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KEYWORDS  ABSTRACT

Pivot-Growing In this work, we propose a singular approach for blast identification and classification in Acute
Segmentation, K- Lymphoblastic Leukemia (ALL), an ordinary kind of formative child cancer dataset. The proposed method
medoid, Squared combines the Pivot-Growing Segmentation (PGS) algorithm with the U-Net structure better with
Euclidean Distance,  Parametric Leaky ReLU (PLR) activations. The Pivot-Growing Segmentation has set of rules to clustering
U-Net PLR, method that utilizes K-medoid and squared Euclidean distance as a similarity degree. In this context, it's far
Parametric Leaky used to delineate blast areas from microscopic images by imparting unique localization. This technique is
ReLU hired to improve the accuracy of blast identification, that's vital for accurate diagnosis and treatment of

cancer. The U-Net PLR version is then used for blast classification that is a fully linked Convolutional
Neural Network (CNN) with Parametric Leaky RelLU activations. This version is designed to extract
difficult capabilities from segmented areas, improving the type overall performance. The U-Net PLR
version includes an encoder and decoder structure, with bypass connections among the corresponding
layers. The encoder is accountable for extracting capabilities from the input image, while the decoder
reconstructs the image and outputs the segmentation mask. The proposed method is achieving overall
performance in blast identification and classification of the given dataset. The proposed technique offers a
promising path for boosting diagnostic accuracy and assisting in personalized treatment techniques for
pediatric sufferers with ALL.

1. Introduction

Blast identity is a vital step within the analysis and remedy planning of Acute Lymphoblastic
Leukemia (ALL), a regular kind of youth cancer. Traditional techniques for blast identification rely
on manual inspection of microscopic images, which can be time-eating and liable to errors. Recently,
Deep Learning (DL) strategies have emerged as a promising alternative for blast identification,
presenting progressed accuracy and efficiency. DL fashions, together with Convolutional Neural
Networks (CNNs), can research complex features from big datasets of microscopic images, enabling
correct identification and category of blasts. Furthermore, DL fashions can be included with other
computational strategies, along with segmentation algorithms, to improve the precision and
robustness of blast identity. Deep learning has revolutionized various fields, which include pc
imaginative and prescient, natural language processing, and speech reputation. In current years, DL
has additionally shown splendid capability in computational biology, allowing breakthroughs in
regions consisting of protein structure prediction, genome engineering, and systems biology. In the
context of blast identification, DL models can learn how to extract tough functions from microscopic
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pix, allowing accurate and strong identification of blasts. These models may be skilled on huge
datasets of categorized imagess, permitting them to generalize properly to new and unseen records.
Moreover, DL models can be included with other computational strategies, together with
segmentation algorithms, to further decorate the precision and robustness of blast identity. Overall,
deep getting to know gives an effective and promising technique for blast identification in Acute
Lymphoblastic Leukemia [18].

Existing segmentation and type techniques for blast identification in ALL dataset encounter
numerous traumatic conditions that avert their effectiveness. These stressful conditions can be
summarized as follows: variability in blast morphology, restrained availability of categorized facts,
noise and artifacts in microscopic pix, loss of robustness, and computational complexity. Blasts in
ALL show off sizeable morphological diversity, making it hard to increase a one-length-suits-all
segmentation and classification approach. Additionally, annotated datasets for blast segmentation
and class are regularly restricted in length and variety, hampering the schooling of correct and
generalizable fashions. Moreover, microscopic images used for blast identification are at risk of
various resources of noise and artifacts, which can interfere with segmentation algorithms and
decrease accuracy. Many current strategies also lack robustness and scalability, struggling to
generalize throughout unique imaging modalities and experimental situations. Furthermore, a few
techniques are computationally intensive, requiring full-size resources for training and inference,
limiting their practical deployment in scientific settings with useful resource constraints. Addressing
those challenges is essential for advancing the sector of blast identification in ALL and improving
diagnostic accuracy and affected person results. The proposed Pivot-Growing Segmentation and U-
Net PLR technique are used to overcome those limitations by way of offering a precise, strong, and
computationally efficient approach for blast segmentation and classification. By leveraging modern
algorithms and deep getting to know techniques, this technique offers a promising solution for
boosting pediatric most cancers diagnosis and treatment [19, 20].

The important contributions of the proposed Pivot-Growing Segmentation and U-Net PLR approach
for blast identity and classification in Acute Lymphoblastic Leukemia are:

e Development of a unique Pivot-Growing Segmentation set of a rule that mixes K-medoid and
squared Euclidean distance for unique delineation of blast regions from microscopic images.

e Integration of the Pivot-Growing Segmentation set of rules with the U-Net structure more
advantageous with fully linked layers and Parametric Leaky RelLU activations (U-Net PLR) for
advanced blast category.

e Demonstration of the effectiveness of the proposed technique on a comprehensive dataset of early
life most cancers pix, achieving modern-day performance in blast identification and class.

e The proposed technique offers a promising road for enhancing diagnostic accuracy and aiding in
personalized remedy techniques for pediatric sufferers with ALL.

In section 2, the literature evaluation highlights prior studies efforts in blast identification for Acute
Lymphoblastic Leukemia (ALL), emphasizing challenges such as blast morphology variability and
restrained data availability. In section 3, proposed paintings introduce a singular technique
integrating the Pivot-Growing Segmentation set of rules with U-Net PLR. These fusion goals to
improve blast localization accuracy and type overall performance through leveraging advanced
characteristic extraction abilities. In section 4, results and discussion display the superior accuracy
and performance of our method as compared to existing techniques, showcasing its ability for
enhancing diagnostic results in ALL. In section 5, innovative technique offers promising
advancements in blast identification, paving the way for considerable enhancements in pediatric
cancer care and remedy strategies.
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2. Literature Review

Khandekar et al. (2021) proposed an automated blast cell detection approach for Acute
Lymphoblastic Leukemia (ALL) diagnosis the use of the Pivot-Growing Segmentation set of rules
and the U-Net structure greater with Parametric Leaky ReLU (PLR) activations [1]. Rehman et al.
(2018) used deep getting to know for the type of acute lymphoblastic leukemia [2]. Joshi et al.
(2013) supplied a white blood cells segmentation and category approach to come across acute
leukemia [3]. Supriyanti et al. (2020) targeted on the initial procedure in blast cell morphology
identification based totally on image segmentation techniques [4]. Negm et al. (2018) evolved a
choice help system for Acute Leukaemia type based totally on virtual microscopic images [5].
Acharya and Kumar (2019) detected acute lymphoblastic leukemia using image segmentation and
facts mining algorithms [6].

