is the interquartile range, 4th boxplot is 

the 90th percentile of gray level intensity values.   

Fig 3. shows the histogram of a key feature known as wavelet low pass GLRLM Gray Level Non-

Uniformity. Again, it can be clearly observed that there are variations and similarities even in the 

transform features that are calculated from the raw pixel values. 

G. Nature dataset normal - 69 

images 

H. Kaggle dataset normal - 

153 images 

I. Mendeley dataset normal - 

988 images 

   
Fig 3: G, H, I show the distribution of a feature wavelet-LH_glrlm_GrayLevelNonUniformity of 

normal images in Nature paper dataset, Kaggle dataset, Mendeley dataset respectively. 

 

The features that are extracted are of three classes namely, shape, intensity, and texture based. Few of 

the very important features and their mathematical expressions are listed in Tab1. 

Class Feature Expression 

 

 

 

 

 

 

 

Shape 

Mesh surface 𝐴 =  ∑ 𝐴𝑖𝑁𝑓
𝑖=1  

Pixel surface 𝐴𝑝𝑖𝑥𝑒𝑙  =  ∑ 𝐴𝑘𝑁𝑣
𝑘=1  

Perimeter 𝑃 =  ∑ 𝑃𝑖𝑁𝑓
𝑖=1  

Major axis length 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 =   √𝜆𝑚𝑎𝑗𝑜𝑟4
 

Minor axis length 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 =   √𝜆𝑚𝑖𝑛𝑜𝑟4
 

 

 

 

 

 

 

 

 

 

 

 

Mean 𝑚𝑒𝑎𝑛 =  1𝑁𝑝 ∑ 𝑋(𝑖)𝑁𝑝
𝑖=1  

Entropy 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝(𝑖)𝑙𝑜𝑔2(𝑝(𝑖) +  𝜖𝑁𝑔
𝑖=1  

Energy 𝑒𝑛𝑒𝑟𝑔𝑦 =  ∑(𝑋(𝑖) + 𝑐)2𝑁𝑝
𝑖=1  
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Class Feature Expression 

Intensity Skewness 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  𝜇3𝜎3 =  1𝑁𝑝 ∑ (𝑋(𝑖) − 𝑋̅)3𝑁𝑝𝑖=1(√ 1𝑁𝑝 ∑ (𝑋(𝑖) − 𝑋̅)2𝑁𝑝𝑖=1 )3 

Kurtosis 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝜇4𝜎4 =  1𝑁𝑝 ∑ (𝑋(𝑖) − 𝑋̅)4𝑁𝑝𝑖=1( 1𝑁𝑝 ∑ (𝑋(𝑖) − 𝑋̅)2𝑁𝑝𝑖=1 )2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Texture 

Gray level Non-

uniformity 𝐺𝐿𝑁 =   ∑ (∑ 𝑃(𝑖, 𝑗)𝑁𝑠𝑗=1 )2𝑁𝑔𝑖=1 𝑁𝑧  

Run Length Non-

uniformity 𝑅𝐿𝑁 =  ∑ (∑ 𝑃(𝑖, 𝑗|𝜃)𝑁𝑔𝑖=1 )2𝑁𝑟𝑗=1 𝑁𝑟(𝜃)  

Short Run Emphasis 𝑆𝑅𝐸 =  ∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑗2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Long Run Emph*asis 𝐿𝑅𝐸 =  ∑ ∑ 𝑃(𝑖, 𝑗|𝜃)𝑗2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Short Run Low Gray 

Level Emphasis 𝑆𝑅𝐿𝐺𝐿𝐸 =  ∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑖2𝑗2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Short Run High Gray 

Level Emphasis 𝑆𝑅𝐻𝐺𝐿𝐸 =  ∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑖2𝑗2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Long Run Low Gray 

Level Emphasis 𝐿𝑅𝐿𝐺𝐿𝐸 =  ∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑗2𝑖2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Long Run High Gray 

Level Emphasis 𝐿𝑅𝐻𝐺𝐿𝐸 =  ∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑖2𝑗2𝑖2𝑁𝑟𝑗=1𝑁𝑔𝑖=1 𝑁𝑟(𝜃)  

Tab1. Few important features are listed here with their expressions. 

Exploration and understanding of data have been done using the data visualization techniques 

mentioned above. Data extracted has approximately 955 features that were extracted using 

pyradiomics package via the following process flow shown in Fig 4. 

 

 

 

  

Convert 

DICOM 

images to 

NRRD files  

Extract various 

features using 

pyradiomics 

pkg 

Feed the features 

to algorithm of 

choice to build ML 

model   
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Fig 4: Process flow shows conversion of DICOM images to NRRD files using SimpleITK package 

and then features are extracted to a .csv file which in turn will be fed to the desired algorithm for 

classification tasks. 

Out of the 955 features that were extracted the following features are the list of features at high level.  

Tab2. List of all features calculated from the base pixels of the image. This list contains original 

image features which include shape features and also many transform-based features. 

