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ABSTRACT 
Purpose:Glaucoma is one of the most common causes of permanent blindness in the world; early 

detection and precise diagnosis are essential to successful treatment.Convolutional Neural Networks 

(CNNs) are one of the deep learning techniques that have shown excellent results in the processing of 

medical images. Methodology:Using a dataset of 1,650 fundus pictures from the REFUGE, ORIGA, 

and ACRIMA databases600 glaucoma-positive and 1,050 glaucoma-negative samplesthis study 

assesses the effectiveness of three cutting-edge deep learning models for glaucoma classification. 

 Pretrained models like ResNet-50, VGG16, GoogLeNet, Vision Transformer (ViT), and Swin 

Transformer are investigated, emphasizing on their capacity to extract key variables such as the optic 

cup-to-disc ratio, retinal nerve fiber layer thickness, and vascular patterns.Result:Swin Transformer 

outperformed other models, achieving 100% accuracy, precision, recall, and F1-score in perfect 

classification. ViT and GoogLeNet similarly showed remarkable performance, achieving 92.92% and 

91.54% accuracy. ResNet-50 and VGG16, on the other hand, had lower accuracy percentages of 

74.62% and 78.77%. A number of drawbacks were found in all the models. ResNet-50 suffered from 

underfitting, which resulted in incorrect classifications and lower validation accuracy. While VGG16 

was effective in standard image classification tasks, it showed inadequate recall and substantial 

validation loss, especially in situations when the patient had glaucoma. GoogLeNet struggled with 

overfitting, which limited its ability to generalise to new data, whereas ViT needed a lot of processing 

power and initially had trouble correctly categorising cases of glaucoma.On the other hand, Swin 

Transformer used hierarchical feature maps and changing windows to efficiently capture both local 

and global picture information, such as blood vessel patterns and the structure of the optic nerve head. 

A confusion matrix verified that there were no misclassifications in the model's flawless 

generalisation. Conclusion:In summary, the study found that Swin Transformer was the most 

dependable and resilient model for glaucoma diagnosis, even though models like as ViT and 

GoogLeNet shown potential. This study highlights the promise of transformer-based topologies, in 

particular Swin Transformer, as a state-of-the-art remedy for ophthalmology-related medical image 

classification challenges.                                                                           

 

1. Introduction  

One of the main causes of permanent blindness in the globe, glaucoma is brought on by gradual 

damage to the optic nerve. Early identification and treatment are critical to avoid visual loss. 
Nevertheless, glaucoma is frequently missed by conventional diagnostic techniques including visual 

field testing and intraocular pressure monitoring. Automated glaucoma identification has become a 

viable way to enable earlier and more precise diagnoses with the development of large-scale retinal 
imaging databases and deep learning algorithms. 

Convolutional Neural Networks (CNNs) are one of the deep learning techniques that have shown 

excellent results in the processing of medical images. Popular models for a variety of tasks, including 

the diagnosis of retinal disorders, include ResNet-50, VGG16, and GoogLeNet. Each of these CNN 
models has its limits despite its success. 

For image classification applications, ResNet-50 performs well by addressing the vanishing gradient 

issue in deep networks through the use of residual connections. On smaller medical datasets, however, 
it frequently overfits and necessitates a significant amount of processing power. Furthermore, its 

dependence on convolution processes, it is less able to capture long-range relationships in visuals, 

which is a crucial capability for glaucoma detection of subtle characteristics. 
Smaller convolutional filters and deep layers are used by VGG16 architecture, which is simple and 

consistent in order to enhance feature extraction. However, because of its huge number of parameters, 

it has a slow training time and is computationally costly. Furthermore, its inability to handle vanishing 
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gradients internally may restrict its use on deeper levels. Its efficacy in identifying glaucoma is further 

impacted by its incapacity to represent intricate retinal structures with efficiency. 

By applying convolutions of various sizes in parallel, the GoogLeNet produces Inception modules, 
which allow the network to collect multi-scale characteristics. Although this improves computing 

efficiency and lowers the possibility of overfitting, the intricacy of the model may make it more 

difficult to train and fine-tune for certain applications, such as the detection of glaucoma. 
Furthermore, the model may not be as successful when addressing global structural alterations in the 

optic nerve, which are crucial for the diagnosis of glaucoma, due to its dependence on local feature 

extraction. 

Despite their great success in medical image analysis, CNN-based models are limited by their 
emphasis on local characteristics, which frequently ignores the overall context of the picture. This 

restriction may be crucial for the diagnosis of glaucoma, as precise diagnosis requires the collection of 

both local and global retinal characteristics. Transformer-based designs, such the ViT and Swin 
Transformer, have been developed recently to overcome this constraint. These architectures use self-

attention methods to capture both local and global dependencies in images. 

In order to function, ViT divides an image into patches and models the links between these patches 

using self-attention. Because of this, ViT is able to collect features more efficiently than CNNs, both 
local and global. But without extensive data augmentation or pre-training, its performance tends to 

deteriorate on smaller medical datasets, necessitating big datasets for training. Additionally, the model 

lacks inductive biases like translational invariance, which increases its reliance on large amounts of 
data and processing capacity. 