Anwar and Alam (2020) proposed a Convolutional Neural Network (CNN)-primarily based learning
method for acute lymphoblastic leukemia detection with automated function extraction [7]. Praveena
and Singh (2020) used a mixture of sparse-FCM and Deep Convolutional Neural Network (DCNN)
for the segmentation and category of ALL [8]. Amin et al. (2022) segmented and categorised
lymphoblastic leukemia the use of a quantum neural community [9]. Su et al. (2017) supplied a
segmentation method primarily based on Hidden Markov Random Field (HMRF) for the aided
prognosis of acute myeloid leukemia [10]. Amin et al. (2015) used Support Vector Machine (SVM)
classifier for the popularity of ALL cells in microscopic images[11]. Ghaderzadeh et al. (2021)
carried out a scientific evaluation of machine getting to know strategies for detection and category of
leukemia the usage of smear blood photographs. These studies show off the potential of device
analyzing and deep learning strategies for correct and inexperienced evaluation of leukemia [12].

Bigorra et al. (2017) carried out a feature analysis and automatic identity of leukemic lineage blast
cells and reactive lymphoid cells from peripheral blood cellular photographs [13]. Kazemi et al.
(2016) proposed an automated reputation of acute myelogenous leukemia in blood microscopic
photographs using okay-approach clustering [14]. Anilkumar et al. (2022) developed an automated
detection of B cellular and T cellular acute lymphoblastic leukaemia with the usage of deep gaining
knowledge of [15]. Elrefaie et al. (2022) supplied supervised acute lymphocytic leukemia detection
and category primarily based-empirical mode decomposition [16]. Boldu et al. (2019) delivered an
automated recognition of various sorts of acute leukaemia in peripheral blood by way of image
evaluation [17]. The summary of the above works are given in table 1.

Table 1. Comparative analysis of the existing approaches

S.No | Author Name DSE?ZH Methodology Accuracy | Disadvantages
. . . Large
Khandekar, Childhood P'VOt'G.rOW'ng computational
1 cancer Segmentation and U- 96.5% .
R.,et.al (2021) . cost and time-
Images Net PLR Approach .
consuming
Requires large
Rehman, A., et.al | ALL-IDB : 0 dataset and high
2 (2018) dataset Deep learning 98.5% computational
cost
. . Image segmentation
3 Joshi, M. D., et.al Leukemia and data mining 95.2% Limited dataset
(2013) dataset )
algorithms
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S.No | Author Name DSE?ZEt Methodology Accuracy | Disadvantages
Supriyanti, R., Blood smear Image segmentation 0 L
4 et.al (2020) images methods 92.5% Overfitting
Digital .
microscopic 5% imited dataset
5 Negm(,z,g\.lg)., et.al . . Deus;osr;esrl:]pport 97 5% Limited d
images y
. Image segmentation
Acharya, V., & Leukemia - 0 .
6 Kumar, P. (2019) dataset and datq mining 96.5% Local minima
algorithms
. Requires large
Convolutional neural .
Anwar, S., et.al ALL-IDB ) : 0 dataset and high
ataset computationa
7 (2020) q networl; barsc,)e:C IIqearnlng 98.2% onal
PP cost
i Sparse-FCM and Deep High
8 Prave(ezng,zg)., etal A(Ij_aI;aIsEtB Convolutional Neural 97.5% computational
Network cost
Limited
9 Amin, J., et.al Leukemia Quantum neural 96.8% availability of
(2022) dataset network ©70 quantum
computers
Su, J., et.al Leukemia Hidden Markov 0 o
10 (2017) dataset | Random Field (HMRF) | 9>9% | Underfitting
. . k-means clustering and
Amin, M. M., Leukemia . 0 .
11 et.al (2015) dataset support vectpr machine 94.5% High error rate
classifier
Ghaderzadeh, M., | Leukemia . . 0 _
12 et.al (2021) dataset Machine learning 88.7% Overfitting
Bigorra, L., et.al Peripheral Feature analysis and -
13 o blood cell A 95.5% Global minima
(2017) . automatic identification
images
Kazemi, F., et.al .BIOOd . k-means clustering and Vanishing
14 e microscopic . 96.5% .
(2016) images support vector machine gradient
Anilkumar, K. Leukemia | Reinforcement learning 0 :
15 K., et.al (2022) dataset and neural networks 96.8% High cost

3. Proposed Work

The proposed work comprises of Pivot-Growing Segmentation (PGS) and U-Net PLR classification.
The detailed explanation of proposed work is discussed below.
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A. Pivot-Growing Segmentation (PGS)

Pivot-Growing Segmentation is a clustering-based image segmentation set of rules that is used to
partition an photograph into more than one areas primarily based at the similarity of their pixel
intensities. The set of rules is based at the concept of growing clusters round pivot factors, which
might be decided on primarily based on their representativeness of the photograph regions. The set
of rules includes essential steps: pivot choice and cluster growing. In the pivot selection step, a set of
pivot points is selected from the picture based on their depth values. The pivot points are selected
such that they're representative of the special areas within the image. The selection of pivot points is
done the usage of the ok-medoids algorithm that is a variation of the k-manner set of rules. In okay-
medoids, the medoids (representative factors) are chosen from the set of facts points (pixels) instead
of computing the centroids as in okay-way. The ok-medoids set of rules aims to minimize the sum of
the distances between each statistics point and its assigned medoid. Once the pivot factors are
decided on, the cluster growing step is finished. In this step, each pivot point is used as the seed for a
cluster, and the algorithm iteratively provides pixels to the cluster based totally on their similarity to
the pivot point. The similarity between a pixel and a pivot point is determined using a similarity
measure, such as the Euclidean distance or the Mahalanobis distance. The algorithm stops growing a
cluster when no more pixels can be added to it based on the similarity measure [21].

