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Accuracy, machine  Autism Spectrum Disorder (ASD) is a childhood disability that interferes with social interaction and

learning, AlS, communication, as well as patterns of behavior. This paper introduces a method for the classification of

classification, Autism Spectrum Disorder (ASD) employing a Modified Artificial Immune System (M-AIS). The

mathematical model, proposed system improves the AIS by adding dynamic feature extraction and optimization that

and Markov chain.  improves the classification of sensory, motor and genetic condition related data. The model fits to
existing ASD diagnostic models that have shortcomings like static features classification and rigidity in
data features. The modified AIS uses clonal selection, mutation, and affinity maturation to refine
decision boundaries to increase diagnostic accuracy. The proposed system was evaluated on features
from ASD data; the system was accurate and fast in its classification. The modified AIS offered
improved real-time adaptability and highest 95.12% accuracy of the predictions thatis more robust than
existing machine learning models. This method is a good solution for early diagnosis of ASDs because
it offers clinicians a better, flexible instrument for testing existence of ASD features in people.

1. Introduction

Autism Spectrum Disorder (ASD) is a permanent neurological disorder characterised by problems in
communication, interaction, and repetitive or persistent behaviours. It is manifested by impaired
speaking, writing, gestures, and comprehension of ideas and feelings, as well as by repetitive actions
[1]. The term ‘spectrum’ has been used because there are a wide variety of symptoms, skills, and
intensity with which individuals with ASD. ASD is best diagnosed in early childhood, with the onset
of symptoms in the second and third year of life but may be diagnosed later in life. Machine learning
and Artificial Intelligence have offered new possibilities for exploring big data connected to ASD.
These computational methods have the potential to enhance the ascertainment of the initial symptoms,
customize management strategies, and enhance the knowledge of the pathophysiology of ASD [2].
Scientists are now increasingly trying to use advanced statistical analysis techniques for analyzing
behavioural, genetic and neuroimaging data for better diagnosis of ASD [3].

ASD data analysis includes dealing with different types of data, behavioural data, neuroimaging data,
and genetics data, to gain a better understanding of ASD and increase diagnostic accuracy. This
information is gathered from clinical evaluation tools, structured and self-administered questionnaires
or observational research and then processed using statistical tools or artificial neural networks (ANN)
respectively [4]. Data pre-processing, cleaning, normalization, and dealing with missing values, which
is important before applying any analytical models. Subset selection methods are employed to
determine which are the most significant input variables, for example, social communication
impairments, stereotyped behaviours, or sensory concerns. Studies that have applied decision trees
(DT), support vector machines (SVM), and neural networks (NN) in machine learning have recorded
success in recognizing features that set ASD away from other developmental complications [5].

The nature of ASD and its wide range of possible manifestations within the spectrum makes high-
dimensional data analysis an intricate process. More complex approaches, including deep learning and
ensemble learning, are gradually becoming more popular to increase the correspondence of ASD
classification and the potential for individual assistance [6]. Metaheuristic learning algorithms are
optimization methodologies which are specifically engineered to reduce candidate solution problems.
They are being used more and more for the classification of ASD because of the nature and variability
of data on ASD. Most of the conventional machine learning approaches fail to work well for high-
dimensional and noisy data that are inherent to ASD [7].
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Several metaheuristic optimization algorithms such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) techniques in which feature selection,
model parameters or classifiers’ performances can be optimized [8]. It would therefore appear
reasonable to be able to understand the metaheuristic learning algorithms as working by searching the
solution space more efficiently thus not getting trapped in local optima which is disadvantageous to
the conventional machine learning algorithms. They are especially useful when sorting and
categorizing ASDs where there are large and multiple data sets that need to be exploited fully
regarding their features [9]. For instance, the hyperparameters of neural networks, or the performance
of the ensemble models that will improve the classification can be optimized by the metaheuristic
algorithms.