Swin Transformer is a hierarchical Transformer model that uses a shifted window technique for 

hierarchical feature extraction and local attention to overcome some of the issues raised by ViT. As a 
result, the Swin Transformer can operate more effectively while preserving global context knowledge 

on datasets of any size. Nevertheless, its implementation might be computationally demanding and 

intricate, necessitating meticulous parameter adjustment to guarantee peak efficiency. Additionally, 

research on its effectiveness on medical pictures is currently ongoing, with limited relevance to the 
precise identification of glaucoma. 

In this work, we evaluate the efficacy of ViT and Swin Transformer, two transformer-based models, 

against the standard CNN-based models ResNet-50, VGG16, and GoogLeNet for automated 
glaucoma identification. We want to ascertain the advantages and disadvantages of each model via 

this comparison study and ascertain the best architecture for precisely identifying glaucoma from 

retinal fundus pictures. The goal of this research is to better understand the trade-offs involved in 
these models in order to help build automated glaucoma screening methods that are more accurate and 

efficient. This might lead to the early identification and treatment of this crippling condition. 

 

2. Literature Review  
P. Jibhakate et al. present a discussion on the early identification of glaucoma. A comparative study is 

conducted between two distinct transfer learning algorithms ResNet-50 and VGG16. Machine 

learning techniques were utilised to quantify the morphological indicators of glaucoma, which are 
predictive of the onset of anomalies in the disease. The process of glaucoma screening is costly, 

labour-intensive, and prone to human error. There are fewer eye specialists in underdeveloped and 

underprivileged communities. By increasing public accessibility to glaucoma screening, this initiative 

will save time, money, and resources. Early diagnosis is crucial for glaucoma because it is the primary 
cause of blindness in the US.  

 In addition to aiding in the early diagnosis of glaucoma illness, the technique of A. Sallam et 

al. makes use of pre-trained models like as AlexNet, VGG11, VGG16, VGG19, GoogLeNet 
(Inception V1), ResNET-18, ResNET-50, ResNET-101, and ResNet-152. The Large-scale Attention 

based Glaucoma (LAG) dataset was used to assess the suggested approach. Using AlexNet, VGG11, 

VGG16, VGG19, GoogLeNet (Inception V1), ResNET-18, ResNET-50, ResNET-101, and ResNet-
152 models, satisfactory results of 81.4%, 80%, 82.2%, 80.9%, 82.9%, 86.7%, 85.6%, 86.2%, and 

86.9% were observed on the LAG dataset. The ResNet-152 model was determined to be the best 

among these outcomes, achieving a high accuracy with recall of 86.9% and precision of 86.9%. 
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 This work, which was reported by A. Serener et al., is based on the automated identification 

of advanced and early glaucoma by the use of fundus photos. Transfer learning is used to train and 

optimise the deep convolutional neural network algorithms ResNet-50 and GoogLeNet for 
classification. It is proven that GoogLeNet model outperforms ResNet-50 for the identification of 

early as well as advanced glaucoma detection. 

 It's still unclear exactly colour fundus-based deep learning algorithms identify glaucoma. 
Consequently, D.-W. Lu et al. study examined the deep features retrieved by the deep learning models 

in order to provide the frameworks of the deep convolutional neural network (DCNN) in glaucoma 

evaluation a visual interpretability. 986 fundus photos from National Taiwan University Hospital 

Hsin-Chu Branch were used in the study. These photos were divided into two groups: 512 
glaucomatous cases with impaired ganglion cell complex (GCC) and 474 non-glaucomatous cases 

with normal GCC thickness.According to the experimental findings, deep learning models primarily 

target the optic nerve head (ONH) regions for glaucoma diagnosis, in line with clinical guidelines for 
glaucoma evaluation. Remarkably, even with reduced pictures of the macular regions alone, the 

DCNN models are still able to achieve good prediction accuracy in identifying glaucomatous patients. 

The model's focal regions match the region with GCC impairment in a number of situations. The 

findings suggest that deep learning algorithms are capable of identifying morphologically intricate 
changes in fundus photos that may be difficult for professionals to visualise. 

  

3. Methodology  
This section explains about the methodology of various CNN’s and the emerging transformer model 

in the application glaucoma detection. 

3.1 ResNet-50  
The architecture of ResNet-50 is displayed in Fig.3a which identifies the presence or absence of 

glaucoma in the given retinal fundus. 

 
Fig. 3a – Block diagram of ResNet-50 for the detection of glaucoma 

 

To efficiently diagnose glaucoma, the model examines pre-processed retinal fundus pictures, which 
are usually scaled to 224x224 pixels and normalised. These images include important features that can 

be detected, including the optic nerve head, cup-to-disc ratio, and structural anomalies.  

Zero-padding is used to retain the spatial dimensions during convolution processes, which is essential 

for accurate detection since it preserves significant edge and boundary characteristics which is 
expressed as,  

Output size = 
𝐼+2𝑃−𝐾

𝑆
 + 1----------------------(1) 

P is the size of the padding; S is the stride and K is the kernel size. 