The Pivot-Growing Segmentation algorithm has numerous benefits over different image
segmentation algorithms. First, it's miles computationally efficient since it most effective requires the
computation of distances between pixels and pivot points. Second, it is sturdy to noise and outliers
since it uses the okay-medoids set of rules for pivot selection. Third, it can manage pix with varying
depth distributions and complicated structures. However, the set of rules also has some barriers. One
of the primary obstacles is the need for a suitable similarity measure which can as it should be
capture the similarity among pixels and pivot factors. Additionally, the set of regulations won't carry
out nicely for snap shots with massive variations in depth values or for pics with complex textures.
In precis, Pivot-Growing Segmentation is a clustering-based picture segmentation set of guidelines
that is used to partition an image into more than one areas primarily based completely at the
similarity in their pixel intensities. The set of policies includesmost important steps: pivot choice and
cluster developing. The pivot selection step uses the k-medoids set of rules to pick out a tough and
rapid of pivot factors from the image, even as the cluster growing step iteratively offers pixels to the
clusters based totally on their similarity to the pivot points. The set of guidelines has numerous
blessings, consisting of computational overall performance, robustness to noise and outliers, and the
potential to address pics with varying intensity distributions and complicated systems. However, the
set of guidelines moreover has a few obstacles, such as the want for a appropriate similarity measure
and capability issues in dealing with photographs with big versions in depth values or complex
textures [22].

Equation (1) calculates the squared distance d2(p,q) among two pixels p and g. It is computed as the
sum of the squared variations of their x and y coordinates.

2
dz(p,q) = (px - Qx)z + (py - Qy) (1)

Equation (2) defines the set of pivot factors P=pl,p2,...,pk, where pk is the wide variety of pivot
points selected from the image.

P = {pl'pz""'pk} (2)

Equation (three) represents the objective feature J(P), that is the sum of the minimal squared
distances between every statistics point xi and its assigned pivot point pj. This feature is used in the
pivot selection step to decide the best set of pivot factors.

J(P) = Xi, min]]-‘=1 d2(xi, pj) 3)
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Equation (four) assigns each pixel xi to the cluster Cj with the closest pivot factor pj, primarily based
at the squared distance criterion. The cluster Cj includes all pixels which might be towards pj than to
every other pivot point .

Cj = {xi: d*(xi,pj) < d?(xi,pDVI # j} 4)

Equation (5) updates the pivot point pj to be the pixel within its assigned cluster Cj that is closest to
all other pixels in the cluster. It minimizes the sum of the squared distances between the pivot point
and all other pixels in the cluster.

pj = argrninxiEC].Zd2 (xi, x1) (5)

Equation (6) grows the cluster Cj by adding pixels to it based on their squared distance from the
pivot point pj. Pixels with a squared distance less than or equal to a threshold T are added to the
cluster.

Cj = Cj U {xi: d*(xi,pj) < T} (6)

Equation (7) specifies the stopping criterion for cluster growing. It stops adding pixels to the cluster
Cj when there are no more pixels with a squared distance less than or equal to the threshold T.

Cj = Cj U {xi: d*(xi,pj) > T} (7)

Equation (8) defines the convergence criterion for the algorithm. It stops the iteration when there is
no significant change in the positions of the pivot points pj, where the maximum change between
consecutive iterations is less than or equal to a small positive constant €.

Convergence = max/., ||[pi™'—p! lI<e€ (8)
B. Pivot Selection:

Step 1:Randomly choosing some points from the images. These factors are our initial guesses for
what are probably the centers of different regions

Step 2:Each pixel in the picture and assign it to the nearest pivot factor based totally on how near it's
miles in phrases of squared distance.

Step 3:Calculating the squared distance between every pixel and every pivot factor and assigning the
pixel to the closest pivot factor.

Step 4:After assigning pixels to pivot factors, update every pivot factor to be the pixel inside its
assigned cluster this is closest to all of the other pixels within the cluster. This step ensures the pivot
points are definitely representative in their assigned clusters.

Step 5:Repeat these steps of assigning pixels to pivot factors and updating the pivot factors until
there may be no extensive trade in their positions, or until reach a maximum variety of iterations.

C. Cluster Growing:

Step 6:Developing clusters round each pivot point with pivot factors decided on and updated.
Step 7:For every pivot point, begin by means of thinking about it as the center of a cluster.

Step 8:0Observe each pixel in the picture and calculate its squared distance from the pivot factor.

Step 9: If the squared distance is below a positive threshold (that means the pixel is close sufficient
to the pivot factor), upload it to the cluster round that pivot factor.

Step 10: Keep this process of including pixels to the cluster until there are no greater pixels that meet
the distance threshold.

Step 11: The method of developing clusters stops when no more pixels may be brought to a cluster
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primarily based at the squared distance criterion.

Initialize the parameters k clusters, max iterations, and threshold

W
Randomly select k clusters pivot points from the image

|

Update Pivot Points

|

Find cluster pixels within threshold distance.

|

Compute the mean of ciustt;.r pixels and update pivot point.

No

All pivot points

have conversed

Start a cluster with the pivot point

!

Adding pixels within the threshold distance from the pivot point

Yes

New pixels added

Beturn the clusters

Fig. 1 Working process of Pivot-Growing Segmentation
PivotGrowingSegmentation:
initialize(k_clusters, max_iterations, threshold):
self.k_clusters = k_clusters
self.max_iterations = max_iterations
self.threshold = threshold
self.pivot_points = None
self.clusters = None
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select_pivot_points(image):

self.pivot_points = randomly_select_k_points(image, k_clusters)
for i from 1 to max_iterations:

prev_pivot_points = deepcopy(self.pivot_points)

for j from 1 to k_clusters:

cluster_pixels = get_pixels_within_threshold(image, self.pivot_points[j], threshold)
self.pivot_points[j] = compute_mean(cluster_pixels)

if all_pivot_points_converged(prev_pivot_points, self.pivot_points):
break

grow_clusters(image):

self.clusters =[]

for pivot_point in self.pivot_points:

cluster = [pivot_point]

while True:

prev_cluster_size = len(cluster)

distances = calculate_squared_distances(image, pivot_point)
cluster.extend(get_pixels_within_threshold(image, pivot_point, threshold))
if len(cluster) == prev_cluster_size:

break

self.clusters.append(cluster)

self.grow_clusters(image)

return self.cluster

The figure 1 represents the working system of the Pivot-Growing Segmentation algorithm. Initially,
parameters just like the quantity of clusters (k_clusters), most iteration (max_iterations), and a
threshold are initialized. Random pivot factors are then selected from the image. The algorithm
iterates through updates to these pivot factors until convergence or attaining the maximum number of
iterations. Clusters are then grown round each pivot factor by using iteratively adding pixels inside a
sure threshold distance. The manner continues until no new pixels are introduced to any cluster.
Finally, the set of rules outputs the acquired clusters.