Each of above transform features along with original (raw pixels) image has 1) Firstorder, 2) Gray 

Level Co-occurrence Matrix (GLCM), 3) Gray Level Run Length Matrix (GLRLM), 3) Gray Level 

Size Zone Matrix (GLSZM), 4) Gray Level Dependence Matrix (GLDM) features except for the 

original feature which has shape features in addition to the above.  

These features were fed into 2 different algorithms namely, GBDT (Gradient Boosted Decision Trees) 

and DNNs (Deep Neural Networks). We chose XGBoost (GBDT) as it is the most suitable algorithm 

for tabular data and it outperforms DNNs (Shwartz-Ziv, Armon, 2021). The XGBoost model uses an 

ensemble of trees trained sequentially, where new trees are built to correct the residuals of earlier 

models, and their outputs are combined to produce the final prediction (Wang et al, 2024). Given 

there are n observations and m features  𝑋 ∈  𝑅𝑚 × 𝑛, 𝑦 ∈  𝑅𝑛 

X: Feature matrix with n observations and m features 

y: vector of dependent values or target class corresponding the n observations 𝑦̂𝑖 =  ∑ 𝑓𝑡(𝑋𝑖)𝑇
𝑡=1  

Where ft is a decision tree trained on the residuals of previous predictions. 

 

II. Results and Discussion 

Accuracy of the model with XGBoost algorithm and features 1) Correlation (GLCM_corr), 2) Inverse 

Difference Normalized (GLCM_Idn), 3) High Gray Level Zone Emphasis (GLSZM_HGLZE), 4) 

Gray Level Non-Uniformity Normalized (GLSZM_GLNN) used is 100% where as DNN and the 

same above-mentioned features is 98%. These features mentioned above when compared to the rest of 

the features were key and sufficient to classify the images into normal and pneumonia classes. One 

way ANOVA test was performed on these four variables between training data and test data and 

results are as follows. GLCM_corr (F-statistic: 75.17, p-value = 7.43e-16), GLCM_Idn (F-statistic: 

184.31, p-value = 2.54e-31), GLSZM_HGLZE (F-statistic: 303.84, p-value = 4.07e-44), 

GLSZM_GLNN (F-statistic: 347.65, p-value = 4.25e-48) indicate that their means are not the same. 

The F-statistic value is very high, and the p-value is very small when compared to the threshold of 

0.05 with which we reject the null hypothesis Ho. This fact supports the argument that there is a signal 

in the data which separates the normal images from pneumonia images. 
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The correlation among the four above-mentioned variables is depicted in Fig 5.

 
Fig5: Correlation among the variables Correlation(GLCM), Inverse Difference Moment Normalized 

(GLCM), High Gray Level Zone Emphasis (GLSZM),Gray Level Non-Uniformity Normalized 

(GLSZM) 

The receiver operating characteristics on test data is as follows. While overfitting is a known trait of 

XGBoost algorithm, the fact is that it gave 100% accuracy (Fig 6) with the test data when all the 

wavelet transform features (344) listed in Tab2 were used. We had to iterate to find out which few 

features give the highest accuracy by removing those features that are having highest correlation 

among themselves. For example, Run Length Non-Uniformity Normalized of GLRLM contributes 

equally well, but it is a redundant feature. Also, manyof the features of the original raw pixels don’t 
prove to have any positive effect on the accuracy of the model. In the similar fashion Short Run 

Emphasis and Long Run Emphasis of GLRM are also not having any positive effect on the model 

accuracy. As listed in the previous paragraph the four features that are giving the best results are from 

GLCM and GLSZM while GLRLM features are producing equally good performance and GLDM 

features are not performing as expected.  

 
Fig6. RoC on the test data of 70 images. 

 



 

Classification of Chest X-ray images using radiomic features and machine learning 

SEEJPH Volume XXV S2, 2024, ISSN: 2197-5248; Posted:05-12-2024  

 

2498 | P a g e  

 

The other transform features like Square, Squareroot, Exponential, Lbp-2D, Gradient, Logarithm were 

not contributing to optimal performance either individually or combined with any other features for 

this dataset.  

Gray Level Co-occurrence Matrix (GLCM) describes the second-order joint probability function of an 

image region. Gray Level Size Zone Matrix (GLSZM) is quantification of gray level zones i.e. the 

number of pixels that share the same gray level intensity. Correlation and Inverse Difference Moment 

Normalized measures of GLCM transform that had the biggest impact on the accuracy along with 

GLSZM measures namely, High Gray Level Zone Emphasis and Gray Level Non-Uniformity 

Normalized. The feature importance scores given by the XGBoost’splot_importance function is 

depicted in Fig 7. 