First convolutional layer extracts low-level features like as edges, textures, colour gradients, and 
simple patterns by using 3x3 filters, which are widely used in ResNet-50. The convolution operation 

at each layer is, 
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𝑌𝑖𝑗
𝑘 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛  𝑊𝑚𝑛

𝑘𝑁
𝑛=1

𝑀
𝑚=1 + 𝑏𝑘----------------------(2) 

𝑌𝑖𝑗
𝑘is the output feature map, 𝑋𝑖+𝑚,𝑗+𝑛  is the input pixel value, 𝑊𝑚𝑛

𝑘  is the kernel weight, 𝑏𝑘is the 

bias term, M and N are the height and width of the kernel. 

 After that, the output is normalised using Batch Normalisation, which minimises overfitting and 

speeds up training so that the model can more effectively generalise to new images and it is expressed 
as,  

𝑌𝑖𝑗
𝑘 =

𝑌𝑖𝑗
𝑘 − 𝜇𝑘

(𝜎𝑘2+∈).
1
2

   ----------------------(3) 

𝜇𝑘is the mean value of the feature map, 𝜎𝑘2 is the value of variance, ∈ is the numerical stability 

constant. 
ReLU activation function provides non-linearity to the model, allowing it to learn intricate properties 

like nerve fibre thinning and optic disc deformationwhich is given as,  

f(x) = max (0,x)        ----------------------(4) 

x is the input of the activation function which helps in detecting the complex patterns such as optic 
disc deformation and nerve fiber thinning. 

After that, Max Pooling focusses on the most important data, such the optic cup and disc, by reducing 

the spatial dimensions of the feature maps, it is expressed as, 

𝑌𝑖𝑗
𝑘 = max(𝑋𝑖:𝑖+𝑝,𝑗:𝑗+𝑝

𝑘 )            ----------------------(5) 

𝑌𝑖𝑗
𝑘is the pooled output, 𝑋𝑖:𝑖+𝑝,𝑗:𝑗+𝑝

𝑘 is the input patch. 

Regarding feature extraction, the model encompasses a broad range of attributesEdges, textures, 

colour gradients, and patterns that delineate anatomical elements like blood arteries and the optic disc 

are examples of low-level characteristics. The cup-to-disc ratio, vascular alterations, and optic nerve 
head characteristics are the main mid-level traits that point to underlying diseases. Elevated 

characteristics include optic disc distortion, thinning of the nerve fibre layer, mild alterations in the 

retina, and general optic nerve shape and health, all of which are important markers for glaucoma 
diagnosis.  

In summary, the first convolution operations identify low-level characteristics like edges and textures. 

Deeper convolution layers extract mid-level information such as optic nerve head properties and cup-

to-disc ratio. Residual blocks and pooling layers record high-level information such as optic disc 
distortion and nerve fibre thinning. 

By averaging all values, Average Pooling eventually reduces the final feature map to a single vector, 

highlighting global aspects like the general form and condition of the optic nerve. For classification, 
this output is subsequently flattened into a 1D vector, which is given as,  

𝑌𝑘 = 
1

𝑀𝑁
∑ ∑ 𝑋𝑖𝑗

𝑘𝑁
𝑗=1

𝑀
𝑖=1 ----------------------(6) 

𝑌𝑘is the global average pooled value. 

As the last classifier, the fully connected layers use the flattened feature vector to provide a 
probability score that indicates whether or not the picture is glaucomatous and it is expressed as,  

z = 𝑊𝑇 x + b ----------------------(7) 

W is the weight matrix, x is the flattened input vector, b is the bias term. 

 In order to give probabilities for each class and help the model determine whether glaucoma is 
present in the retinal images, the SoftMax function is commonly used in the output layer which is 

given as, 

P (y=i  x) = 
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

----------------------(8) 

P (y=i x) is the probability of class I for the input x, ziis the score value,C is the number of classes. 

3.2 VGG16  

The architecture of VGG16is displayed in Fig.3b which identifies the presence or absence of 

glaucoma in the given retinal fundus. 
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Fig. 3b – Block diagram of VGG16 for the detection of glaucoma 

 

Pre-processed retinal fundus images, which are usually normalised and shrunk to a set size, such as 
224x224 pixels, are processed using the VGG16-based architecture for glaucoma identification. In 

order to extract low-level data, including as edges, textures, and colour gradients, which aid in the 

identification of fundamental components like blood vessels and the optic disc, the model first applies 
convolutional layers. Convolution layers (Conv 1-1 and Conv 1-2) in the first block identify these 

fundamental characteristics, and a Max Pooling layer shrinks the feature map's spatial dimensions 

while preserving important details like the cup-to-disc ratio and the limits of the optic nerve.The same 

process is repeated across a number of convolutional blocks, with each new block gradually extracting 
increasingly complex and abstract characteristics. 

Deeper convolutional layers concentrate on obtaining mid-level and high-level characteristics 

necessary for the diagnosis of glaucoma in blocks 2, 3, 4, and 5. Conv 2-1 and Conv 2-2, for example, 
concentrate on mid-level elements like the optic nerve head and cup-to-disc ratio, whereas Conv 3-1 

through Conv 3-3 capture more intricate patterns like alterations in the optic disc structure and retinal 

nerve fibre layer. The model recognises high-level traits such as optic disc deformation, nerve fibre 

thinning, and retinal alterations associated with glaucoma as it moves through Conv 4-1 to Conv 4-3 
and Conv 5-1 to Conv 5-3. Max Pooling layers are used to down sample the feature maps after each 

convolutional block, preserving only the most important features. 