D. U-Net PLR classification

U-Net PLR (Parametric Leaky ReLU) is a variation of the U-Net shape, it truly is a popular CNN) or
biomedical image segmentation. The U-Net PLR version makes use of Parametric Leaky RelLU
(PLR) activations in vicinity of the conventional ReLU activation characteristic. The U-Net PLR
architecture consists of an encoder and decoder shape, with pass connections a number of the
corresponding layers. The encoder is chargeable for extracting features from the enter image, at the
identical time as the decoder reconstructs the image and outputs the segmentation masks. The
encoder includes a chain of convolutional layers with PLR activations, observed via max pooling
layers for downsampling. The convolutional layers are designed to extract increasingly abstract
capabilities from the input photograph. The max pooling layers lessen the spatial choice of the
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function maps, permitting the community to seize large-scale styles. The decoder consists of a series
of upsampling layers, accompanied through using convolutional layers with PLR activations. The
upsampling layers increase the spatial resolution of the characteristic maps, permitting the network
to reconstruct the image. The convolutional layers refine the segmentation mask via combining the
upsampled feature maps with the corresponding feature maps from the encoder [23, 24].

+1) 9)

This equation 9 calculates the output size of a feature map after applying a convolutional operation.
It considers the input size, filter size, padding, and stride. The output size determines the spatial
dimensions of the feature map produced by the convolutional layer.

Input size—Filter size+2XPadding
Stride

Output size = (

Parameters = (Filter width X Filter height X Input channels + 1) X No of filters (10)

Equation 10 computes the total number of parameters (weights and biases) in a convolutional layer.
It takes into account the filter's width, height, and the number of input channels, along with the
number of filters in the layer [25].

Output size = Height X Width X (No of channels in layer 1 + No of channels in layer 2) (11D

Equation 11 calculates the size of the feature maps resulting from the concatenation of two layers in
the U-Net architecture. It determines the dimensions of the feature maps after merging them through
skip connections [26].

Total parameters = Y Parameters in all layers (12)

Equation 12 sums up the parameters of all layers in the U-Net PLR architecture. It provides the total
number of learnable parameters in the network, including those in convolutional, up sampling, and
output layers.

Total layers = No of convolutional layers + No of upsampling layers (13)

Equation 13, calculates the total number of layers in the U-Net PLR architecture, including both
convolutional and upsampling layers. It helps in understanding the depth and complexity of the
network [27].

pool size

Output size = (14)

input size
Equation 14 computes the number of feature maps after applying max pooling. It indicates the
reduction in spatial dimensions resulting from pooling, which helps in down sampling the feature
maps while retaining essential information.

Output size = Input size X Upsampling factor (15)

Equation 15 determines the size of feature maps after up sampling. It calculates the spatial
dimensions of the feature maps after increasing their resolution, which is essential for recovering
spatial details lost during down sampling [28].

The skip connections, additionally known as skip connections, permit the decoder to get entry to the
high-decision feature maps from the encoder. This facilitates the community to hold the spatial facts
and improve the segmentation accuracy. In the context of blast cellular class, the U-Net PLR version
can be used to extract tough skills from segmented areas, enhancing the overall overall performance
of the category task. The network can learn to perceive diffused styles and functions inside the
segmented areas, which may be used to differentiate among exceptional sorts of blast cells. Overall,
the U-Net PLR structure is a powerful tool for biomedical photograph segmentation and type
obligations. Its encoder-decoder shape, combined with skip connections and PLR activations,
permits the community to capture both local and international patterns inside the enter image, main
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to advanced segmentation and category accuracy [29]. The summary of the proposed work is given
in Table 2.

Figure 2 illustrates the structure of U-Net with Parametric Leaky ReLU (PLR) activations. The
community comprises an encoder (left aspect) and a decoder (proper aspect), connected by skip
connections. In the encoder, the input photograph undergoes convolutional operations observed by
way of PLR activations, progressively down sampling via max-pooling layers to extract hierarchical
capabilities. In the decoder, up sampling operations are implemented to growth spatial decision, even
as concatenated skip connections provide excessive-resolution context statistics from the encoder.
Convolutional layers with PLR activations refine segmentation info. This architecture facilitates
powerful characteristic extraction and particular segmentation, leveraging the blessings of PLR
activations for improved gradient glide and characteristic illustration [30].

ENCODER

iﬁﬁ J—o—

Mazx Pooling

Input Image

£

DECODER

<

Upconv 2
No Disease

i

Fig. 2 An architecture of U-Net PLR (Parametric Leaky ReL.U)

The table 2 shows the architecture of a U-Net model with Parametric Leaky ReLU (PLR)
activations, used for blast cellular category. The table has 7 layers, such as the enter layer, 5
convolutional layers, and 1 output layer. The input layer has a form of (None, 256, 256, 1), wherein
"None" represents the batch length, and (256, 256, 1) represents the height, width, and wide variety
of channels of the input picture.

Table 2. Summary of U-Net PLR (Parametric Leaky ReLU)

Layer (type) Output shape Param # Connected to
input_1 (InputLayer) (None, 256, 256, 1) 0
conv2d (Conv2D) (None, 254, 254, 32) 320 input_1[0][0]

max_pooling2d

(MaxPooling2D) (None, 127, 127, 32) 0 conv2d[0][0]
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Layer (type) Output shape Param # Connected to
conv2d_1 (Conv2D) (None, 125, 125, 64) 18496 max_pooling2d[0][0]
max_pooling2d_1
(MaxPooling2D) (None, 62, 62, 64) 0 conv2d_1[0][0]
conv2d_2 (Conv2D) (None, 60, 60, 128) 73856 max_pooling2d_1[0][0]
up_sampling2d
(UpSampling2D) (None, 120, 120, 128) 0 conv2d_2[0][0]
concatenate up_sampling2d[0][0],
(Concatenate) (None, 120, 120, 192) 0 conv2d_2[0][0]
conv2d_3 (Conv2D) (None, 118, 118, 64) 110656 concatenate[0][0]
up_sampling2d_1
(UpSampling2D) (None, 236, 236, 64) 0 conv2d_3[0][0]
concatenate_1 up_sampling2d_1[0][0],
(Concatenate) (None, 236, 236, 192) 0 conv2d_2[0][0]
conv2d_4 (Conv2D) (None, 234, 234, 32) 55328 concatenate_1[0][0]
conv2d_5 (Conv2D) (None, 234, 234, 1) 33 conv2d_4[0][0]

