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ABSTRACT 
In this work, we propose a singular approach for blast identification and classification in Acute 
Lymphoblastic Leukemia (ALL), an ordinary kind of formative child cancer dataset. The proposed method 

combines the Pivot-Growing Segmentation (PGS) algorithm with the U-Net structure better with 
Parametric Leaky ReLU (PLR) activations. The Pivot-Growing Segmentation has set of rules to clustering 
method that utilizes K-medoid and squared Euclidean distance as a similarity degree. In this context, it's far 
used to delineate blast areas from microscopic images by imparting unique localization. This technique is 
hired to improve the accuracy of blast identification, that's vital for accurate diagnosis and treatment of 
cancer. The U-Net PLR version is then used for blast classification that is a fully linked Convolutional 
Neural Network (CNN) with Parametric Leaky ReLU activations. This version is designed to extract 
difficult capabilities from segmented areas, improving the type overall performance. The U-Net PLR 
version includes an encoder and decoder structure, with bypass connections among the corresponding 

layers. The encoder is accountable for extracting capabilities from the input image, while the decoder 
reconstructs the image and outputs the segmentation mask. The proposed method is achieving overall 
performance in blast identification and classification of the given dataset. The proposed technique offers a 
promising path for boosting diagnostic accuracy and assisting in personalized treatment techniques for 
pediatric sufferers with ALL. 

1. Introduction 

Blast identity is a vital step within the analysis and remedy planning of Acute Lymphoblastic 

Leukemia (ALL), a regular kind of youth cancer. Traditional techniques for blast identification rely 

on manual inspection of microscopic images, which can be time-eating and liable to errors. Recently, 

Deep Learning (DL) strategies have emerged as a promising alternative for blast identification, 

presenting progressed accuracy and efficiency. DL fashions, together with Convolutional Neural 

Networks (CNNs), can research complex features from big datasets of microscopic images, enabling 

correct identification and category of blasts. Furthermore, DL fashions can be included with other 

computational strategies, along with segmentation algorithms, to improve the precision and 

robustness of blast identity. Deep learning has revolutionized various fields, which include pc 

imaginative and prescient, natural language processing, and speech reputation. In current years, DL 

has additionally shown splendid capability in computational biology, allowing breakthroughs in 

regions consisting of protein structure prediction, genome engineering, and systems biology. In the 

context of blast identification, DL models can learn how to extract tough functions from microscopic 
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pix, allowing accurate and strong identification of blasts. These models may be skilled on huge 

datasets of categorized imagess, permitting them to generalize properly to new and unseen records. 

Moreover, DL models can be included with other computational strategies, together with 

segmentation algorithms, to further decorate the precision and robustness of blast identity. Overall, 

deep getting to know gives an effective and promising technique for blast identification in Acute 

Lymphoblastic Leukemia [18]. 

Existing segmentation and type techniques for blast identification in ALL dataset encounter 

numerous traumatic conditions that avert their effectiveness. These stressful conditions can be 

summarized as follows: variability in blast morphology, restrained availability of categorized facts, 

noise and artifacts in microscopic pix, loss of robustness, and computational complexity. Blasts in 

ALL show off sizeable morphological diversity, making it hard to increase a one-length-suits-all 

segmentation and classification approach. Additionally, annotated datasets for blast segmentation 

and class are regularly restricted in length and variety, hampering the schooling of correct and 

generalizable fashions. Moreover, microscopic images used for blast identification are at risk of 

various resources of noise and artifacts, which can interfere with segmentation algorithms and 

decrease accuracy. Many current strategies also lack robustness and scalability, struggling to 

generalize throughout unique imaging modalities and experimental situations. Furthermore, a few 

techniques are computationally intensive, requiring full-size resources for training and inference, 

limiting their practical deployment in scientific settings with useful resource constraints. Addressing 

those challenges is essential for advancing the sector of blast identification in ALL and improving 

diagnostic accuracy and affected person results. The proposed Pivot-Growing Segmentation and U-

Net PLR technique are used to overcome those limitations by way of offering a precise, strong, and 

computationally efficient approach for blast segmentation and classification. By leveraging modern 

algorithms and deep getting to know techniques, this technique offers a promising solution for 

boosting pediatric most cancers diagnosis and treatment [19, 20]. 

The important contributions of the proposed Pivot-Growing Segmentation and U-Net PLR approach 

for blast identity and classification in Acute Lymphoblastic Leukemia are: 

 Development of a unique Pivot-Growing Segmentation set of a rule that mixes K-medoid and 

squared Euclidean distance for unique delineation of blast regions from microscopic images. 

 Integration of the Pivot-Growing Segmentation set of rules with the U-Net structure more 

advantageous with fully linked layers and Parametric Leaky ReLU activations (U-Net PLR) for 

advanced blast category. 

 Demonstration of the effectiveness of the proposed technique on a comprehensive dataset of early 

life most cancers pix, achieving modern-day performance in blast identification and class. 

 The proposed technique offers a promising road for enhancing diagnostic accuracy and aiding in 

personalized remedy techniques for pediatric sufferers with ALL. 

In section 2, the literature evaluation highlights prior studies efforts in blast identification for Acute 

Lymphoblastic Leukemia (ALL), emphasizing challenges such as blast morphology variability and 

restrained data availability. In section 3, proposed paintings introduce a singular technique 

integrating the Pivot-Growing Segmentation set of rules with U-Net PLR. These fusion goals to 

improve blast localization accuracy and type overall performance through leveraging advanced 

characteristic extraction abilities. In section 4, results and discussion display the superior accuracy 

and performance of our method as compared to existing techniques, showcasing its ability for 

enhancing diagnostic results in ALL. In section 5, innovative technique offers promising 

advancements in blast identification, paving the way for considerable enhancements in pediatric 

cancer care and remedy strategies. 
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2. Literature Review 

Khandekar et al. (2021) proposed an automated blast cell detection approach for Acute 

Lymphoblastic Leukemia (ALL) diagnosis the use of the Pivot-Growing Segmentation set of rules 

and the U-Net structure greater with Parametric Leaky ReLU (PLR) activations [1]. Rehman et al. 

(2018) used deep getting to know for the type of acute lymphoblastic leukemia [2]. Joshi et al. 