The output of the convolutional layers is flattened into a one-dimensional vector and sent to the fully 
connected (dense) layers after all relevant features have been retrieved and processed. The high-level 

characteristics are combined by these layers to create a thorough feature vector, which is then utilised 

to determine the classification. Using the learnt characteristics, the fully connected layers determine 
whether glaucoma is present in the image. Usually, a SoftMax activation function is used in the final 

output layer to assign probabilities to the various classes (glaucoma or non-glaucoma). The final 

categorisation is decided by the model based on the highest probability. 

In summary, a variety of characteristics are extracted by the VGG16 architecture, ranging from high-
level diagnostic indicators like optic disc deformation and nerve fibre thinning to low-level visual 

signals like edges and textures. The fully connected layers incorporate these characteristics for the 

final classification after the pooling layers minimise spatial dimensions while preserving important 
information. With the use of this organised, hierarchical feature extraction, the model can correctly 

identify glaucoma from retinal fundus photos. 

3.3 GoogLeNet 
The architecture of GoogLeNet is displayed in Fig.3c which identifies the presence or absence of 

glaucoma in the given retinal fundus. 

Input 
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Fig. 3c – Block diagram of GoogLeNet for the detection of glaucoma 

The first step in the GoogLeNet architecture for glaucoma diagnosis is to process retinal fundus 

images that have already been pre-processed and scaled to 224x224x3. Using simple convolutional 
techniques, the first stem layer extracts low-level information like as edges, textures, and patterns, 

concentrating on the borders of the optic disc and the retinal blood vessels. After then, the network as 

a whole uses Inception modules to collect data at various sizes. The model is able to learn both local 
and global characteristics that are essential for diagnosing glaucoma, such as the anatomy of the optic 

nerve and general health of the retina, by applying filters of size 3x3, simultaneously in each 

Inception module. As the image moves forward into the network, these modules extract low, mid, and 

high-level information. Basic retinal patterns are the focus of low-level features, whereas optic nerve 
thinning, nerve fibre layer flaws, and optic disc deformation are among the important diagnostic 

metrics captured by mid-level and high-level features, respectively. 

After a number of Inception modules, max pooling procedures are used to minimise the spatial 
dimensions of feature maps while keeping important details about structural anomalies that aid in the 

diagnosis of glaucoma. Auxiliary Classifiers are included after specific Inception modules to help 

with training and avoid gradient vanishing. They provide early predictions on the existence of 

glaucoma and regularise the training process. The network's total performance is improved by these 
auxiliary outputs, which guarantee that the network picks up useful characteristics at intermediate 

stages. 

The network employs Average Pooling 7x7to reduce the size of the feature maps while focussing on 
the most important global features, such as the general shape and health of the optic nerve, after 

passing through the deeper Inception modules, which concentrate on high-level feature extraction like 

optic disc deformation and nerve fibre thinning. The final classification is achieved by aggregating 
high-level features in fully connected layers (FCL) using the reduced feature map. Whether or 

whether glaucoma is visible in the retinal fundus picture is determined by these totally linked layers. A 

SoftMax layer is used to create the final output. It offers a probability distribution across the potential 

classes (glaucoma or non-glaucoma), with the final classification determined by the class with the 
highest probability. 

In conclusion, GoogLeNet can efficiently extract features from retinal images on several scales using 

Inception modules. This enables it to capture both local and global data. Both high-level diagnostic 
characteristics and low-level visual signals that are essential for glaucoma detection are gradually 

learnt by the architecture. In order to provide precise identification of glaucomatous anomalies, fully 

linked layers make the final choice based on learnt characteristics, with the assistance of auxiliary 
classifiers to optimise training. 

3.4 Vision Transformer  

The architecture of ViT[7] is displayed in Fig.3d which identifies the presence or absence of glaucoma 

in the given retinal fundus. 
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Fig. 3d – Block diagram of ViT for the detection of glaucoma 

 
In order to identify glaucoma, the ViTarchitecture first processes retinal images, which are separated 
into smaller, non-overlapping patches. Like token embeddings in language models, each of these 

image patches gets flattened into a vector, enabling linear projection onto a fixed-dimensional 

representation. As transformers are permutation-invariant and cannot record the spatial connections 
between patches, positional embeddings are added to the patch embeddings to preserve the image's 

spatial structure. 

Each patch  xp€ 𝑅𝑃2  𝑋 𝐶
is projected into a lower dimensional embedding space :  

  

Zp= We .flatten (xp) + be  ----------------------(9) 

beis the bias term, We € 𝑅𝐷 𝑋 𝐶 .𝑃2 
 is the learnable weight matrix, D is the embedding dimension space. 

