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ABSTRACT 

This study focuses on the application of deep learning algorithms to super-

resolution in medical MRI images to improve radiological structures, which 

has, in the recent times become extremely important to the diagnostics. The 

methodology for the purpose involved preprocessing and augmentation MRI 

images, to improve model generalization. Multiple algorithms which use 

differing flows to enhance an image, were selected for evaluation. These 

included: 1) Bicubic Interpolation, 2) SRCNN, 3) EDSR, and 4) ESRGAN. The 

models were assessed using key performance metrics like Peak Signal-to-

Noise-Ratio (PSNR), Mean Squared Error (MSE) and Structural Similarity 

Index Measure (SSIM). ESRGAN was found to have highest PSNR (33.75 dB) 

and SSIM (0.98), while one of the lowest MSE (82.44). Conclusively, 

ESRGAN showed a superior and structural integrity and perceptual quality 

over all other models on medical images. It was demonstrated that ESRGAN 

is able to better restore fine details and textures than the state of the art, 

especially for medical imaging where precision is critical.  The qualitative 

visual assessments also confirmed that ESRGAN dominates in the super-

resolution image quality, as its reconstructed images matched high resolution 

and very precisely maintained critical radiological features. As this study 

concludes, ESRGAN is the most effective for super-resolution of MRI images, 

and has great potential for improving the diagnostic capabilities in medical 

imaging. 

 

I. INTRODUCTION 

1.1: Overview 

The domain of medical image processing, particularly in the context of radiology, has seen 

significant advancements with the integration of deep learning techniques. One of the major 

challenges in this field is improving the resolution of medical images, such as MRI scans, 

without compromising critical structural details [12]. With the recent increasing interest in 

super resolution (SR) techniques as a way to improve the resolution of low-res medical images, 

there has been a significant amount of effort put into developing these techniques. The 

algorithms it uses include particularly complex algorithms, such as deep learning models, to 

reconstruct high resolution images from low resolution scan images [13-15]. These techniques 

could increase image clarity and help in better diagnoses — especially in radiological analysis 

when fine structures such as tissues, organs and lesions require very precise imagery for correct 

diagnostics. A sample low-res image of an MRI scan, and a super-resolution enhanced image 

set is shown in fig 1.1. 
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Fig 1.1: AI Regenerated vs High resolution MRI images 

As the need for high quality imaging in healthcare continues to grow, the opportunity to 

improve medical image resolution through deep learning is a transformative opportunity in the 

diagnostic process. 

1.2: Aim and Objectives  

In this work, we evaluate the effectiveness of multiple deep learning models in reconstructing 

MRI image to high resolution via super resolution techniques. Ten MRI videos were picked 

out for testing, and the performances of various super resolution models were evaluated with 

PSNR, SSIM, and MSE as the common image quality metrics. To evaluate, four models were 

chosen, namely:  

1. Bicubic Interpolation 

2. SRCNN (Super-Resolution Convolutional Neural Network),  

3. EDSR (Enhanced Deep Super-Resolution Network) and  

4. ESRGAN (Enhanced Super-Resolution Generative Adversarial Network).  

Objectives 

The primary objectives of this study are as follows: 

1. Model Training and Implementation: Implement the complete Machine Learning 

and Deep Learning implementation flow, which involves collecting the dataset, pre-

processing the dataset, splitting the dataset and finally training the models.  

2. Performance Evaluation: Evaluate the performance of deep learning based super 

resolution models in improving the quality of medical images, in particular MRI scans. 

In this evaluation, both quantitative and qualitative evaluation are considered.  

• Qualitative evaluation of super-resolution MRI images: A visual comparison of 

reconstructed images with the low-res images will help establish the 

performance and validation of perceptual quality and structural integrity of each 

model, and understand whether these models can preserve and improve on key 

radiological structures 

o Quantitative evaluation of super-resolution MRI images: Compare the chosen 

super resolution models on performance metrics like PSNR, SSIM and MSE.  
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II. LITERATURE REVIEW 

This literature review delves into the advancements in super-resolution techniques, 

emphasizing their role in enhancing the quality of medical imaging. 

[1], [9-11] studied the usage of 3D convolutional neural networks for super resolution of brain 

MRI data and showed the effectiveness of network design factors, such as optimization 

methods and residual learning. In addition, they also extended their approach to multimodal 

super resolution using inter modality priors and demonstrated promising results in real clinical 

settings. 

In another study [2], it was shown that iterative super-resolution algorithms can be used to 

improve spatial resolution in 2D multi slice MRI. Isotropic resolution, which is essential for 

some diagnostic applications, and better edge definition in the slice select direction, resulting 

in better visualization and earlier diagnosis, is achieved by their method. In [3], their systematic 

review of super resolution techniques in brain MRI focuses on the state-of-the-art 

convolutional neural networks (CNNs), Generative Adversarial Networks (GANs) and 

Transformer based models. While advances have been made, the study also found that the 

maintenance of fine details at higher scaling factors is a challenge for clinical diagnostics. 