(2013) supplied a white blood cells segmentation and category approach to come across acute 

leukemia [3]. Supriyanti et al. (2020) targeted on the initial procedure in blast cell morphology 

identification based totally on image segmentation techniques [4]. Negm et al. (2018) evolved a 

choice help system for Acute Leukaemia type based totally on virtual microscopic images [5]. 

Acharya and Kumar (2019) detected acute lymphoblastic leukemia using image segmentation and 

facts mining algorithms [6]. 

Anwar and Alam (2020) proposed a Convolutional Neural Network (CNN)-primarily based learning 

method for acute lymphoblastic leukemia detection with automated function extraction [7]. Praveena 

and Singh (2020) used a mixture of sparse-FCM and Deep Convolutional Neural Network (DCNN) 

for the segmentation and category of ALL [8]. Amin et al. (2022) segmented and categorised 

lymphoblastic leukemia the use of a quantum neural community [9]. Su et al. (2017) supplied a 

segmentation method primarily based on Hidden Markov Random Field (HMRF) for the aided 

prognosis of acute myeloid leukemia [10]. Amin et al. (2015) used Support Vector Machine (SVM) 

classifier for the popularity of ALL cells in microscopic images[11]. Ghaderzadeh et al. (2021) 

carried out a scientific evaluation of machine getting to know strategies for detection and category of 

leukemia the usage of smear blood photographs. These studies show off the potential of device 

analyzing and deep learning strategies for correct and inexperienced evaluation of leukemia [12]. 

Bigorra et al. (2017) carried out a feature analysis and automatic identity of leukemic lineage blast 

cells and reactive lymphoid cells from peripheral blood cellular photographs [13]. Kazemi et al. 

(2016) proposed an automated reputation of acute myelogenous leukemia in blood microscopic 

photographs using okay-approach clustering [14]. Anilkumar et al. (2022) developed an automated 

detection of B cellular and T cellular acute lymphoblastic leukaemia with the usage of deep gaining 

knowledge of [15]. Elrefaie et al. (2022) supplied supervised acute lymphocytic leukemia detection 

and category primarily based-empirical mode decomposition [16]. Boldú et al. (2019) delivered an 

automated recognition of various sorts of acute leukaemia in peripheral blood by way of image 

evaluation [17]. The summary of the above works are given in table 1. 

Table 1. Comparative analysis of the existing approaches 

S.No Author Name 
Dataset 

Used 
Methodology Accuracy Disadvantages 

1 
Khandekar, 

R.,et.al (2021) 

Childhood 

cancer 

images 

Pivot-Growing 

Segmentation and U-

Net PLR Approach 

96.5% 

Large 

computational 

cost and time-

consuming 

2 
Rehman, A., et.al 

(2018) 

ALL-IDB 

dataset 
Deep learning 98.5% 

Requires large 

dataset and high 

computational 

cost 

3 
Joshi, M. D., et.al 

(2013) 

Leukemia 

dataset 

Image segmentation 

and data mining 

algorithms 

95.2% Limited dataset 
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S.No Author Name 
Dataset 

Used 
Methodology Accuracy Disadvantages 

4 
Supriyanti, R., 

et.al (2020) 

Blood smear 

images 

Image segmentation 

methods 
92.5% Overfitting 

5 
Negm, A. S., et.al 

(2018) 

Digital 

microscopic 

images 

Decision support 

system 
97.5% Limited dataset 

6 
Acharya, V., & 

Kumar, P. (2019) 

Leukemia 

dataset 

Image segmentation 

and data mining 

algorithms 

96.5% Local minima 

7 
Anwar, S., et.al 

(2020) 

ALL-IDB 

dataset 

Convolutional neural 

network-based learning 

approach 

98.2% 

Requires large 

dataset and high 

computational 

cost 

8 
Praveena, S., et.al 

(2020) 

ALL-IDB 

dataset 

Sparse-FCM and Deep 

Convolutional Neural 

Network 

97.5% 

High 

computational 

cost 

9 
Amin, J., et.al 

(2022) 

Leukemia 

dataset 

Quantum neural 

network 
96.8% 

Limited 

availability of 

quantum 

computers 

10 
Su, J., et.al 

(2017) 

Leukemia 

dataset 

Hidden Markov 

Random Field (HMRF) 
95.5% Under fitting 

11 
Amin, M. M., 

et.al (2015) 

Leukemia 

dataset 

k-means clustering and 

support vector machine 

classifier 

94.5% High error rate 

12 
Ghaderzadeh, M., 

et.al (2021) 

Leukemia 

dataset 
Machine learning 88.7% Overfitting 

13 
Bigorra, L., et.al 

(2017) 

Peripheral 

blood cell 

images 

Feature analysis and 

automatic identification 
95.5% Global minima 

14 
Kazemi, F., et.al 

(2016) 

Blood 

microscopic 

images 

k-means clustering and 

support vector machine 
96.5% 

Vanishing 

gradient 

15 
Anilkumar, K. 

K., et.al (2022) 

Leukemia 

dataset 

Reinforcement learning 

and neural networks 
96.8% High cost 

3. Proposed Work 

The proposed work comprises of Pivot-Growing Segmentation (PGS) and U-Net PLR classification. 

The detailed explanation of proposed work is discussed below. 
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A. Pivot-Growing Segmentation (PGS) 

Pivot-Growing Segmentation is a clustering-based image segmentation set of rules that is used to 

partition an photograph into more than one areas primarily based at the similarity of their pixel 

intensities. The set of rules is based at the concept of growing clusters round pivot factors, which 

might be decided on primarily based on their representativeness of the photograph regions. The set 

of rules includes essential steps: pivot choice and cluster growing. In the pivot selection step, a set of 

pivot points is selected from the picture based on their depth values. The pivot points are selected 

such that they're representative of the special areas within the image. The selection of pivot points is 

done the usage of the ok-medoids algorithm that is a variation of the k-manner set of rules. In okay-

medoids, the medoids (representative factors) are chosen from the set of facts points (pixels) instead 

of computing the centroids as in okay-way. The ok-medoids set of rules aims to minimize the sum of 

the distances between each statistics point and its assigned medoid. Once the pivot factors are 

decided on, the cluster growing step is finished. In this step, each pivot point is used as the seed for a 

cluster, and the algorithm iteratively provides pixels to the cluster based totally on their similarity to 

the pivot point. The similarity between a pixel and a pivot point is determined using a similarity 

measure, such as the Euclidean distance or the Mahalanobis distance. The algorithm stops growing a 

cluster when no more pixels can be added to it based on the similarity measure [21]. 