 

Followed by the above patches, positional encodings are added to retain the spatial structure, which is  

𝑧0
𝑖  = 𝑧𝑝

𝑖  + 𝐸𝑝𝑜𝑠
𝑖             ; i=1,2,…N ----------------------(10) 

The core element of this design is the transformer encoder, which is made up of several layers of 

feedforward and self-attentional neural networks. The model can focus on important regions of the 

retinal vision by capturing long-range relationships between image patches due to the self-attention 
process.  

For every patch embedding, the self-attention value is calculated in terms of query, key and value 

which are represented by Q,K,V. 

Q = zWq;  K = zWk  ; V = zWv----------------------(11) 
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Wq ,Wk , Wv€ 𝑅𝐷𝑋𝐷  are learnable projection  matrices. The attention scores between the patches are 

calculated as follows  

Attention(Q,K,V) = SoftMax (
QK^T

√dk
) 𝑉            ------------------(12) 

where Q-Query, K-Key and V-Value,  

(
QK^T

√dk
)  is the softmax function which gives probabilities out of scores 

 

 Additional emphasis gets placed on areas of the optic disc, blood vessels, or other retinal 
characteristics that may be indicative of glaucoma. This allows the model to extract characteristics 

like the cup-to-disc ratio, other minor anomalies associated with glaucoma, and the size, shape, and 

texture of the optic nerve head. 
The model integrates these retrieved characteristics into higher-level representations. These comprise 

both global information from the entire retinal picture and local features from particular patches, so 

the model can identify both large-scale indications such as injured nerve fibres and small-scale 

anomalies such as structural alterations in the optic disc. These collected properties are further refined 
by the feedforward neural networks, which contribute to the creation of abstract representations that 

are essential for the categorisation of glaucoma. 

The transformer encoder's output is sent to a Multi-Layer Perceptron (MLP) head after going through 
many stages of self-attention and feature refinement processing. After processing the encoded patches, 

the MLP generates a classification prediction that indicates whether or not glaucoma is present in the 

retinal picture. To sum up, this ViT-based architecture makes use of its capacity to learn complex 
patterns, concentrating on both local and global retinal aspects, to enable precise glaucoma diagnosis 

by utilising the image's delicate visual signals. 

3.5 Swin Transformer  

The architecture of Swin transformeris displayed in Fig.3e which identifies the presence or absence of 
glaucoma in the given retinal fundus.  

 

 
 

Fig. 3e – Block diagram of Swin transformer for the detection of glaucoma 

 
Feature extraction is an essential stage in the Swin Transformer's glaucoma detection process, when 

the model recognises and learns the most significant visual patterns from the input fundus image. 

Unlike conventional CNNs, the Swin Transformer uses special methods for feature extraction. 
First, the fundus image is split up into minuscule, fixed-size 4x 4 patches. The model can focus on 

local characteristics of the fundus images, such as alterations in the optic nerve or cupping of the optic 

disc, that are essential for identifying early indicators of glaucoma since it works with patches rather 

than individual pixels. 
 Instead of having a fixed patch size, an adaptive partitioning mechanism is used. The patch 

size varies depending on high contrast region especially around optic disc. 

The number of patches is mathematically computed by adaptive patch partitioning as  
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Adaptive patch count = ∑ (
𝐻

𝑝𝑖
𝑥 

𝑊

𝑝𝑖

𝑁
𝑖=1  )          ------------------(13) 

Where H and W mentions the height and width of the image and pi adapts to the content, varying per 

region. Each patch is then flattened into a vector of size 𝑃2 𝑥 𝐶, where C represents the number of 

channels. These vectors serve as initial input tokens for the Swin transformer.Patch partitioning 
effectively breaks down the fundus image into manageable sections, ensuring that the Swin 

Transformer can focus on smaller regions for focused feature extraction.  

 After being flattened into a 1D vector, each patch is then passed through 
multiscaleembeddings. This layer creates a higher-dimensional feature space both fine and coarse 

features from each patch's raw pixel data which is expressed as  

Zi = Wemb,small.xi + Wemb,large.xi  + bemb ------------------(14) 

Where Wemb,small and Wemb ,largerepresents the learnable weight matrix which captures different scales of 
information which leads to richer patch representations,bembis the bias vector,Zi is the embedded 

vector for each patch.Each patch has a feature vector as a consequence, which represents fundamental 

visual attributes like colour, texture, and intensity and acts as the basis for additional research. 
The Swin Transformer uses window-based self-attention techniques after patches are implanted. The 

model learns the associations between patches in a given local area by performing self-attention inside 

each local window, which is a set of patches. The optic disc, blood vessels, and retinal layers are some 
of the key glaucoma-related components that the model may be able to identify in the fundus image 

due to this attention mechanism. 

Here in both the swin transformer blocks, dynamic-attention mechanism is applied to the patches as 

that weights the attention score based on the important regions as optic nerve and it is defined as  

Attention (Q, K,V) = SoftMax (𝛼𝑖 .
QK^T

√dk
) 𝑉 ------------------(15) 

where Q-Query, K-Key and V-Value,  

(
QK^T

√dk
)  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠and𝛼𝑖is a learned 

weight that prioritizes medically relevant areas. 