The use of metaheuristic learning algorithms in the classification of ASD is necessitated by the
characteristics of ASD data [10]. ASD is frequently structured with numerous variables concerning
behaviour, cognition, and genetics, and it is challenging to train a standard machine learning
technique that extracts meaningful patterns without overfitting or losing generality [11]. Metaheuristic
algorithms become a viable solution when global search algorithms are included to perform feature
selection and model training. A problem with this classification is that the symptoms in ASD are quite
diverse and hence it cannot be easily categorized into a particular model.

Metaheuristic algorithms can be used to fine-tune the selection of the features to the specific
individuals with ASD in different subgroups. This flexibility leads to more accurate and detailed
classifying models. ASD datasets are noisy and missing some values, which may affect the
performance of conventional classification methods. Metaheuristic algorithms are less vulnerable to
such problems as they can perform global optimization, and can easily look for an optimum solution
within large, noisy search space. This leads to models of greater accuracy that are constructed to
address characteristics of the data associated with ASD [12].

The metaheuristic learning algorithms can enhance the classification models of the ASDwhich
increases the possibilities of better generalization in other data sets that eventually turn out to be very
helpful for the early screening of the ASD and formulation of individual educational plans. This
requiresthe identification of models that reflect the relationships between the ASD manifestations,
behaviour, and neural elements of the disorder.

Artificial Immune System (AIS) a biologically inspired computational model is incorporated in the
classification process of ASD to enhance the performance by minimizing feature selection and
maximizing detection as well as prediction [13]. The algorithms, like clonal selection, and negative
selection models of AlSs, can categorize ASDs based on identifying the irregular pattern in the data.
AIS can be characterized by a high level of flexibility and stability when working with many features
and great data complexity of ASD, which allows for maximising the classification performance and
increases the accuracy of the diagnostics [14].

The research article for ASD classification using AIS is organised as follows: the overview of ASD,
need for ASD classification and AIS for ASD is detailed in Section 1, the recent comprehensive
analysis with research gap and how it is addressed by proposed Modified AlS is discussed in Section
2, the proposed Modified AIS (M-AIS) for ASD classification is given in Section 3, experimental
analysis with discussion is given in Section 4, and the article is concluded with further research
direction in Section 5.

2. Related Works

Harrison et al., 2021 explored the motor and sensory qualities in ASD classification. Sensory features
were integrated with RDoC features by support vector classification, and the diagnostic accuracy was
significantly enhanced. Sensory features did a good job of differentiating ASD from DCD when used
by themselves. The study is crucial for decoding the ASD phenotype and improving the RDoC
framework’s diagnostic classification of sensory and motor atypicality’s [15].

To diagnose Autism Spectrum Disorder (ASD), Andrade et al. (2021) suggested a machine learning
and verbal decision analysis protocol. The hybrid methodology is expected to improve efficiency
since criterion in the existing protocols like the ICD-10 can be refined. Using the machine learning
models, the study enhanced diagnostic accuracy and shortened the evaluation period. The proposed
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approach was evaluated on a dataset of diagnosed individuals in Brazil, and the results indicate the
possibility of using the approach for early ASD diagnosis [16].

Sterrett et al. (2024) examined the application of functional classifications of autism in adulthood. In
the clinical interviews, they developed descriptions of the characteristics of autistic adults in form of
vignettes. Three clinicians from expert settings used a feature list to sort the participants in terms of
support requirements and found that the autism spectrum has discernible subgroups. These subgroups
were compared with other types, for example, Profound Autism, also pointing to the need for
dichotomous classifications in research and practice [17].

Ismail et al. proposed a new hybrid ensemble-based classification model, known as HEC-ASD, for the
prediction of ASD genes using gene ontology data. The identified genes were predicted using HGS
methods and gradient boosting machines to improve ASD gene prediction. When compared with the
previous gene network-based model, the HEC-ASD model achieved the high classification accuracy
of 88% evaluated by the SFARI gene database of ASD, which underlines the potential and efficiency
of the ensemble learning in the prediction of ASD genes [18].