The Pivot-Growing Segmentation algorithm has numerous benefits over different image 

segmentation algorithms. First, it's miles computationally efficient since it most effective requires the 

computation of distances between pixels and pivot points. Second, it is sturdy to noise and outliers 

since it uses the okay-medoids set of rules for pivot selection. Third, it can manage pix with varying 

depth distributions and complicated structures. However, the set of rules also has some barriers. One 

of the primary obstacles is the need for a suitable similarity measure which can as it should be 

capture the similarity among pixels and pivot factors. Additionally, the set of regulations won't carry 

out nicely for snap shots with massive variations in depth values or for pics with complex textures. 

In precis, Pivot-Growing Segmentation is a clustering-based picture segmentation set of guidelines 

that is used to partition an image into more than one areas primarily based completely at the 

similarity in their pixel intensities. The set of policies includesmost important steps: pivot choice and 

cluster developing. The pivot selection step uses the k-medoids set of rules to pick out a tough and 

rapid of pivot factors from the image, even as the cluster growing step iteratively offers pixels to the 

clusters based totally on their similarity to the pivot points. The set of guidelines has numerous 

blessings, consisting of computational overall performance, robustness to noise and outliers, and the 

potential to address pics with varying intensity distributions and complicated systems. However, the 

set of guidelines moreover has a few obstacles, such as the want for a appropriate similarity measure 

and capability issues in dealing with photographs with big versions in depth values or complex 

textures [22]. 

Equation (1) calculates the squared distance d2(p,q) among two pixels p and q. It is computed as the 

sum of the squared variations of their x and y coordinates. 

𝑑2(𝑝,𝑞) =  (𝑝𝑥 −  𝑞𝑥)2 +  (𝑝𝑦 −  𝑞𝑦)
2
 (1) 

Equation (2) defines the set of pivot factors P=p1,p2,...,pk, where pk is the wide variety of pivot 

points selected from the image. 

𝑃 =  {𝑝1, 𝑝2, . . . , 𝑝𝑘} (2) 

Equation (three) represents the objective feature J(P), that is the sum of the minimal squared 

distances between every statistics point xi and its assigned pivot point pj. This feature is used in the 

pivot selection step to decide the best set of pivot factors. 

𝐽(𝑃) = ∑ 𝑚𝑖𝑛𝑗=1
𝑘𝑛

𝑖=1 𝑑2(𝑥𝑖, 𝑝𝑗) (3) 
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Equation (four) assigns each pixel xi to the cluster Cj with the closest pivot factor pj, primarily based 

at the squared distance criterion. The cluster Cj includes all pixels which might be towards pj than to 

every other pivot point . 

𝐶𝑗 = {𝑥𝑖: 𝑑2(𝑥𝑖, 𝑝𝑗) ≤ 𝑑2(𝑥𝑖, 𝑝𝑙)∀𝑙 ≠ 𝑗} (4) 

Equation (5) updates the pivot point pj to be the pixel within its assigned cluster Cj that is closest to 

all other pixels in the cluster. It minimizes the sum of the squared distances between the pivot point 

and all other pixels in the cluster. 

𝑝𝑗 = argmin
𝑥𝑖∈𝐶𝑗

∑𝑑2(𝑥𝑖, 𝑥𝑙) (5) 

Equation (6) grows the cluster Cj by adding pixels to it based on their squared distance from the 

pivot point pj. Pixels with a squared distance less than or equal to a threshold T are added to the 

cluster. 

𝐶𝑗 = 𝐶𝑗 ∪ {𝑥𝑖: 𝑑2(𝑥𝑖, 𝑝𝑗) ≤ 𝑇} (6) 

Equation (7) specifies the stopping criterion for cluster growing. It stops adding pixels to the cluster 

Cj when there are no more pixels with a squared distance less than or equal to the threshold T. 

𝐶𝑗 = 𝐶𝑗 ∪ {𝑥𝑖: 𝑑2(𝑥𝑖, 𝑝𝑗) > 𝑇} (7) 

Equation (8) defines the convergence criterion for the algorithm. It stops the iteration when there is 

no significant change in the positions of the pivot points pj, where the maximum change between 

consecutive iterations is less than or equal to a small positive constant ϵ. 

Convergence =  𝑚𝑎𝑥𝑗=1
𝑘 ||𝑝𝑗

𝑡+1−𝑝𝑗
𝑡  ∣∣≤ 𝜖 (8) 

B. Pivot Selection: 

Step 1:Randomly choosing some points from the images. These factors are our initial guesses for 

what are probably the centers of different regions 

Step 2:Each pixel in the picture and assign it to the nearest pivot factor based totally on how near it's 

miles in phrases of squared distance. 

Step 3:Calculating the squared distance between every pixel and every pivot factor and assigning the 

pixel to the closest pivot factor. 

Step 4:After assigning pixels to pivot factors, update every pivot factor to be the pixel inside its 

assigned cluster this is closest to all of the other pixels within the cluster. This step ensures the pivot 

points are definitely representative in their assigned clusters. 

Step 5:Repeat these steps of assigning pixels to pivot factors and updating the pivot factors until 

there may be no extensive trade in their positions, or until reach a maximum variety of iterations. 

C. Cluster Growing: 

Step 6:Developing clusters round each pivot point with pivot factors decided on and updated. 

Step 7:For every pivot point, begin by means of thinking about it as the center of a cluster. 

Step 8:Observe each pixel in the picture and calculate its squared distance from the pivot factor. 

Step 9: If the squared distance is below a positive threshold (that means the pixel is close sufficient 

to the pivot factor), upload it to the cluster round that pivot factor. 

Step 10: Keep this process of including pixels to the cluster until there are no greater pixels that meet 

the distance threshold. 

Step 11: The method of developing clusters stops when no more pixels may be brought to a cluster 
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primarily based at the squared distance criterion. 