 It may also identify elements like edges, forms, and textures.The model concentrates on several parts 

of the fundus picture at the same time due to the multi-head attention mechanism, which guarantees a 

more thorough knowledge of the local characteristics.  
MultiHead (Q,K,V) = Concat( head1 , head2 …… headh) Wo------------------(16) 

Headi represents the attention score calculated using query, key and value. 

 The Swin Transformer modifies each local window's characteristics before moving them 
significantly to the next tier. This change makes it possible for patches from nearby areas to 

communicate with one another, guaranteeing that the model can accurately represent global 

dependencies across the fundus image. It helps in the extraction of broader, more global information 

from the fundus image, such as the general optic disc structure or the glaucoma-associated patterns of 
retinal thinning.The Swin Transformer extracts fine details and large-scale patterns from the fundus 

picture by switching between local (window-based) and global (shifting window) attention.  

 Three-tiered feature representations are learnt when the fundus picture moves through the 
Swin Transformer's levels. Early on, the model records low-level characteristics such as blood vessel 

architecture, optic disc boundaries, and edges and textures. Higher level and more abstract 

characteristics, such the optic cup's form or indications of nerve fibre layer loss, are derived from the 
deeper layers. The human visual system, which begins by recognising basic patterns and then 

advances to more sophisticated structures that are crucial for glaucoma diagnosis, is modelled by this 

hierarchical feature extraction method. 

Hierarchical patch merging is performed here which means patch merging is performed in a 
hierarchical manner where patches are merged differently based on their level of information content. 

It provides more granularity in significant regions and less in other regions. As a result, the fundus 

image's spatial resolution decreases but its feature dimensionality rises. Hierarchical patch merging 
aids in gradually condensing the features while keeping the most significant information. This allows 

the model to concentrate on the characteristics that are most important for identifying glaucoma, 

including unusual retinal layer thinning or cupping of the optic disc.  

This is as follows, 𝑍𝑙+1 = HierarchicalMerge (Wmerge,high . z1 + Wmerge,low . z2) 
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where z1 is important region and z2 is non-important region,Wmerge,highand Wmerge,lowrepresents patches 

with varying information levels. 

𝑍𝑙+1= Wmerge.Concat( 𝑧1 
𝑙 , 𝑧2 

𝑙 , ……𝑧𝑘 
𝑙 )------------------(17) 

 𝑍𝑙 is the input feature map at layer l, 𝑧𝑖 
𝑙  is a patch representation at layer l, Wmerge  is the learnable 

merging weight matrix. 

The model strikes a compromise between computational efficiency and feature richness by shrinking 

the spatial size of the patches while enhancing the feature representations.  
Following several layers of Swin Transformer processing and patch merging, the model generates a 

fundus image condensed feature representation. Rich information on regional and worldwide patterns 

associated with glaucoma may be found in these characteristics. A fully connected linear layer 

receives the final information and converts them into a format that could potentially use for 
classification (glaucoma positive or negative). This classification is formulated as 

ý = SoftMax (Wcls. Z + bcls) ------------------(18) 

whereWcls is the weight matrix for the classification layer, bcls is the bias term, z is the final feature 
vector. 

A customized loss function is implemented that weights the classification loss based on the severity 

level. 

Lweighted= ∑ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑖). 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑖 
~, 𝑦𝑖

𝑁
𝑖=1 )------------------(19) 

The severity weight emphasizes higher penalties for misclassification in severe cases, guiding the 

model to prioritize detection of critical stages. 

4. Results and Discussions  
This study comparesmany cutting-edge deep learning architectures, including as VGG16, GoogLeNet, 

ViT, and Swin Transformer, to classify images from the REFUGE, ORIGA, and ACRIMA datasets 

that are glaucoma-positive and glaucoma-negative. The models underwent five epochs of training, and 

their efficacy was assessed by the application of training and validation accuracy, as well as many 
evaluation indicators like precision, recall, F1 score, and AUC. 

4.1 Database  

In this work, REFUGE, ORIGA, and ACRIMA three publically available datasets are used which is 
shown in Table 1. These databases consist of fundus images, which are frequently utilised in medical 

contexts to diagnose glaucoma and other visual conditions. 

Table 1 Database Description 

 

The dataset is divided into training and validation sets in order to create a reliable and broadly 

applicable model. Twenty percent of the images (330 samples) were set aside for validation, and the 
remaining eighty percent (1,320 samples) were utilised to train the model. This division guarantees 

that the model's capacity to generalise is tested on untested data. 

i. Training and Validation Accuracy 
The models showed differing levels of effectiveness in identifying presence or absence of glaucoma 

which is shown in Table 2. 

 
 

 

 

S.No. 
Database 

Name  
Total number of images 

Field of 

view(in 

degrees) 

1 REFUGE 
1,200 fundus images (600 glaucoma-positive and 
600 glaucoma-negative images) 

45 - 50  

2 ORIGA 
650 fundus images (200 glaucoma-positive and 

450 glaucoma-negative images) 
45 

3 ACRIMA 
400 fundus images (300 glaucoma-positive and 
100 glaucoma-negative images) 

45 
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Table 2 Model-wise Training and Validation Accuracy Progression 

 
The Swin Transformer performs well when it applies to glaucoma detection. The Swin Transformer 

progressively develops more effectively attaining 0.84 training accuracy and 0.91 validation accuracy 
by the fifth epoch, whereas GoogLeNet reaches perfect validation accuracy (1.0) by the third epoch. 