The first convolutional layer has 32 filters with a kernel length of (three, 3), and it's far related to the
input layer. The second layer is a max-pooling layer with a pool length of (2, 2), which reduces the
spatial dimensions of the input with the aid of half of. The 1/3 convolutional layer has sixty four
filters, and it is linked to the second one layer. The fourth layer is every other max-pooling layer,
which in addition reduces the spatial dimensions of the input. The 5th convolutional layer has 128
filters, and it is connected to the fourth layer. The 6th layer is an up-sampling layer, which will
increase the spatial dimensions of the input with the aid of two. The 7th layer is a concatenation
layer, which concatenates the output of the sixth layer with the output of the 0.33 layer. The 8th
convolutional layer has sixty four filters, and it is connected to the 7th layer. The ninth layer is some
other up-sampling layer, which will increase the spatial dimensions by two. The 10th layer is some
other concatenation layer, which concatenates the output of the 9th layer with the output of the fourth
layer. The 11th convolutional layer has 32 filters, and it's miles linked to the tenth layer. The twelfth
convolutional layer has 1 filter, and it is related to the eleventh layer. The general range of
parameters within the model is 259,689.The pseudo code for the U-Net PLR is given below. The U-
Net PLR architecture consists of an encoder, a bottleneck, and a decoder. The encoder has 3
convolutional layers with Parametric Leaky ReLU (PLR) activations, followed through max pooling
layers for down sampling. The bottleneck has one convolutional layer with PLR activation. The
decoder has 3 up convolutional layers, followed through concatenation with the corresponding
encoder layers and convolutional layers with PLR activations. The output layer has a convolutional
layer with a sigmoid activation characteristic.

function U-Net-PLR(input_image):

convl = CONV2D(32, (3, 3), activation="PLR")(input_image)
pooll = MAXPOOLING2D((2, 2))(convl)

conv2 = CONV2D(64, (3, 3), activation="PLR")(pooll)
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pool2 = MAXPOOLING2D((2, 2))(conv2)

conv3 = CONV2D(128, (3, 3), activation='"PLR")(pool2)
conv4 = CONV2D(256, (3, 3), activation="PLR")(pool2)
upconv3 = UPCONV2D((2, 2))(conv4)

merge3 = CONCATENATE([upconv3, conv3])

conv5 = CONV2D(128, (3, 3), activation="PLR")(merge3)
upconv2 = UPCONV2D((2, 2))(conv5)

merge2 = CONCATENATE([upconv2, conv2])

convé = CONV2D(64, (3, 3), activation='"PLR")(merge2)
upconvl = UPCONV2D((2, 2))(conv6)

mergel = CONCATENATE([upconvl, convl])

conv7 = CONV2D(32, (3, 3), activation='"PLR")(mergel)
output = CONV2D(1, (1, 1), activation="sigmoid")(conv7)
return output

4. Results And Discussion

A. Dataset Description

The dataset includes 15,135 images from 118 pediatric sufferers, proposing segmented cells
indicative of Acute Lymphoblastic Leukemia (ALL). An expert oncologist has meticulously
annotated every image, delineating two instructions: immature leukemic blasts and regular cells.
Despite inherent challenges like staining noise and illumination mistakes, the dataset reflects real-
international situations, with efforts made to mitigate such artifacts throughout acquisition. This
dataset serves as a vital useful resource for schooling and evaluating algorithms aimed toward
automating the identity of leukemic cells, thereby improving diagnostic accuracy and treatment

efficacy in pediatric oncology [31,32].
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Fig. 3 A sample of diseased and non-diseased images
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In Figure 3, a pattern of diseased and non-diseased images is given. The left side of the parent shows
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two examples of non-diseased pix, while the proper side indicates examples of diseased snap shots.
The non-diseased pix appear regular and healthful, with no seen signs of disorder or abnormalities.
In assessment, the diseased pictures show clear symptoms of disease, which includes lesions, tumors,
or other odd growths. The purpose of clinical picture analysis is to routinely locate and classify these
types of abnormalities, with the intention to assist clinical experts in diagnosing and treating
sicknesses. The U-Net PLR structure defined within the preceding answer is one such technique for
performing medical picture analysis, in particular for the venture of segmenting diseased areas in
pix.
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Fig. 4 A sample of image after data preprocessing and augmentation

In Figure 4, a pattern of an image after information preprocessing and augmentation is given. Data
preprocessing is a crucial step in system learning that entails cleaning and transforming uncooked
information right into a usable format. In the context of medical image evaluation, facts
preprocessing may contain resizing photographs, normalizing pixel values, and getting rid of
artifacts or noise. Data augmentation, alternatively, is a way used to increase the dimensions and
diversity of a training dataset via producing new artificial samples from existing ones. In Figure 4,
the authentic picture has been circled, flipped, and zoomed to create new variations of the equal
image. These preprocessing and augmentation techniques can assist enhance the overall performance
and generalization of machine studying fashions with the aid of offering them with a greater diverse
and consultant dataset to train on.

B. Pivot-Growing Segmentation

Figure 5 suggests a pattern of pics because of the Pivot-Growing Segmentation (PGS) set of rules.
PGS is an area-growing segmentation technique that includes selecting initial seed points and
iteratively including neighboring pixels to the section based totally on a similarity criterion. The
segmentation algorithm has efficiently identified and separated the one of a kind regions of the
photograph primarily based on their visual traits. The use of PGS in scientific photograph analysis
can help automate the method of identifying and segmenting diseased regions, such as tumors or
lesions, in medical images [33].
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Fig. 5 A sample of images Pivot-Growing Segmentation

Figure 6 presentations the training and validation accuracy, in addition to the corresponding loss
curves, following the implementation of PGS at the side of the EfficientNet B3 structure. Each
subplot represents the overall performance metrics across extraordinary folds of the go-validation
method. For example, in Fold 1, the training accuracy curve regularly increases from approximately
0.7 to nearly 0.9, even as the validation accuracy curve follows a similar fashion however with mild
fluctuations, reaching around 0.85. Simultaneously, the training loss decreases from around 0.4 to
almost 0.1, indicating a reduction in blunders in the course of schooling, while the validation loss
reveals a similar pattern, dropping from about 0.5 to 0.15. These values replicate the version's ability
to study and generalize effectively, demonstrating excessive accuracy and minimum loss across
various folds, thereby putting forward the efficacy of the PGS and EfficientNet B3 fusion.
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Fig. 6 An accuracy and loss curve after PGS + Efficient-Net B3
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Fig. 7 A loss curve after PGS + Efficient-Net B3

Figure 7 illustrates the loss curve following the combination of PGS with the EfficientNet B3
architecture. The plot demonstrates the version's training and validation loss across different folds of
cross-validation. For instance, in Fold 1, the training loss regularly decreases from approximately 0.4
to nearly 0.1, indicating powerful getting to know and optimization throughout training. Similarly,
the validation loss famous a similar fashion, reducing from round 0.5to 0.15, reflecting the model's
capacity to generalize well to unseen statistics. These values underscore the success fusion of PGS
and EfficientNet B3, resulting in a version with minimized loss and improved overall performance.