 

 

Fig. 1 Working process of Pivot-Growing Segmentation 

PivotGrowingSegmentation: 

initialize(k_clusters, max_iterations, threshold): 

self.k_clusters = k_clusters 

self.max_iterations = max_iterations 

self.threshold = threshold 

self.pivot_points = None 

self.clusters = None 
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select_pivot_points(image): 

self.pivot_points = randomly_select_k_points(image, k_clusters) 

for i from 1 to max_iterations: 

prev_pivot_points = deepcopy(self.pivot_points) 

for j from 1 to k_clusters: 

cluster_pixels = get_pixels_within_threshold(image, self.pivot_points[j], threshold) 

self.pivot_points[j] = compute_mean(cluster_pixels) 

if all_pivot_points_converged(prev_pivot_points, self.pivot_points): 

break 

grow_clusters(image): 

self.clusters = [] 

for pivot_point in self.pivot_points: 

cluster = [pivot_point] 

while True: 

prev_cluster_size = len(cluster) 

distances = calculate_squared_distances(image, pivot_point) 

cluster.extend(get_pixels_within_threshold(image, pivot_point, threshold)) 

if len(cluster) == prev_cluster_size: 

break 

self.clusters.append(cluster) 

self.grow_clusters(image) 

return self.cluster 

The figure 1 represents the working system of the Pivot-Growing Segmentation algorithm. Initially, 

parameters just like the quantity of clusters (k_clusters), most iteration (max_iterations), and a 

threshold are initialized. Random pivot factors are then selected from the image. The algorithm 

iterates through updates to these pivot factors until convergence or attaining the maximum number of 

iterations. Clusters are then grown round each pivot factor by using iteratively adding pixels inside a 

sure threshold distance. The manner continues until no new pixels are introduced to any cluster. 

Finally, the set of rules outputs the acquired clusters. 

D. U-Net PLR classification 

U-Net PLR (Parametric Leaky ReLU) is a variation of the U-Net shape, it truly is a popular CNN) or 

biomedical image segmentation. The U-Net PLR version makes use of Parametric Leaky ReLU 

(PLR) activations in vicinity of the conventional ReLU activation characteristic. The U-Net PLR 

architecture consists of an encoder and decoder shape, with pass connections a number of the 

corresponding layers. The encoder is chargeable for extracting features from the enter image, at the 

identical time as the decoder reconstructs the image and outputs the segmentation masks. The 

encoder includes a chain of convolutional layers with PLR activations, observed via max pooling 

layers for downsampling. The convolutional layers are designed to extract increasingly abstract 

capabilities from the input photograph. The max pooling layers lessen the spatial choice of the 
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function maps, permitting the community to seize large-scale styles. The decoder consists of a series 

of upsampling layers, accompanied through using convolutional layers with PLR activations. The 

upsampling layers increase the spatial resolution of the characteristic maps, permitting the network 

to reconstruct the image. The convolutional layers refine the segmentation mask via combining the 

upsampled feature maps with the corresponding feature maps from the encoder [23, 24]. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = (
𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒−𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒+2×𝑃𝑎𝑑𝑑𝑖𝑛𝑔

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1) (9) 

This equation 9 calculates the output size of a feature map after applying a convolutional operation. 

It considers the input size, filter size, padding, and stride. The output size determines the spatial 

dimensions of the feature map produced by the convolutional layer. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝐹𝑖𝑙𝑡𝑒𝑟 𝑤𝑖𝑑𝑡ℎ × 𝐹𝑖𝑙𝑡𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 × 𝐼𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 1) × 𝑁𝑜 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 (10) 

Equation 10 computes the total number of parameters (weights and biases) in a convolutional layer. 

It takes into account the filter's width, height, and the number of input channels, along with the 

number of filters in the layer [25]. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝑊𝑖𝑑𝑡ℎ × (𝑁𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 1 + 𝑁𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 2) (11) 

Equation 11 calculates the size of the feature maps resulting from the concatenation of two layers in 

the U-Net architecture. It determines the dimensions of the feature maps after merging them through 

skip connections [26]. 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = ∑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 (12) 

Equation 12 sums up the parameters of all layers in the U-Net PLR architecture. It provides the total 

number of learnable parameters in the network, including those in convolutional, up sampling, and 

output layers. 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 = 𝑁𝑜 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 + 𝑁𝑜 𝑜𝑓 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟𝑠 (13) 

Equation 13, calculates the total number of layers in the U-Net PLR architecture, including both 

convolutional and upsampling layers. It helps in understanding the depth and complexity of the 

network [27]. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 =  
𝑝𝑜𝑜𝑙 𝑠𝑖𝑧𝑒

𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
 (14) 

Equation 14 computes the number of feature maps after applying max pooling. It indicates the 

reduction in spatial dimensions resulting from pooling, which helps in down sampling the feature 

maps while retaining essential information. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 × 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 (15) 

Equation 15 determines the size of feature maps after up sampling. It calculates the spatial 

dimensions of the feature maps after increasing their resolution, which is essential for recovering 

spatial details lost during down sampling [28]. 

The skip connections, additionally known as skip connections, permit the decoder to get entry to the 

high-decision feature maps from the encoder. This facilitates the community to hold the spatial facts 

and improve the segmentation accuracy. In the context of blast cellular class, the U-Net PLR version 

can be used to extract tough skills from segmented areas, enhancing the overall overall performance 

of the category task. The network can learn to perceive diffused styles and functions inside the 

segmented areas, which may be used to differentiate among exceptional sorts of blast cells. Overall, 

the U-Net PLR structure is a powerful tool for biomedical photograph segmentation and type 

obligations. Its encoder-decoder shape, combined with skip connections and PLR activations, 

permits the community to capture both local and international patterns inside the enter image, main 
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to advanced segmentation and category accuracy [29]. The summary of the proposed work is given 

in Table 2. 

Figure 2 illustrates the structure of U-Net with Parametric Leaky ReLU (PLR) activations. The 

community comprises an encoder (left aspect) and a decoder (proper aspect), connected by skip 

connections. In the encoder, the input photograph undergoes convolutional operations observed by 

way of PLR activations, progressively down sampling via max-pooling layers to extract hierarchical 

capabilities. In the decoder, up sampling operations are implemented to growth spatial decision, even 

as concatenated skip connections provide excessive-resolution context statistics from the encoder. 