In their recent study, Kim et al. (2022) employed multimodal MRI data to differentiate children with
low-functioning ASD at a preschool age. Based on T1-weighted MRI and DTI data, the machine
learning model was highly accurate with ASD classification, with 88.8% correct classification rate
compared to typically developing controls. It was also found that cortical thickness and diffusion
parameters are the features that are significant to the model. Finally, the study focused on the use of
multimodal MRI analysis for early diagnosis of ASD and stressed on the neuroimaging
techniques[19].

Farooq et al.(2023) used federated learning (FL) in the diagnosis of Autism Spectrum Disorder (ASD)
in children and adults through the use of machine learning models. FL was used for training local
classifiers (logistic regression and support vector machine) before the results were combined at the
central server. FL model pointed to a 98% accuracy in children, and 81% in adults, proving that FL is
capable of diagnosing ASD without compromising data privacy[20].

Liao et al. (2022) built a hybrid deep learning model using both EEG and eye fixation and facial
expression signals for ASD classification in children. A weighted Naive Bayes classifier was trained
with 87.50% classification accuracy on the given data. The study thus opens up the guestion of the
benefits of combined physiological and behavioral data in enhancing the diagnosis of early stage
ASD, with EEG being the most discriminative[21].

The research gaps in this literature point to a need for better combination of motor and sensory
aspects, accurate early identification procedures, and enhancement of genetic and neuroimaging
methods for Autism Spectrum Disorder (ASD) categorization. real-time and dynamic features of
sensory-motor classification were not addressed by Harrison et al. (2021) [15] and more effective
optimization methods were required for early-stage identification by Andrade et al. (2021) [16]. These
shortcomings can be mitigated by mathematically modifying AIS by incorporating dynamic feature
extraction and classification techniques which respond to variations in sensory-motor signals.

These self-learning features make this system capable of enhancing more rigid approaches to machine
learning, for example, support vector classification, where the decision boundary can be tweaked
according to dynamic patterns in sensory data. AIS also incorporates gene-based models for correct
identification of ASD, where immune-inspired techniques are included to enhance the ensemble
learning models. This approach improves classification accuracy and time and can be used for early
diagnosis of ASD.

3. Proposed Methodology- Classification using Modified Artificial Immune System

This section explains the classification of Autism Spectrum Disorder (ASD) using Mathematically
Modified Artificial Immune System (M-AIS). Initially, the data is processed using feature scaling and
dimensionality is handled using Principal Component Analysis (PCA). Further, the processed data is
utilized in classification based on diverse class labels and the overall methodology is given in Figure
1.
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Figure 1. Overall Research Methodology
3.1.Pre-Processing and Feature Selection
Feature scaling is an essential component of preprocessing, which is needed when the data is given to
machine learning models. When using this dataset feature scaling is applied to prevent features with
large scales or units from influencing the model more than the other features. For instance, the
answers to the questions in M-CHAT are on different scales and when the scales are not well-adjusted,
the model is skewed. Two popular scaling methods are used, which includes normalization and
standardization. Normalization makes the features between 0-1 while Standardization makes the data
have a mean of 0 and standard deviation of 1. It also helps to balance between the features because
none of them are allowed to dominate the learning process.
Principal Component Analysis (PCA) is used to reduce the dimensionality of the dataset once again.
PCA seeks to find the direction along which most of the data variation exists thus allows one to
concentrate on the most prominent data features. The first principal component (PC1l) has a
reasonable amount of data spread having a score of — 3.2791547 to 3.2677400. The second component
(PC2) which contributes to the second largest variance varies between -4.6311653 and 1.5933235.
The next components PC3 to PC5 account for minor variation. This works for reducing the
dimensionality of the model and in effect offers accuracy in the important features which are essential
for correct classification while reducing general information otherwise that can be overwhelming to
the model.
3.2.Classification
The idea behind the AIS mimics the workings of the biological immune system to resolve
computational problems. The AIS consists of several key processes: The model usually includes
algorithms such as Negative Selection and Clonal Selection to represent recognition as well as
response capabilities. Fusing the Clonal Selection Algorithm (CSA) with the Immune Network Model
(INM) and Mathematically Modified Markov Chains (MMC) can boost diversity where the memory-
based learning in tasks of optimization and classification. Joining the interaction and memory
characteristics of the immune system with Markov chains' stochastic state changes will craft a more
efficient algorithm for autism severity categorization (Mild Autism to Severe Autism). The CSA is the
essential element by developing replicas of highly effective antibodies and enhancing their efficacy
through mutations. The Immune Network Model (INM) creates interactions among antibodies that
stimulate and suppress one another and promotes diversity while preserving long-term memory. MMC
controls the movement between distinct states or solutions by reflecting past data probabilities which
facilitates better prediction accuracy and aids in tweaking mutation processes. In a multi-step
approach this model allows each antibody (classifier) to diversify and mutate driven by both the
interactions within the network (from INM) and state alterations (from MMC).
Antibodies and its State Initialization
Let A indicate the antibodies population {ai, az, as, ...... , an}, Where the severity of autism is
categorized antibody a; is given as four states as S = {S,, S1, S2, S3}. where S, indicates no autism, S;
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indicates mild autism, S,indicates moderate autism, and S5 indicates severe autism.Every a; antibody
is related with a categorisation state S; that is determined by a probabilistic transitionis given in
Equation 1.