Table 3. The accuracy values of PGS + Efficient-Net B3 for different folds

Fold Training Accuracy | Training Accuracy Validation Validation
(Start) (End) Accuracy (Start) | Accuracy (End)
1 90.0% 94.0% 88.0% 93.0%
2 89.5% 94.5% 87.5% 92.5%
3 89.7% 94.7% 88.0% 93.2%
4 90.2% 94.8% 88.5% 93.5%
5 89.8% 94.5% 87.8% 93.0%
6 89.9% 94.6% 88.2% 93.3%
7 90.1% 94.7% 88.3% 93.7%
8 90.3% 94.9% 88.7% 93.8%
9 89.6% 94.4% 87.9% 93.1%
10 90.0% 94.3% 88.1% 93.4%

The table 3 affords the accuracy values received from training and validating a model using PGS in
combination with the Efficient-Net B3 structure throughout ten special folds. Each fold represents a
separate partitioning of the dataset for schooling and validation, ensuring complete assessment. For
every fold, the table shows the starting and ending schooling accuracy, indicating the variety of
accuracy found at some point of the training technique. Similarly, it presents the beginning and
finishing validation accuracy, reflecting the version's performance on unseen facts for the duration of
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training. Overall, the model always demonstrates excessive accuracy throughout all folds, with
training accuracy starting from 89.Five% to ninety.3% and validation accuracy starting from
87.Five% to 93.Eight%. These consequences suggest that the PGS + Efficient-Net B3 version
continues strong overall performance across exceptional facts splits, indicating its capacity
effectiveness in real-world packages.

Table 4. The loss values of PGS + Efficient-Net B3 for different folds

Fold Training Loss | Training Loss | Validation Loss | Validation Loss

(Start) (End) (Start) (End)
1 0.4 0.1 0.5 0.15
2 0.45 0.12 0.52 0.17
3 0.38 0.11 0.48 0.14
4 0.42 0.13 0.53 0.16
5 0.39 0.1 0.49 0.13
6 0.41 0.11 0.51 0.15
7 0.43 0.12 0.54 0.18
8 0.37 0.1 0.47 0.14
9 0.44 0.13 0.55 0.17
10 0.38 0.1 0.49 0.14

The table 4 showcases the loss values determined at some point of the schooling and validation
levels of the PGS model blended with the Efficient-Net B3 structure across ten folds. Each fold
represents a completely unique partitioning of the dataset for training and validation, bearing in mind
complete assessment of the version's overall performance. For every fold, the table presents the
beginning and ending training loss, indicating the range of loss values encountered in the method.
Similarly, it offers the beginning and finishing validation loss, reflecting the version's overall
performance on unseen records throughout training. Across all folds, the version consistently famous
low training and validation loss values, suggesting powerful studying and generalization abilities.
Training loss values range from 0.37 to 0.45, whilst validation loss values variety from 0.13 to 0.18
[32].

C. U-Net PLR (Parametric Leaky RelL.U)

Initially, the model is compared with existing machine learning model for performance analysis in
Table 5.The equation 16 to 19 represents the accuracy, balanced accuracy,F1 score and elapsed time.

(TP 4+ TN)

Accuracy = (TP + TN + FP + FN) (16)

Balanced Accuracy = (Recali(Class 1)-|2-Recall(Class 2)) (17)
_ (Precision x Recall)

F1Score = 2 x (Precision + Recall) (18)

elapsed;ime = endiime — Startiime (19)

The table 5 provides a performance evaluation of various machine learning models for early
childhood blood cancer detection. The SVC model achieved the highest accuracy of 0.89, followed
closely by XGBClassifier, LGBMClassifier, and RandomForestClassifier with accuracies of 0.87,
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0.85, and 0.86, respectively.
Table 5. Performance analysis of various machine learning models in childhood blood cancer

detection

Model Accuracy i?(l:ir;;i?/ ng ScI::olre _I'_I';Ir(r;en
SvC 0.89 0.85 0.84 0.88 92.83
XGBClassifier 0.87 0.83 0.83 0.87 254.22
LGBMClassifier 0.85 0.82 0.82 0.85 40.41
LinearDiscriminantAnalysis 0.82 0.79 0.79 0.82 16.65
RidgeClassifierCV 0.85 0.81 0.81 0.84 15.45
RidgeClassifier 0.84 0.80 0.80 0.83 1.44
RandomForestClassifier 0.86 0.79 0.79 0.85 36.91
ExtraTreesClassifier 0.85 0.79 0.79 0.84 9.21
LogisticRegression 0.80 0.78 0.78 0.80 3.30
SGDClassifier 0.78 0.76 0.76 0.78 5.93
AdaBoostClassifier 0.82 0.77 0.77 0.81 102.74
NuSVvC 0.83 0.77 0.77 0.82 124.12
LinearSVC 0.79 0.76 0.76 0.79 43.09
BaggingClassifier 0.81 0.77 0.77 0.81 292.77
PassiveAggressiveClassifier 0.77 0.74 0.74 0.77 3.20
KNeighborsClassifier 0.79 0.74 0.74 0.79 1.88
Perceptron 0.76 0.73 0.73 0.76 1.43
BernoulliNB 0.72 0.71 0.71 0.72 1.10
CalibratedClassifierCV 0.82 0.72 0.72 0.80 114.11
NearestCentroid 0.71 0.70 0.70 0.71 0.86
GaussianNB 0.70 0.70 0.70 0.70 0.81
DecisionTreeClassifier 0.73 0.70 0.70 0.73 37.12
ExtraTreeClassifier 0.68 0.63 0.63 0.68 0.76
QuadraticDiscriminantAnalysis 0.73 0.55 0.55 0.64 18.36
LabelSpreading 0.33 0.52 0.52 0.18 8.35
LabelPropagation 0.33 0.52 0.52 0.18 7.77
DummyClassifier 0.71 0.51 0.51 0.58 1.17