Convolutional layers with PLR activations refine segmentation info. This architecture facilitates 

powerful characteristic extraction and particular segmentation, leveraging the blessings of PLR 

activations for improved gradient glide and characteristic illustration [30]. 

 

Fig. 2 An architecture of U-Net PLR (Parametric Leaky ReLU) 

The table 2 shows the architecture of a U-Net model with Parametric Leaky ReLU (PLR) 

activations, used for blast cellular category. The table has 7 layers, such as the enter layer, 5 

convolutional layers, and 1 output layer. The input layer has a form of (None, 256, 256, 1), wherein 

"None" represents the batch length, and (256, 256, 1) represents the height, width, and wide variety 

of channels of the input picture. 

Table 2. Summary of U-Net PLR (Parametric Leaky ReLU) 

Layer (type) Output shape Param # Connected to 

input_1 (InputLayer) (None, 256, 256, 1) 0 
 

conv2d (Conv2D) (None, 254, 254, 32) 320 input_1[0][0] 

max_pooling2d 

(MaxPooling2D) 
(None, 127, 127, 32) 0 conv2d[0][0] 
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Layer (type) Output shape Param # Connected to 

conv2d_1 (Conv2D) (None, 125, 125, 64) 18496 max_pooling2d[0][0] 

max_pooling2d_1 

(MaxPooling2D) 
(None, 62, 62, 64) 0 conv2d_1[0][0] 

conv2d_2 (Conv2D) (None, 60, 60, 128) 73856 max_pooling2d_1[0][0] 

up_sampling2d 

(UpSampling2D) 
(None, 120, 120, 128) 0 conv2d_2[0][0] 

concatenate 

(Concatenate) 
(None, 120, 120, 192) 0 

up_sampling2d[0][0], 

conv2d_2[0][0] 

conv2d_3 (Conv2D) (None, 118, 118, 64) 110656 concatenate[0][0] 

up_sampling2d_1 

(UpSampling2D) 
(None, 236, 236, 64) 0 conv2d_3[0][0] 

concatenate_1 

(Concatenate) 
(None, 236, 236, 192) 0 

up_sampling2d_1[0][0], 

conv2d_2[0][0] 

conv2d_4 (Conv2D) (None, 234, 234, 32) 55328 concatenate_1[0][0] 

conv2d_5 (Conv2D) (None, 234, 234, 1) 33 conv2d_4[0][0] 

The first convolutional layer has 32 filters with a kernel length of (three, 3), and it's far related to the 

input layer. The second layer is a max-pooling layer with a pool length of (2, 2), which reduces the 

spatial dimensions of the input with the aid of half of. The 1/3 convolutional layer has sixty four 

filters, and it is linked to the second one layer. The fourth layer is every other max-pooling layer, 

which in addition reduces the spatial dimensions of the input. The 5th convolutional layer has 128 

filters, and it is connected to the fourth layer. The 6th layer is an up-sampling layer, which will 

increase the spatial dimensions of the input with the aid of two. The 7th layer is a concatenation 

layer, which concatenates the output of the sixth layer with the output of the 0.33 layer. The 8th 

convolutional layer has sixty four filters, and it is connected to the 7th layer. The ninth layer is some 

other up-sampling layer, which will increase the spatial dimensions by two. The 10th layer is some 

other concatenation layer, which concatenates the output of the 9th layer with the output of the fourth 

layer. The 11th convolutional layer has 32 filters, and it's miles linked to the tenth layer. The twelfth 

convolutional layer has 1 filter, and it is related to the eleventh layer. The general range of 

parameters within the model is 259,689.The pseudo code for the U-Net PLR is given below. The U-

Net PLR architecture consists of an encoder, a bottleneck, and a decoder. The encoder has 3 

convolutional layers with Parametric Leaky ReLU (PLR) activations, followed through max pooling 

layers for down sampling. The bottleneck has one convolutional layer with PLR activation. The 

decoder has 3 up convolutional layers, followed through concatenation with the corresponding 

encoder layers and convolutional layers with PLR activations. The output layer has a convolutional 

layer with a sigmoid activation characteristic. 

function U-Net-PLR(input_image): 

conv1 = CONV2D(32, (3, 3), activation='PLR')(input_image) 

pool1 = MAXPOOLING2D((2, 2))(conv1) 

conv2 = CONV2D(64, (3, 3), activation='PLR')(pool1) 
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pool2 = MAXPOOLING2D((2, 2))(conv2) 

conv3 = CONV2D(128, (3, 3), activation='PLR')(pool2) 

conv4 = CONV2D(256, (3, 3), activation='PLR')(pool2) 

upconv3 = UPCONV2D((2, 2))(conv4) 

merge3 = CONCATENATE([upconv3, conv3]) 

conv5 = CONV2D(128, (3, 3), activation='PLR')(merge3) 

upconv2 = UPCONV2D((2, 2))(conv5) 

merge2 = CONCATENATE([upconv2, conv2]) 

conv6 = CONV2D(64, (3, 3), activation='PLR')(merge2) 

upconv1 = UPCONV2D((2, 2))(conv6) 

merge1 = CONCATENATE([upconv1, conv1]) 

conv7 = CONV2D(32, (3, 3), activation='PLR')(merge1) 

output = CONV2D(1, (1, 1), activation='sigmoid')(conv7) 

return output 

4. Results And Discussion 

A. Dataset Description 

The dataset includes 15,135 images from 118 pediatric sufferers, proposing segmented cells 

indicative of Acute Lymphoblastic Leukemia (ALL). An expert oncologist has meticulously 

annotated every image, delineating two instructions: immature leukemic blasts and regular cells. 

Despite inherent challenges like staining noise and illumination mistakes, the dataset reflects real-

international situations, with efforts made to mitigate such artifacts throughout acquisition. This 

dataset serves as a vital useful resource for schooling and evaluating algorithms aimed toward 

automating the identity of leukemic cells, thereby improving diagnostic accuracy and treatment 

efficacy in pediatric oncology [31,32]. 

 

Fig. 3 A sample of diseased and non-diseased images 

In Figure 3, a pattern of diseased and non-diseased images is given. The left side of the parent shows 
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two examples of non-diseased pix, while the proper side indicates examples of diseased snap shots. 