P(Silay) = {pio, Pir, Dizs Piz}----- @

where p;; indicates the antibody probability a; that categorize the input information into S;.

The affinity function measures how well an antibody will fit the input data we are working with.
However, the immune network provides the stimulation and suppression interactions which are not
considered in the machine learning model. The antibody function for antibody is given in Equation 2.

f (@ %) = g )

1+d(a;x)
where d(a;,x) is the distance between the antibodya; and inputx, that is the measure of the
differences between them.

The network interaction matrix is given in Equation 3.

A = [ay] ——(3)
The simulation function in the network is given in Equation 4.
S(a;,a;) = a - e PHUWAD e (4)

where a and f are constant values and the distance among antibodies a; and a; is d(a;, a;).
The suppression function is given in Equation 5.
1
P(al' a]) - y ' 1+d(ai,a]‘) (5)
where the suppression intensity is indicated by y controls.
The concentration update for every antibody is given in Equation 6 and it update the concentration
based on interactions among the network.
clap) =cla) + ;S (as, aj) - 2P (ai:aj) “““““ (6)
A stochastic matrix P represents the transition from these classification states based on the historical
records. Originally each antibody goes through state transitions according to past data. Let P=[p;] be
the Markov transition matrix, where pjj is the probability of moving from state S; to state S;. This
Markov chain transition is expressed in Equation 7.
Poo Po1 Po2 DPos
_ P10 P11 P12 P3|
P= P20 P21 P22 P23 )

P3o P31 P32 P33 -
Every element pj; satisfies the condition

zpijzl

j
The state transition probability for antibody a;, the probability of transitioning from state S; to state S;
is given by Equation 8.

These transition probabilities affect the mutation process so that antibodies are guided to states
observed in the state transition process. For example, if, from one time to the other, a classifier
frequently changes from Mild to Moderate, the Markov chain will help to mutate to the Moderate
state when classifying the similar patients.

Cloning and mutation

Cloning and mutation are two of the activities of the clonal selection, which has been extended in this
paper to include state transitions and network effects. High-performing classifiers (antibodies with
high concentration c(ai)) are cloned. The number of clones C; is proportional to their affinity and
concentration is given in Equation 9.

G =a-f(a,x) c(a;) - 9)

where the scaling factor is indicated by «.