The cup-to-disc ratio, optic nerve head form, retinal nerve fibre layer thickness, and other important 

glaucoma markers may all be captured by this model due to its shifting window technique and 
hierarchical attention mechanism. The Swin Transformer's ability to dynamically concentrate on 

various picture areas sets it apart from typical CNNs, enhancing its generalisation and making it an 

effective tool for medical imaging. While GoogLeNet works incredibly well, the transformer-based 

design of the Swin Transformer provides more reliable feature extraction for medical workloads by 
striking a balance between accuracy and efficiency without overfitting. 

ii. Training and Validation loss 

Table 3 provides the model-wise comparison of training and validation loss, showcasing how each 
model reduces error over time. 

Table 3 Model-wise Training and Validation loss 

 
The training and validation loss tables give additional insight into the models' performance. With its 

lowest training loss of 0.05 by the fifth epoch and validation loss of 0.01 by the same epoch, 

GoogLeNet demonstrates its exceptional error minimization and data generalization capabilities. 
Additionally, the Swin Transformer performs well, demonstrating strong generalisation and resilient 

learning skills by reducing its training loss to 0.39 and validation loss to 0.27 by the fifth epoch. The 

architecture of the Swin Transformer helps minimise loss by concentrating on important retinal 

properties like optic nerve shape and cup-to-disc ratio, which are essential for glaucoma detection. It 
does this by utilising hierarchical attention and shifting window processes. 

Comparatively, VGG16 observes the slowest loss decline by the fifth epoch, validation loss is still 

unusually high at 0.50, suggesting that it has difficulty generalising as well as the other models. Swin 
Transformer is a great choice for medical image analysis tasks like glaucoma detection because it can 

balance lower loss with effective feature extraction and learning. ViT and ResNet-50 also demonstrate 

notable improvements, with ViT reaching a low validation loss of 0.30 by the end of training. 
iii. Confusion Matrix  

A confusion matrix in Fig. 4 is utilised to assess the extent to which the various models identify 

glaucoma. Correctly classified instances are represented by the diagonal members of the matrix, 

whereas incorrectly classified instances are represented by the off-diagonal elements. 

ResNet-

50
VGG16

GoogLe

Net
ViT

Swin 

Transfor

mer

1 0.74 0.7 0.73 0.71 0.73

2 0.74 0.74 0.84 0.75 0.74

3 0.78 0.74 0.92 0.8 0.75

4 0.83 0.74 0.98 0.87 0.78

5 0.85 0.76 0.99 0.9 0.84

No. of 

Epochs

Training Accuracy

ResNet-

50
VGG16

GoogLe

Net
ViT

Swin 

Transfor

mer

1 0.74 0.74 0.8 0.8 0.74

2 0.78 0.74 0.94 0.84 0.74

3 0.82 0.74 0.99 0.87 0.85

4 0.88 0.76 1 0.79 0.88

5 0.78 0.74 1 0.92 0.91

No. of 

Epochs

Validation Accuracy

ResNet-

50
VGG16

GoogLe

Net
ViT

Swin 

Transfor

mer

1 0.57 0.62 0.54 0.6 0.58

2 0.53 0.56 0.37 0.5 0.56

3 0.5 0.55 0.22 0.4 0.51

4 0.42 0.53 0.11 0.3 0.47

5 0.31 0.52 0.05 0.3 0.39

No. of 

Epochs

Training loss

ResNet-

50
VGG16

GoogLe

Net
ViT

Swin 

Transfor

mer

1 0.51 0.57 0.39 0.5 0.53

2 0.47 0.6 0.21 0.4 0.49

3 0.38 0.55 0.08 0.4 0.36

4 0.29 0.53 0.02 0.4 0.38

5 0.46 0.5 0.01 0.3 0.27

No. of 

Epochs

Validation Loss
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Fig. 4 – Confusion matrix of the models 

With zero false positives and false negatives and nearly flawless classification, the Swin Transformer 

model performs the best in glaucoma detection. Its ability to recognise minor symptoms of glaucoma 

is largely due to its ability to record both local and global dependencies within retinal pictures, which 
is made possible by its hierarchical feature representation and self-attention mechanism. On the other 

hand, because of their reliance on convolutional layers, which restricts their capacity to capture long-

range relationships, models such as ResNet50 and GoogLeNet perform somewhat well. Despite 

having a high true negative rate, VGG16's simpler architecture makes it difficult to identify positive 
instances of glaucoma, which results in a high proportion of false negatives. Although it works 

effectively, ViT is sensitive to lesser datasets, which can lead to false positives. Overall, the Swin 

Transformer has a clear advantage over other models in correctly identifying glaucoma due to its 
capacity to process multi-scale input and concentrate on important retinal characteristics. 

iv. Receiver Operating Characteristics curve (ROC)  

The five models' different ROC curves in Fig. 5 show the variance in detecting glaucoma. 