 
Fig7. The feature importance plot given by XGBoost’splot_importance function 

Correlation (GLCM): Descriptive statistics of the Correlation (Tab3) values show that normal 

images and pneumonia images have comparable correlation values. 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝑥𝜇𝑦𝑁𝑔𝑗=1𝑁𝑔𝑖=1 𝜎𝑥(𝑖)𝜎𝑦(𝑗)  

Metric Train (normal) Train (pneumonia) Test(normal) Test(pneumonia) 

count 69.00 96.00 30.00 40.00 

mean 0.16 0.19 0.08 0.20 

std 0.06 0.05 0.03 0.03 

min 0.01 0.09 0.03 0.16 

25% 0.12 0.16 0.05 0.17 

50% 0.14 0.18 0.08 0.19 

75% 0.21 0.21 0.11 0.21 

max 0.28 0.32 0.15 0.30 

Tab3. Shows the descriptive statistics of the Correlation measure of the GLCM feature. 

Inverse Difference Normalized(GLCM - IDN):  Similar to the correlation feature we can 

observe that the Inverse Difference Normalized (Tab4) data also shows noticeable difference in the 

ranges of normal (Train and Test) together with pneumonia (Train and Test) features. 

  𝐼𝐷𝑁 =  ∑ 𝑝𝑥−𝑦(𝑘)1+ 𝑘2𝑁𝑔2
𝑁𝑔−1𝑘=0  

Metric Train (normal) Train (pneumonia) Test(normal) Test(pneumonia) 

count 69.00 96.00 30.00 40.00 

mean 0.98 0.98 0.98 0.98 

std 0.01 0.00 0.00 0.00 
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min 0.95 0.96 0.96 0.98 

25% 0.97 0.98 0.97 0.98 

50% 0.98 0.98 0.98 0.98 

75% 0.98 0.98 0.98 0.98 

max 0.98 0.99 0.98 0.99 

Tab4. Show the descriptive statistics of Inverse Difference Normalized which part of GLCM feature 

High Gray Level Zone Emphasis (GLSZM - HGLZE): Clear distinction can be observed in the 

High Gray level emphasis (Tab5) measurements among the normal and pneumonia classes between 

the training data and test data. The quartiles of training data of normal images range from 72 to 90 

whereas the testing dataset ranges from 56 to 90. Also, quartiles of training data of pneumonia images 

range from 162 to 186 whereas testing dataset range from 185 to 187.  𝐻𝐺𝐿𝑍𝐸 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖2𝑁𝑠𝑗=1𝑁𝑔𝑖=1 𝑁𝑧  

Metric Train (normal) Train (pneumonia) Test(normal) Test(pneumonia) 

count 69.00 96.00 30.00 40.00 

mean 76.19 160.43 79.47 170.07 

std 19.52 47.84 16.62 42.76 

min 12.36 30.55 42.61 56.84 

25% 72.42 162.74 56.92 185.47 

50% 90.22 185.82 90.58 186.23 

75% 90.74 186.89 90.78 187.18 

max 91.68 217.62 90.97 215.96 

Tab5. Shows the descriptive statistics of the High Gray Level Zone Emphasis feature of the GLSZM 

feature. 

 

Gray Level Non-Uniformity Normalized (GLSZM - GLNN): Similar to the High Gray Level Zone 

Emphasis Gray Level Non-Uniformity Normalized also has similar observations. There seems to be a 

signal between normal and pneumonia images when the mean or quartiles are observed.  𝐺𝐿𝑁𝑁 =   ∑ (∑ 𝑃(𝑖, 𝑗)𝑁𝑠𝑗=1 )2𝑁𝑔𝑖=1 𝑁𝑧2  

 

Metric 
Train (normal) Train (pneumonia) Test(normal) Test(pneumonia) 

count 69.00 96.00 30.00 40.00 

mean 0.44 0.35 0.44 0.33 

std 0.02 0.05 0.01 0.05 

min 0.39 0.20 0.41 0.18 

25% 0.43 0.32 0.44 0.31 

50% 0.44 0.35 0.44 0.33 

75% 0.46 0.38 0.45 0.35 

max 0.48 0.48 0.47 0.43 

Tab6. Shows the descriptive statistics of the Gray Level Non-Uniformity Normalized feature of the 

GLSZM feature. 
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III. Conclusion 

Diagnosis of Pneumonia in radiographic images comes with many challenges namely, lack of trained 

radiologists and lack of equipment that can develop quality films. There have been many studies and 

Machine Learning technology-based solutions and products that would assist the radiologists with 

accurate diagnosis. These activities fall under classification of X-ray images into normal and 

pneumonia classes. But most studies have used Deep Neural Networks that demand larger amounts of 

input data than what is commonly available and expensive computing power. So, our approach was to 

use a finite set of constructed features using data analytics and commonly available Machine Learning 

algorithms and reasonably good computing infrastructure. We are able to achieve the above-

mentioned goals in this study and we have identified a few features from the extracted feature set of 

955 features and an ensemble algorithm XGBoost widely used in academia to achieve optimal 

classification accuracy. When we tested this model on unseen data, the model accuracy of that data 

was at 90.3% without any augmentation to data or the model. 

Research gap 

Further research can be conducted using diverse datasets and various feature combinations to 

determine the common features that significantly influence classification accuracy across different 

datasets. Such exercise would reduce the necessity to depend on large amounts of data and complex 

algorithms to classify radiographic images. 
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