The mutation rate y;is regulated by both the states namely Markov and affinity state of transition
probabilities is given in Equation 10.
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Hi = s P(Si, ) s (10)

where P(S;,S;) is the Markov transition probability from state S; to state S;.

The mutated clones A'={a.’,a.’,...,an"} are generated as in Equation 11.

A= {a;|u; f(a;, %) - €(a;) = T)mmmmmv (11)

Mutations are performed on the cloned antibodies. Here, the dynamics of mutation rates are regulated
by Markov chains considering transition probabilities. Any antibodies that are expected to change
frequently between specific states will change its structure to favour such states. This makes it
possible for the mutation process to search for new classifications at the same time as it keeps the
likely state transitions.

Selection and Network Adjustment
During the selective cloning and mutation, the affinity of each antibody is retested again. High-
affinity antibodies are taken forward to the next generation. The new generation of antibodies Anex:
selected based on affinity and network interactions is given in Equation 12.
Apext = select(AUA") --------- (12)
Such that
f(a;,x) +c(a;) =6
Where 6 is considered as a selection threshold.
The final affinity function integrates both the immune network model and the Markov chain state
transitions that is given in Equation 13.
f'(al-, X) = f(ai,x) + Al Z] S(ai, a]) - AZ Z] P(ai, aj) + A3P(ai, aj) """"" (13)
where the weight factors namely stimulation, suppression, and transition state are indicated by A4, 15,
and A5, respectively.
The transition probability from no autism to mild autism is given in Equation 14.
P(811S,,a;) = poy=-------- (14)
The probability for severe autism from mild autism is given in Equation 15.
P (85181, a;) = pyz-—-—----- (15)

The immune network is modified, considering new values of stimulation and suppression for the new
population. Markov chain is again modified with the latest classification behaviour to enhance the
transition probabilities. This is accomplished by this hybrid affinity function which guarantees that
only the best antibodies are chosen while the interactions and state transitions of the population
controls the population dynamics.

No Autism to Mild Autism Transition: An antibody a; may be highly selective of classifying as No
Autism. If Markov chain analysis makes transitions between No Autism and Mild Autism as common,
then mutations make a; classify similar cases as Mild Autism. Classifiers for similar cases are
antibodies so they can help each other that become more forceful while keeping the variety of
classifiers down by suppressing and mutating them. Such integration improves CSA since it combines
the memory of the immune network and the maintenance of diversity, with the state transition model
of Markov chains. This hybrid system is especially suitable for classification problems such as Autism
severity, as the interactions between classification states can have a prominent impact on the
performance of the algorithm over time.

4. Result and Discussion

The data collected for this study was obtained through 550 parents’ and caregivers completed
Modified Checklist for Autism in Toddlers (M-CHAT). These responses are useful in establishing the
biomarkers of Autism Spectrum Disorder (ASD) during infancy and toddlerhood. The M-CHATIs an
assessment of early manifestations of ASD, which makes it possible to investigate how particular
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behavior in a child can be associated with the disorder. In this case, the data must be split into several
sets so that it can have an accurate training, validation and test set to avoid over-fitting and improve
model generalization.

This paper follows a training, validation, and test-data ratio of 60:20:20 whereas such division of data
helps the model to get enough variation to learn from and generalize without memorizing details from
the training set. This task and testing can be instrumental in assessing performance on new-data and
tuning the parameters of the model. To increase the size and quality of the dataset, synthesized data is
produced using statistical characteristics obtained from 550 responses. The synthetic data and the
original dataset are then analyzed using the newest version of R, which is the programming language
mostly used for statistical computing and machine learning.

The emphasis of the study is to assess the effectiveness of the proposed M-AIS algorithm for solving
a given problem. This algorithm is evaluated on the M-CHAT dataset using several performance
indicators including accuracy, precision, recall, F1 score, sensitivity, and specificity. These metrics
give a complete depiction of the algorithm classification characteristics, and crucial for evaluating the
algorithm’s ability to diagnose ASD. The effectiveness of the M-AIS algorithm is evaluated against
the existing methods, namely DT, HEC-ASD, and FL.