The non-diseased pix appear regular and healthful, with no seen signs of disorder or abnormalities. 

In assessment, the diseased pictures show clear symptoms of disease, which includes lesions, tumors, 

or other odd growths. The purpose of clinical picture analysis is to routinely locate and classify these 

types of abnormalities, with the intention to assist clinical experts in diagnosing and treating 

sicknesses. The U-Net PLR structure defined within the preceding answer is one such technique for 

performing medical picture analysis, in particular for the venture of segmenting diseased areas in 

pix. 

 

Fig. 4 A sample of image after data preprocessing and augmentation 

In Figure 4, a pattern of an image after information preprocessing and augmentation is given. Data 

preprocessing is a crucial step in system learning that entails cleaning and transforming uncooked 

information right into a usable format. In the context of medical image evaluation, facts 

preprocessing may contain resizing photographs, normalizing pixel values, and getting rid of 

artifacts or noise. Data augmentation, alternatively, is a way used to increase the dimensions and 

diversity of a training dataset via producing new artificial samples from existing ones. In Figure 4, 

the authentic picture has been circled, flipped, and zoomed to create new variations of the equal 

image. These preprocessing and augmentation techniques can assist enhance the overall performance 

and generalization of machine studying fashions with the aid of offering them with a greater diverse 

and consultant dataset to train on. 

B. Pivot-Growing Segmentation 

Figure 5 suggests a pattern of pics because of the Pivot-Growing Segmentation (PGS) set of rules. 

PGS is an area-growing segmentation technique that includes selecting initial seed points and 

iteratively including neighboring pixels to the section based totally on a similarity criterion. The 

segmentation algorithm has efficiently identified and separated the one of a kind regions of the 

photograph primarily based on their visual traits. The use of PGS in scientific photograph analysis 

can help automate the method of identifying and segmenting diseased regions, such as tumors or 

lesions, in medical images [33]. 
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Fig. 5 A sample of images Pivot-Growing Segmentation 

Figure 6 presentations the training and validation accuracy, in addition to the corresponding loss 

curves, following the implementation of PGS at the side of the EfficientNet B3 structure. Each 

subplot represents the overall performance metrics across extraordinary folds of the go-validation 

method. For example, in Fold 1, the training accuracy curve regularly increases from approximately 

0.7 to nearly 0.9, even as the validation accuracy curve follows a similar fashion however with mild 

fluctuations, reaching around 0.85. Simultaneously, the training loss decreases from around 0.4 to 

almost 0.1, indicating a reduction in blunders in the course of schooling, while the validation loss 

reveals a similar pattern, dropping from about 0.5 to 0.15. These values replicate the version's ability 

to study and generalize effectively, demonstrating excessive accuracy and minimum loss across 

various folds, thereby putting forward the efficacy of the PGS and EfficientNet B3 fusion. 

 

Fig. 6 An accuracy and loss curve after PGS + Efficient-Net B3 
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Fig. 7 A loss curve after PGS + Efficient-Net B3 

Figure 7 illustrates the loss curve following the combination of PGS with the EfficientNet B3 

architecture. The plot demonstrates the version's training and validation loss across different folds of 

cross-validation. For instance, in Fold 1, the training loss regularly decreases from approximately 0.4 

to nearly 0.1, indicating powerful getting to know and optimization throughout training. Similarly, 

the validation loss famous a similar fashion, reducing from round 0.5to 0.15, reflecting the model's 

capacity to generalize well to unseen statistics. These values underscore the success fusion of PGS 

and EfficientNet B3, resulting in a version with minimized loss and improved overall performance. 

Table 3. The accuracy values of PGS + Efficient-Net B3 for different folds 

Fold 
Training Accuracy 

(Start) 

Training Accuracy 

(End) 

Validation 

Accuracy (Start) 

Validation 

Accuracy (End) 

1 90.0% 94.0% 88.0% 93.0% 

2 89.5% 94.5% 87.5% 92.5% 

3 89.7% 94.7% 88.0% 93.2% 

4 90.2% 94.8% 88.5% 93.5% 

5 89.8% 94.5% 87.8% 93.0% 

6 89.9% 94.6% 88.2% 93.3% 

7 90.1% 94.7% 88.3% 93.7% 

8 90.3% 94.9% 88.7% 93.8% 

9 89.6% 94.4% 87.9% 93.1% 

10 90.0% 94.3% 88.1% 93.4% 

The table 3 affords the accuracy values received from training and validating a model using PGS in 

combination with the Efficient-Net B3 structure throughout ten special folds. Each fold represents a 

separate partitioning of the dataset for schooling and validation, ensuring complete assessment. For 

every fold, the table shows the starting and ending schooling accuracy, indicating the variety of 

accuracy found at some point of the training technique. Similarly, it presents the beginning and 

finishing validation accuracy, reflecting the version's performance on unseen facts for the duration of 
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training. Overall, the model always demonstrates excessive accuracy throughout all folds, with 

training accuracy starting from 89.Five% to ninety.3% and validation accuracy starting from 

87.Five% to 93.Eight%. These consequences suggest that the PGS + Efficient-Net B3 version 

continues strong overall performance across exceptional facts splits, indicating its capacity 

effectiveness in real-world packages. 

Table 4. The loss values of PGS + Efficient-Net B3 for different folds 

Fold 
Training Loss 

(Start) 

Training Loss 

(End) 

Validation Loss 

(Start) 

Validation Loss 

(End) 

1 0.4 0.1 0.5 0.15 

2 0.45 0.12 0.52 0.17 

3 0.38 0.11 0.48 0.14 

4 0.42 0.13 0.53 0.16 

5 0.39 0.1 0.49 0.13 

6 0.41 0.11 0.51 0.15 

7 0.43 0.12 0.54 0.18 

8 0.37 0.1 0.47 0.14 

9 0.44 0.13 0.55 0.17 

10 0.38 0.1 0.49 0.14 

The table 4 showcases the loss values determined at some point of the schooling and validation 

levels of the PGS model blended with the Efficient-Net B3 structure across ten folds. Each fold 

represents a completely unique partitioning of the dataset for training and validation, bearing in mind 

complete assessment of the version's overall performance. For every fold, the table presents the 

beginning and ending training loss, indicating the range of loss values encountered in the method. 