 
a. ResNet50        b.VGG16 

 
c.GoogLeNet        d.ViT 
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e. Swin Transformer 

Fig. 5 – ROC of the models 

Due to their deep architectures and effective multi-scale feature extraction, ResNet-50 and 

GoogLeNet perform well, however they mostly rely on local features. VGG16's restricted depth and 
feature extraction capabilities cause it to lag behind the others while having a simpler structure. ViT 

does rather well, but its inability to catch finer information is hampered by its patch-wise processing 

without hierarchical aggregation. The Swin Transformer, on the other hand, performs well and has the 
greatest AUC. It is the greatest model for identifying anomalies associated to glaucoma because of its 

hierarchical feature representation and self-attention processes, which enable it to successfully capture 

both local and global trends. This capacity to generalize better at multiple scales is what sets Swin 

Transformer apart from the other models. 
v. Training accuracy and validation accuracy 

Fig. 6 shows the training and validation accuracy curves for five models. These curves show the 

amount that it learns from the training set and the way well it applies that learning to unseen data. 

 
a. ResNet50      b.VGG16 

 
c. GoogLeNet        d. ViT 
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e. Swin Transformer 

Fig. 6 – Training and validation accuracy of the models 

Strong learning and generalisation are suggested by the constant and consistent accuracy increases 

that GoogLeNet and ResNet-50 show over time, with steady increasing trends in both training and 
validation accuracy. On the other hand, VGG16 and ViT show varying accuracy, suggesting possible 

problems with learning stability and overfitting, in which case the models work well on training data 

but have trouble with generalisation. Swin Transformer successfully generalises to previously 
encountered data, as seen by a sharp spike in training accuracy and a gradual improvement in 

validation accuracy. Its self-attention technique and hierarchical feature extraction enable it to collect 

both global dependencies and local features in retinal images, contributing to its outstanding 
performance. This provides it an advantage over more conventional CNN-based models that 

concentrate more on local feature extraction, such as ResNet-50, GoogLeNet, and VGG16, as well as 

over ViT, which does not include hierarchical feature aggregation. 

 
vi. Training accuracy and validation loss 

The training and validation loss curves in Fig. 7 demonstrate the performance of the models. 

 

 
a. ResNet50      b.VGG16 
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c. GoogLeNet                    d. ViT 

 
e. Swin Transformer 

Fig. 7 – Training and validation loss of the models 

With the lowest validation loss among the others, Swin Transformer performs noticeably better than 

the others, suggesting better generalisation to untested data. This is mainly due to its hierarchical 
architecture, which enables it to concentrate on small details and more significant patterns in fundus 

pictures by efficiently capturing local and global information through shifting windows.The stated 

Convolutional models are limited in their capacity to comprehend complicated linkages in glaucoma 
detection because they rely on stacked convolutional layers, which are effective for extracting local 

features but ineffective at capturing long-range dependencies. Although GoogLeNet's inception 

modules enable multi-scale feature extraction, they only marginally improve performance when 

compared to transformers' self-attention processes.Higher validation loss results from ViT's use of 
picture patches rather than Swin Transformer's hierarchical feature extraction. Because of its 

hierarchical structure, Swin Transformer is more capable of tackling problems related to medical 

imaging, such as glaucoma diagnosis, where accurate feature localisation is crucial. It also allows for 
better spatial analysis and lowers computing complexity. Swin Transformer performs better due to the 

combination of global context modelling and local attentiveness. 

5. Conclusion  
For the purpose of classifying glaucoma, this study included an extensive evaluation of many 

advanced deep learning models, including ResNet-50, VGG16, GoogLeNet, ViT, and Swin 

Transformer.With 100% results in accuracy, precision, recall, and F1-score, among other important 

performance parameters, Swin Transformer proved to be the most successful of the models. Shifted 
window approaches enabled its hierarchical feature extraction, which improved the precision of 

capturing both local and global retinal data, including vascular patterns and optic nerve head shapes. 

Accordingly, Swin Transformer offers a great degree of generalisation without sacrificing 
classification performance, making it the ideal model for identifying subtle glaucoma signs in fundus. 

GoogLeNet and ViT were two models with great potential but faced challenges. ViT was resource-

intensive and had trouble early on in the training process differentiating between glaucoma instances, 
whereas GoogLeNet struggled with overfitting, which limited its capacity to generalise to new data. 

Despite being commonly utilised in picture classification tasks, ResNet-50 and VGG16 performed 
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poorly in this application. ResNet-50 had underfitting, while VGG16 showed substantial validation 

loss, especially in more complicated glaucoma cases. The study's findings highlight the expanding 

significance of transformer-based designs in the categorisation of medical images. Compared to 
conventional CNN-based methods, Swin Transformer in particular showed a balance of accuracy, 

computational efficiency, and feature extraction capabilities. This demonstrates its potential for wider 

application in the field of ophthalmology, especially in automating the early diagnosis of glaucoma, 
which is one of the main causes of permanent blindness. Subsequent investigations may focus on 

improving these transformer models, maximising their computational effectiveness, and expanding 

their use to additional retinal conditions. This might result in better patient outcomes and more 

advanced diagnostic resources for medical practitioners. 
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