4.1, Performance Metrics

Accuracy is the ability of the model in the differentiation of precise incidence or cases from the
imprecise or rather unrelated ones, providing overall efficiency. Recall tests the validity of the model
in correctly classifying all the children with autism. Recall is the interest of the total population of
individuals with ASD that the model canacquire, or the ability of the model to correctly identify ASD
people. The F1-score integrates precision and recall for a balanced measure, and is valuable when the
data classes are imbalanced. Sensitivity, another performance measurement index, represents the
likelihood with which the model discerns the total correct persons with autism. This is well
understood in clinical diagnosis because a false negative outcome can be counterproductive.
Specificity shows the model’s ability to capture the children without autism correctly while
minimizing misidentification. This result can assist in constructing more accessible and accurate ASD
diagnostic tools, which is a severe deficiency in early childhood.

True Positive+True Negative
Accuracy = — , — , ----(17)
True Positive+True Negative+False Positive+False Negative
. . True Positive
Precision = — — (18)
_ True Positive+False Positive
F1l = 2xPre.c‘L'.910n><Recall (19)
Precision+Recall o
Sensitivity = frue Positive : (20)
True Positive+False Negative
s e True Negative
Speaflczty " True Positive+False Positive (21)
Table 1. Comparison of Accuracy
Sample Count DT HEC-ASD FL M-AIS
100 83.02 79.56 81.23 89.67
200 83.67 81.43 82.7 90.89
300 84.45 82.3 84.3 91.53
400 85.82 82.9 85.66 93.46
500 86.88 84.09 86.2 95.12
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Figure 2. Comparison of Accuracy
In Table 1, the results of experimental comparison of M-AIS are accomplished with three existing
methods include Decision Tree (DT), Hybrid Ensemble based Classification for Autism Spectrum
Disorder (HEC-ASD), and Federated Learning (FL). This shows that the M-AIS performs higher in
terms of accuracy in all cases of sample sizes. 87% for 100 samples, 95.12% for 500 samples, which
is much higher than DT’s value of 86.88% and HEC-ASD’s value of 84.09%. From this it can be
deduced that M-AIS can provide a better classification of ASD data. The further incremental
improvements in the accuracy depicts good generalization properties of the M-AIS approaches
particularly when the sample size is large.

Table 2. Comparison of Precision

Sample Count DT HEC-ASD FL M-AIS
100 86.71 82.23 83.14 90.56
200 86.96 82.34 83.27 90.9
300 87.61 83.46 83.92 91.45
400 88.85 84.54 84.33 92.2
500 89.19 85.09 85.62 93.67

Comparison of Precision (%)
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Figure 3. Comparison of Precision
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SEBPY

Table 2 depicts the precision metrics and like in the previous results, M-AIS outcompeted the other
methods. For example, with 100 samples, M-AIS reaches the highest precision of 90.56% while DT,
HEC-ASD, and FL have lower, scores of 86.71%, 82.23% and 83.14% respectively. This difference
remains consistent in relation to the sample sizes, and with M-AIS achieving 93.67% precision at 500
samples. High precision means that M-AIS has fewer false positives than other classifiers, and thus
M-AIS is a better classifier for situations where the false positive rate is expensive since it is vital in
diagnosing the diseases.
Table 3. Comparison of F1-Score

Sample Count DT HEC-ASD FL M-AIS
100 88.91 84.7 85.63 92.88
200 89.03 84.93 86.88 93.16
300 89.9 85.46 87.09 93.55
400 91.9 86.12 87.83 94.58
500 92.56 86.99 89.01 94.91
Comparison of F1-Score (%)
N DT

60

°

[o]

@

o a0

20 4

100 200 300 400 500
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Figure 4. Comparison of F1-Score
In Table 3, the F1-Score, indicates precision as well as the recall in the same model, and reasserts the
efficiency of M-AIS. The performance of the proposed method on 100 samples is as follows: M-AIS:
92.88%, DT: 88.91%, HEC-ASD: 84.7%, and FL: 85.63%. The F1-Score for the M-AIS approach
remains consistently higher in all cases and the score reaches a 94.91% at 500 samples. This shows
that the model does not have a problem in handling imbalances in class by affording the right balance
in precision and recall.