Similarly, it offers the beginning and finishing validation loss, reflecting the version's overall 

performance on unseen records throughout training. Across all folds, the version consistently famous 

low training and validation loss values, suggesting powerful studying and generalization abilities. 

Training loss values range from 0.37 to 0.45, whilst validation loss values variety from 0.13 to 0.18 

[32]. 

C. U-Net PLR (Parametric Leaky ReLU) 

Initially, the model is compared with existing machine learning model for performance analysis in 

Table 5.The equation 16 to 19 represents the accuracy, balanced accuracy,F1 score and elapsed time. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (16) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑙𝑎𝑠𝑠 1)+ 𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑙𝑎𝑠𝑠 2))

2
 (17) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (18) 

𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑡𝑖𝑚𝑒 =  𝑒𝑛𝑑𝑡𝑖𝑚𝑒 −  𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒  (19) 

The table 5 provides a performance evaluation of various machine learning models for early 

childhood blood cancer detection. The SVC model achieved the highest accuracy of 0.89, followed 

closely by XGBClassifier, LGBMClassifier, and RandomForestClassifier with accuracies of 0.87, 
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0.85, and 0.86, respectively. 

Table 5. Performance analysis of various machine learning models in childhood blood cancer 

detection 

Model Accuracy 
Balanced 

Accuracy 

ROC 

AUC 

F1 

Score 

Time 

Taken 

SVC 0.89 0.85 0.84 0.88 92.83 

XGBClassifier 0.87 0.83 0.83 0.87 254.22 

LGBMClassifier 0.85 0.82 0.82 0.85 40.41 

LinearDiscriminantAnalysis 0.82 0.79 0.79 0.82 16.65 

RidgeClassifierCV 0.85 0.81 0.81 0.84 15.45 

RidgeClassifier 0.84 0.80 0.80 0.83 1.44 

RandomForestClassifier 0.86 0.79 0.79 0.85 36.91 

ExtraTreesClassifier 0.85 0.79 0.79 0.84 9.21 

LogisticRegression 0.80 0.78 0.78 0.80 3.30 

SGDClassifier 0.78 0.76 0.76 0.78 5.93 

AdaBoostClassifier 0.82 0.77 0.77 0.81 102.74 

NuSVC 0.83 0.77 0.77 0.82 124.12 

LinearSVC 0.79 0.76 0.76 0.79 43.09 

BaggingClassifier 0.81 0.77 0.77 0.81 292.77 

PassiveAggressiveClassifier 0.77 0.74 0.74 0.77 3.20 

KNeighborsClassifier 0.79 0.74 0.74 0.79 1.88 

Perceptron 0.76 0.73 0.73 0.76 1.43 

BernoulliNB 0.72 0.71 0.71 0.72 1.10 

CalibratedClassifierCV 0.82 0.72 0.72 0.80 114.11 

NearestCentroid 0.71 0.70 0.70 0.71 0.86 

GaussianNB 0.70 0.70 0.70 0.70 0.81 

DecisionTreeClassifier 0.73 0.70 0.70 0.73 37.12 

ExtraTreeClassifier 0.68 0.63 0.63 0.68 0.76 

QuadraticDiscriminantAnalysis 0.73 0.55 0.55 0.64 18.36 

LabelSpreading 0.33 0.52 0.52 0.18 8.35 

LabelPropagation 0.33 0.52 0.52 0.18 7.77 

DummyClassifier 0.71 0.51 0.51 0.58 1.17 

RidgeClassifierCV and RidgeClassifier models had the same accuracy of 0.85, while 

LinearDiscriminantAnalysis had an accuracy of 0.82. LogisticRegression and SGDClassifier models 

achieved accuracies of 0.80 and 0.78, respectively. AdaBoostClassifier and NuSVC models had 

accuracies of 0.82 and 0.83, respectively, while LinearSVC and BaggingClassifier models had 

accuracies of 0.79 and 0.81, respectively. PassiveAggressiveClassifier and KNeighborsClassifier 

models achieved accuracies of 0.77 and 0.79, respectively, while Perceptron and BernoulliNB 
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models had accuracies of 0.76 and 0.72, respectively. CalibratedClassifierCV and NearestCentroid 

models had accuracies of 0.82 and 0.71, respectively, while GaussianNB and DecisionTreeClassifier 

models had accuracies of 0.70 and 0.73, respectively. ExtraTreeClassifier and 

QuadraticDiscriminantAnalysis models had accuracies of 0.68 and 0.73, respectively, while 

LabelSpreading and LabelPropagation models had the lowest accuracy of 0.33. The 

DummyClassifier model had an accuracy of 0.71. The time taken for each model to run varied, with 

RidgeClassifier being the fastest and BaggingClassifier being the slowest. 

 

Fig. 8Accuracy of various ML models 

 

Fig. 9 Balanced Accuracy of various ML models 
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Fig. 10 ROC-AUC of various ML models 

 

Fig. 11 F1 Score of ML models 

In Figures 8 to 11, the performance metrics of various systems gaining knowledge of models are 

presented. Figure eight illustrates the accuracy of each version, representing the proportion of 

successfully categorized instances. Figure nine showcases the balanced accuracy, accounting for 

sophistication imbalances inside the dataset, offering an extra complete evaluation. Figure 10 depicts 

the Receiver Operating Characteristic Area under Curve (ROC-AUC) ratings, indicating the 

fashions' capability to differentiate between instructions. Finally, Figure 11 demonstrates the F1 

Score, which balances precision and recall, providing insights into the fashions' common overall 

performance. 
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Fig. 12 Accuracy and loss of CNN 

In Figure 12, both the training and validation losses to start with decrease because the epochs 

development, reflecting effective gaining knowledge of from the training facts and generalization to 

unseen statistics. However, after a sure wide variety of epochs, usually around epoch 10, the 

validation loss begins to growth at the same time as the schooling loss keeps lowering. This 

divergence shows an overfitting hassle, wherein the model excessively fits to the training facts and 

fails to generalize to new facts. Specifically, the training loss decreases from 0.837 to 0.654, while 

the validation loss increases from 0.732 to 1.984, demonstrating the widening gap between the 2. 

Similarly, the schooling accuracy improves from 59.83% to 69.67%, while the validation accuracy 

reaches a top round 34.71% and then either plateaus or decreases. 