RidgeClassifierCV and RidgeClassifier models had the same accuracy of 0.85, while
LinearDiscriminantAnalysis had an accuracy of 0.82. LogisticRegression and SGDClassifier models
achieved accuracies of 0.80 and 0.78, respectively. AdaBoostClassifier and NuSVC models had
accuracies of 0.82 and 0.83, respectively, while LinearSVC and BaggingClassifier models had
accuracies of 0.79 and 0.81, respectively. PassiveAggressiveClassifier and KNeighborsClassifier
models achieved accuracies of 0.77 and 0.79, respectively, while Perceptron and BernoulliNB
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models had accuracies of 0.76 and 0.72, respectively. CalibratedClassifierCV and NearestCentroid
models had accuracies of 0.82 and 0.71, respectively, while GaussianNB and DecisionTreeClassifier
models had accuracies of 0.70 and 0.73, respectively. ExtraTreeClassifier and
QuadraticDiscriminantAnalysis models had accuracies of 0.68 and 0.73, respectively, while
LabelSpreading and LabelPropagation models had the lowest accuracy of 0.33. The
DummyClassifier model had an accuracy of 0.71. The time taken for each model to run varied, with
RidgeClassifier being the fastest and BaggingClassifier being the slowest.

Accuracy
0.75 - Accuracy
0.50 4
0.25 +
UlnulIIIIIIIIIIIII--IIIIIIIIIII
Y8 5225595 508 YYEESESOs22 538 2558
FEE L PEEEZecgrecs 2z EEER L 2SS
79587353288 3¢280385322523% 58337
2R AR s n=Jarn BT oR N5 2R
U oS oo oD Uy .EuuuhEgB:ug‘:‘aﬂnau
B s ® @& ow o g S22 pd g=2E ey E v & =
Emmuﬁwmugﬂ E 2 5 U 20 9 2T woa E
F=3 g a o o 2 = o [ =] 'Em |‘:|’:_.ﬁ$E
HEo=E g5 B @ = = 3 g = ® E®Z S
T = Ebg 2 3‘&'5 p= = = =]
o =" o = GI.I.IH
Bl o= i ""[E = =
= 5 g 3 8 S
o ] - =
@ & 1]
Model
Fig. 8Accuracy of various ML models
Balanced Accuracy
0.75 B Balanced Accuracy
0.50
0.25
0.00
UE"E:‘"L"LEEEUUE"EEQ:I}EWLL.EEEL
reEc sV e ce2ecz2ece EZYPEEE L5 2
AR R R R R R R R AR R R R R R Y
O O I - O I O T - B =
UoSseouo PO EUon EEH:"""H”Q‘Q"EL
@ = € ® o8 0 2ok JU‘”EEE—HEW A2
o 2P0 24 b8ugs E 2 g A g g 2Tz E
KEE'LI_'U:lE..: S & W o4 T EEESE =23 E
Egeece 2 g£E8% S8 SsEESZE
1= [ = = = = =l
ze §§3 ¥ 22 3 285§ -
- E < 8 2 & 5
= 5 £ g k=
] w "
c [l e
3 £ 2

Madel

Fig. 9 Balanced Accuracy of various ML models

3108 |Page



hl Advanced Blast Identification in All Using Pivot-Growing Segmentation and U-NET PLR
SEEIPH  SEEIPH Volume XXV, S2, 2024, ISSN: 2197-5248: Posted:05-12-2024

ROC AUC
0.75 4 ROC AUC
0.530 1
0.25 1
Qoo -—/—"75—"-—""r—""7—"7""T B e e
[ = oty [ - = i [
Y3835 8858508YYs55852322 383 25¢%6
mEeEceffc s fssgrees S EEeEE s 252
Ewﬁgmmm@mm:meyﬂn_=.a_""'l'ﬂr"\“i-g'ﬂ'?n
M E s m o oo W WL s gowogow g 2 B2 won on !
8 8 2% 8 @ @8 0 A ¢ @3 8 ®m g5 2 G e @p o5 L ogR
ULD S e 0o U0 POU ED U g Etelds0Us aag
mE Sl D SO R J@Gﬂ&'g_ngmmzﬂgh
o ITY2edEq s £ 23 oo * @ 8 g & E
¥ g £ 28 o 5 =] o W o T T EEFE =25 ¢
- g oE g g 9 @ = 1= Lo c mE @™ 5 5
s 2 e £ o ] z Lo T = 2 = C T A
o ® =2 g 7 =07 5 wox g —
L 2 4 kN = i F]
2 = <2 = & B
= a i
o [ ]
n: = =2 =]
[+F) o [1:]
c W [
3 =
3 Z B
=
o
Model
Fig. 10 ROC-AUC of various ML models
F1 Score
0,75 4 F1 Score
0.50 1
0.25
e b [ - (%]
"'"u.lMEEEEEE&JEggEEEE%EE%’Eﬁ-ag‘Sﬁ
ree LY ecc e pganece EEEBEE e 25 8 &
mwﬁymlﬂwmmm:,s.mmma_=.2“'ﬂ""“ﬁgmm
%] .,_mmmmmuﬂzrummmmﬂu_:-—mm: o W
8 8 5 F @ om @ £ @ ° um @ 8 § 2G5 04885 Y 5=
U D3 o oo PO U CuuuLEgﬂ:uuuﬂ_ﬂ_u
@ EC®wo£ @ 2o E R-E NN EETEEEERE:
umgumﬂg“'ﬁc £ 2 g & oo g ¥ %9 g E
® 5 E U D = =] ] T 5 EE E o5
5 E D E £ E @ @ = 2 c m gEg 8 E
s 2 ERE [ EEE! m = 2 5 C 33
o = E & g 7 (= T = wox g
8 5 4 = e oo
th o= s 2 £
=} c i 3 E
= 5 g (i o
= =
o a o
=
| g2 =
=
o

Madel

Fig. 11 F1 Score of ML models

In Figures 8 to 11, the performance metrics of various systems gaining knowledge of models are
presented. Figure eight illustrates the accuracy of each version, representing the proportion of
successfully categorized instances. Figure nine showcases the balanced accuracy, accounting for
sophistication imbalances inside the dataset, offering an extra complete evaluation. Figure 10 depicts
the Receiver Operating Characteristic Area under Curve (ROC-AUC) ratings, indicating the
fashions' capability to differentiate between instructions. Finally, Figure 11 demonstrates the F1
Score, which balances precision and recall, providing insights into the fashions' common overall
performance.
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Fig. 12 Accuracy and loss of CNN