Table 4. Comparison of Sensitivity

Sample Count DT HEC-ASD FL M-AIS
100 88.71 85.03 83.18 90.9
200 88.82 85.23 84.49 91.7
300 89.46 85.59 85.47 92.4
400 89.69 86.22 86.04 92.66
500 90.12 87.3 86.33 93.1
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Sensitivity is shown in Table 4 and reflects the model’s performance in correctly predicting true
positive, that is, people with ASD. M-AIS has the highest sensitivity, 90.9% at 100 samples and
93.1% at 500 samples, better than DT 90.12%, HEC-ASD 87.3%, and FL 86.33%. M-AIS has a high
sensitivity thus rare cases of ASD are likely to be overlooked, making it a very efficient tool whenever
detection of ASD cases must be accurate.

Table 5. Comparison of Specificity

Sample Count DT HEC-ASD FL M-AIS
100 4.56 3.12 3.85 10.23
200 5.33 3.54 4.16 11.25
300 7.45 5.76 5.01 15.45
400 8.63 8.97 6.9 10.56
500 9.15 9.32 7.46 12.17
Comparison of Specificity (%)
.
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14+ mmm FL
s M-AIS
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Figure 6. Comparison of Specificity

500

Table 5 represents specificity which measures the ability of the model to correctly categorize negative
class (people without ASD). More specifically, using M-AIS is both more accurate and efficient than
the other methods explored here, especially when the sample size is small. For 100 samples, M-AIS
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yields 10.23% specificity while DT is 4.56%, HEC-ASD is 3.12%, FL is 3.85%. This trend goes on
and on as the number of samples increases, M-AIS is 0.1217 at 500 samples for instance. Greater
specificity means that the M-AIS avoids high number of missed rates, making it a well-rounded and
highly reliable classifier that does not generalize too many people as non-ASD. In each of the
accuracy, precision, F1-Score, sensitivity, and specificity measures M-AIS provides a stronger
classification of ASD than DT, HEC-ASD or FL. Because it performs well even when there is a
variation of sample size, it is more accurate and efficient for diagnosing ASD.

5. Conclusion

Autism Spectrum Disorder (ASD) affects children’s social interactions, communication, and their
behaviors. This paper proposes the classification of ASD through a newly developed method known
as the Modified Artificial Immune System (M-AIS), as it also improves the extraction and
optimization of features. The dynamic aspect of M-AIS overcomes the shortcomings of the diagnosis
model by implementing the clonal selection, mutation, and the affinity maturation for fine tune of the
decision boundary. The proposed system has a high accuracy rate of 95.12%, and is more flexible and
efficient than most other machine learning models. These improvements in accuracy and flexibility
make M-AIS a useful tool in the early identification of ASD and provide clinicians with a more
accurate and real-time adaptable means of identifying ASD traits. The M-AIS framework that avoids
the drawbacks of traditional static models can become the basis for a radical rethinking of the
diagnostics of ASD within the framework of pediatric healthcare practice on a large scale, with high
accuracy and efficiency.

Future upgrades can explore a bigger sample size by including various resources, though it is also
possible to include multimodal data such as EEG, MRI, or genetic data to classify individuals with
ASD accurately. Additionally, switching some of the activities to deep learning models or applying
hyperparameter optimization steps will increase M-AIS performance. Other potential areas of
adaptation might also encompass the incorporation of federated learning frameworks aimed at
maintaining privacy whilst sharing global learning models as an approach to construct safer and more
distributed diagnostic systems.
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