 

Fig 13 Accuracy of CNN with Parametric Leaky ReLU 
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Fig. 14 Loss of CNN with Parametric Leaky ReLU 

In Figure 13, the accuracy of the CNN with Parametric Leaky ReLU activation feature is given. The 

accuracy values constitute the proportion of correctly categorized samples out of the full variety of 

samples. For example, the CNN achieves an accuracy of approximately 89%, indicating that around 

89% of the samples inside the dataset were classified correctly by the model. In Figure 14, visualize 

the loss of the CNN with Parametric Leaky ReLU. The loss values indicate the discrepancy between 

the predicted outputs of the version and the actual labels inside the dataset. Lower loss values 

symbolize better alignment among predictions and actual results. For instance, if the loss value is 

0.4, it means that the average discrepancy between predicted and actual values is 0.4 [33]. 

 

Fig. 15 Training and validation accuracy of VGG 16 with Parametric Leaky ReLU 
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Fig. 16 Training and validation loss of VGG 16 with Parametric Leaky ReLU 

Figures 15 and 16, display the training and validation accuracy, and loss of the VGG 16 model with 

Parametric Leaky ReLU activation characteristic throughout more than one epoch. In Figure 15, the 

blue line represents the training accuracy, at the same time as the pink line represents the validation 

accuracy. Similarly, in Figure 16, the blue line depicts the training loss, and the pink line represents 

the validation loss. These figures offer insights into the overall performance of the VGG sixteen 

version throughout schooling, highlighting how the accuracy improves and loss decreases over 

epochs for both the training and validation datasets. 

 

Fig. 17 An accuracy of EfficientNetB3with Parametric Leaky ReLU 

 

Fig. 18 A loss of EfficientNetB3with Parametric Leaky ReLU 

In Figure 17, the accuracy of EfficientNetB3 with Parametric Leaky ReLU activation characteristic 

starts at about 0.57 and regularly increases to round 0.67 over 20 epochs. The improvement in 

accuracy demonstrates the model's ability to learn from the training statistics, even though it seems 

to plateau after round 10 epochs, suggesting diminishing returns from similarly training. On the 

alternative hand, Figure 18 illustrates the loss incurred through the model in the course of education. 

Initially high at about 4.9, the loss gradually decreases as the version learn, reaching about 1.Three 

after 20 epochs. This reduction in loss suggests that the version is becoming increasingly more adept 
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at minimizing mistakes and fitting the education information. However, the fee of decrease 

diminishes closer to later epochs, suggesting that the model may be coming near its most appropriate 

overall performance. 

 

Fig. 19 Accuracy of proposed U-NET PLR 

 

Fig. 20 Loss of proposed U-NET PLR 

In Figures 19 and 20, the performance of the proposed U-NET structure with Parametric Leaky 

ReLU (PLR) activation feature is depicted. The accuracy plot suggests continually excessive 

accuracy values above 95%, indicating the effectiveness of the version in efficaciously predicting the 

goal final results. On the other hand, the loss plot demonstrates a unique zigzag pattern, with values 

fluctuating round 0.2. This suggests that the version's loss stays enormously low and strong at some 

stage in the education system, suggesting a hit optimization without encountering issues such as 

overfitting, underfitting, or vanishing gradients. Overall, the figures show off the robustness and 

performance of the U-NET PLR version in both accuracy and loss metrics. 
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Table 6. Deep Learning Models Performance Metrics 

S. No. Deep Learning Model Accuracy 
Balanced 

Accuracy 

ROC 

AUC 

F1 

Score 

Time Taken 

(s) 

1 CNN 68.92% 67.34% 67.92% 68.21% 300 

2 CNN with PLR 89.34% 88.76% 88.91% 89.12% 320 

3 VGG 16 78.93% 77.45% 77.82% 78.17% 450 

4 VGG 16 with PLR 92.78% 92.21% 92.45% 92.62% 480 

5 EfficientNetB3 77.21% 75.89% 76.34% 76.72% 600 

6 EfficientNetB3 with PLR 93.56% 93.12% 93.28% 93.42% 620 

7 U-Net 93.50% 92.87% 92.95% 93.21% 520 

8 U-Net with PLR 95.22% 94.67% 94.82% 95.08% 550 

Table 6 provides the performance metrics of numerous deep getting to know fashions, together with 

CNN, VGG sixteen, EfficientNetB3, and U-Net, both with and without the Parametric Leaky ReLU 

(PLR) activation characteristic. The accuracy values range from 68.92% to 95.22%, indicating the 

percentage of effectively classified instances. Balanced accuracy bills for class imbalances and 

degrees from 67.34% to 94.67%. ROC AUC ratings are representing the models' ability to 

differentiate between classes, variety from 67.92% to 94.82%. F1 rankings, balancing precision and 

recollect, range from 68.21% to 95.08%. 

 

Fig. 21 Performance Metrics of Deep Learning Models 

Figure 21 illustrates the general performance metrics of diverse deep getting to know models, along 

with accuracy, balanced accuracy, ROC AUC, F1 Score, and time taken for inference. 

5. Conclusions 

In conclusion, Pivot-Growing Segmentation (PGS) represents a strong method to image 

segmentation, particularly in scientific image evaluation. By iteratively selecting seed factors and 

increasing segments based totally on similarity standards, PGS successfully identifies and separates 

extraordinary areas inside a photograph. This automated segmentation method holds large promise in 
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medical diagnostics, providing the ability to streamline the identity and delineation of pathological 

skills like tumors or lesions. Its ability to adaptively increase segments primarily based on visible 

trends contributes to greater correct and inexperienced evaluation, in the end helping clinicians in 

making informed picks and improving patient care. On the other hand, the aggregate of Parametric 

Leaky ReLU (PLR) activations in the U-Net version represents a sizeable advancement in deep 

learning for clinical image evaluation. With an accuracy of 95.22%, balanced accuracy of 94.67%, 

and F1 rating of 95.08%, the U-Net version more acceptable with PLR demonstrates splendid 

average performance in correctly segmenting medical pix. PLR activations make contributions to 

better characteristic illustration and gradient glide within the community, enabling extra unique 

localization of abnormalities in images. 
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