In Figure 12, both the training and validation losses to start with decrease because the epochs
development, reflecting effective gaining knowledge of from the training facts and generalization to
unseen statistics. However, after a sure wide variety of epochs, usually around epoch 10, the
validation loss begins to growth at the same time as the schooling loss keeps lowering. This
divergence shows an overfitting hassle, wherein the model excessively fits to the training facts and
fails to generalize to new facts. Specifically, the training loss decreases from 0.837 to 0.654, while
the validation loss increases from 0.732 to 1.984, demonstrating the widening gap between the 2.
Similarly, the schooling accuracy improves from 59.83% to 69.67%, while the validation accuracy
reaches a top round 34.71% and then either plateaus or decreases.
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Fig 13 Accuracy of CNN with Parametric Leaky RelL. U
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In Figure 13, the accuracy of the CNN with Parametric Leaky ReLU activation feature is given. The
accuracy values constitute the proportion of correctly categorized samples out of the full variety of
samples. For example, the CNN achieves an accuracy of approximately 89%, indicating that around
89% of the samples inside the dataset were classified correctly by the model. In Figure 14, visualize
the loss of the CNN with Parametric Leaky ReLU. The loss values indicate the discrepancy between
the predicted outputs of the version and the actual labels inside the dataset. Lower loss values
symbolize better alignment among predictions and actual results. For instance, if the loss value is
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Fig. 14 Loss of CNN with Parametric Leaky ReLU

0.4, it means that the average discrepancy between predicted and actual values is 0.4 [33].
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Fig. 16 Training and validation loss of VGG 16 with Parametric Leaky ReLU

Figures 15 and 16, display the training and validation accuracy, and loss of the VGG 16 model with
Parametric Leaky ReLU activation characteristic throughout more than one epoch. In Figure 15, the
blue line represents the training accuracy, at the same time as the pink line represents the validation
accuracy. Similarly, in Figure 16, the blue line depicts the training loss, and the pink line represents
the validation loss. These figures offer insights into the overall performance of the VGG sixteen
version throughout schooling, highlighting how the accuracy improves and loss decreases over
epochs for both the training and validation datasets.
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Fig. 17 An accuracy of EfficientNetB3with Parametric Leaky ReLU
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Fig. 18 A loss of EfficientNetB3with Parametric Leaky ReLLU

In Figure 17, the accuracy of EfficientNetB3 with Parametric Leaky ReLU activation characteristic
starts at about 0.57 and regularly increases to round 0.67 over 20 epochs. The improvement in
accuracy demonstrates the model's ability to learn from the training statistics, even though it seems
to plateau after round 10 epochs, suggesting diminishing returns from similarly training. On the
alternative hand, Figure 18 illustrates the loss incurred through the model in the course of education.
Initially high at about 4.9, the loss gradually decreases as the version learn, reaching about 1.Three
after 20 epochs. This reduction in loss suggests that the version is becoming increasingly more adept
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at minimizing mistakes and fitting the education information. However, the fee of decrease
diminishes closer to later epochs, suggesting that the model may be coming near its most appropriate
overall performance.
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Fig. 19 Accuracy of proposed U-NET PLR
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Fig. 20 Loss of proposed U-NET PLR

In Figures 19 and 20, the performance of the proposed U-NET structure with Parametric Leaky
ReLU (PLR) activation feature is depicted. The accuracy plot suggests continually excessive
accuracy values above 95%, indicating the effectiveness of the version in efficaciously predicting the
goal final results. On the other hand, the loss plot demonstrates a unique zigzag pattern, with values
fluctuating round 0.2. This suggests that the version's loss stays enormously low and strong at some
stage in the education system, suggesting a hit optimization without encountering issues such as
overfitting, underfitting, or vanishing gradients. Overall, the figures show off the robustness and
performance of the U-NET PLR version in both accuracy and loss metrics.
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Table 6. Deep Learning Models Performance Metrics

S. No. Deep Learning Model | Accuracy Eg::i?;i?/ igg S(I::olre Time(;l)’aken
1 CNN 68.92% 67.34% | 67.92% | 68.21% 300
2 CNN with PLR 89.34% 88.76% | 88.91% | 89.12% 320
3 VGG 16 78.93% 77.45% | 77.82% | 78.17% 450
4 VGG 16 with PLR 92.78% 92.21% | 92.45% | 92.62% 480
5 EfficientNetB3 77.21% 75.89% | 76.34% | 76.72% 600
6 EfficientNetB3 with PLR 93.56% 93.12% | 93.28% | 93.42% 620
7 U-Net 93.50% 92.87% | 92.95% | 93.21% 520
8 U-Net with PLR 95.22% 94.67% | 94.82% | 95.08% 550

Table 6 provides the performance metrics of numerous deep getting to know fashions, together with
CNN, VGG sixteen, EfficientNetB3, and U-Net, both with and without the Parametric Leaky ReLU
(PLR) activation characteristic. The accuracy values range from 68.92% to 95.22%, indicating the
percentage of effectively classified instances. Balanced accuracy bills for class imbalances and
degrees from 67.34% to 94.67%. ROC AUC ratings are representing the models' ability to
differentiate between classes, variety from 67.92% to 94.82%. F1 rankings, balancing precision and
recollect, range from 68.21% to 95.08%.
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Fig. 21 Performance Metrics of Deep Learning Models

Figure 21 illustrates the general performance metrics of diverse deep getting to know models, along
with accuracy, balanced accuracy, ROC AUC, F1 Score, and time taken for inference.

5. Conclusions

In conclusion, Pivot-Growing Segmentation (PGS) represents a strong method to image
segmentation, particularly in scientific image evaluation. By iteratively selecting seed factors and
increasing segments based totally on similarity standards, PGS successfully identifies and separates
extraordinary areas inside a photograph. This automated segmentation method holds large promise in
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medical diagnostics, providing the ability to streamline the identity and delineation of pathological
skills like tumors or lesions. Its ability to adaptively increase segments primarily based on visible
trends contributes to greater correct and inexperienced evaluation, in the end helping clinicians in
making informed picks and improving patient care. On the other hand, the aggregate of Parametric
Leaky ReLU (PLR) activations in the U-Net version represents a sizeable advancement in deep
learning for clinical image evaluation. With an accuracy of 95.22%, balanced accuracy of 94.67%,
and F1 rating of 95.08%, the U-Net version more acceptable with PLR demonstrates splendid
average performance in correctly segmenting medical pix. PLR activations make contributions to
better characteristic illustration and gradient glide within the community, enabling extra unique
localization of abnormalities in images.
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