A novel relation model which incorporates gradient information from multi-contrast MRI 

images was introduced in [4] to enhance edge details in reconstructed images. The researchers 

showed that this approach outperformed state of the art methods, achieving high visual and 

objective quality criteria including edge enhancement for low resolution observations. 

DeepResolve, a 3D convolutional neural network, was presented by researchers in [5] for 

reconstructing thin-slice knee MRIs from thick slices. We show that their model learns to 

interpolate in both structural similarity and peak SNR, and outperforms conventional and state 

of the art interpolation methods in both structural similarity and overall diagnostic quality, with 

substantial agreement among radiologists in diagnostic evaluations. 

These challenges were overcome by [6], where the researchers introduced Fused Attentive 

Generative Adversarial Networks (FA-GAN) with local fusion feature blocks and global 

feature fusion modules which are able to provide better image quality. PSNR and SSIM values 

across the board were better than the contemporary methodologies, and the FA-GAN was able 

to reduce scan times while keeping the resolution high. Further, An adversarial learning 

approach based on the SRGAN model with 3D convolutions was proposed in [7] to improve 

volumetric MRI imaging. To improve the reconstruction accuracy, the method combined least 

squares adversarial loss and content loss. The results were promising with respect to 

perceptually convincing reconstructions and outperform classical interpolation methods with a 

focus on high downsampling factors. To explicitly incorporate multi contrast MRI relationship 

and observation models into the SR process, [8] developed a Model Guided Deep Unfolding 

Network (MGDUN). MGDUN outperformed conventional methods with high PSNR on both 

IXI and BraTs datasets by utilizing an unfolding iterative network and a well-designed 

objective function. It gave improved interpretability and trustworthiness in clinical settings. 

Research Gap 

Medical imaging based super resolution methods have many limitations. [1] and [2] used 3D 

CNNs and iterative algorithms to improve MRI resolution but lacked good fine details at higher 

scaling factors. Reconstruction challenges for preserving structural integrity were highlighted 

in [3], and edge enhancement was achieved using gradient based models in [4], but the 

generalizability was lacking. [5] was limited to thin slice reconstruction and was only 

applicable to knee MRI. Although current SR methods for MRI have made significant 

advances, little work has been done on the integration of robust perceptual quality assessment 

mechanisms and comprehensive cross contrast fusion strategies. To fill this gap, we propose a 

novel framework which combines advances in fusion models and perceptual evaluation to 

improve clinical applicability. 
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These gaps identify the need for a framework that can learn to enhance pixel level accuracy 

and structural details while simultaneously generalizing across various imaging modalities. We 

solve these challenges with an implementation that runs robustly on multiple datasets. 

III. METHODOLOGY 

The methodology was structured into a systematic process for super resolution of radiological 

structures in MRI images. This included dataset preparation, model selection, dataset splitting, 

model evaluation and comparative analysis. The broad-level flow followed is shown in fig 3.1.  

 
Fig 3.1: Methodology Flow 

1. Dataset Preparation: The primary dataset considered was a dataset of low-res MRI 

videos. Images were sliced frame-by-frame from the MRI scan videos. For all further 

processing, these images were considered as the dataset.   

Pre-processing of this dataset was performed to have uniform image size and remove 

artifacts or noise that may hamper model’s performance. The dataset was augmented 

further to increase the dataset diversity and to improve model generalization 

capabilities. 

2. Dataset Splitting: Training and testing subsets were made from the primary dataset. A 

typical split ratio of 80:20 was applied, wherein the 80% images were used to train the 

algorithms, and remaining 20% were used to test the trained models.   

3. Algorithm Selection: Due to its established performance in super resolution tasks, 

various deep learning algorithms such as Bicubic Interpolation, SRCNN, EDSR, 

ESRGAN were selected. The reason for choosing these algorithms specifically, is that 

they have different architectural approaches, and thus give a diversity of the 

methodology  to reconstruct low-res MRI images.  

4. Evaluation of Selected Models: Three key metrics, Peak Signal to Noise Ratio 

(PSNR), Mean Squared Error (MSE) and Structural Similarity Index Measure (SSIM) 

were used to evaluate the selected models. These metrics were chosen to provide a 

holistic understanding of the models' performance: 

• PSNR evaluates the pixel-level fidelity of the reconstructed images. 

• MSE measures pixel-wise accuracy by calculating the average squared 

difference between original and reconstructed images. 

• SSIM assesses the structural similarity between images, accounting for 

luminance, contrast, and texture. 

5. Performance Comparison: Results of the models were compared based on PSNR, 

MSE and SSIM metrics. It served to help evaluate the strengths and weaknesses of each 

model with respect to structural preservation, perceptual quality, and pixel level fidelity. 

Visual quality assessments were also performed by comparing the low-resolution input, 

the super resolution output, and the high-resolution original image. 
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Rationale Behind the Evaluation Approach: 

• To evaluate the models in a balanced way, multiple quantitative metrics were compared 

to assess how its ability to improve image quality affects diagnostic features. 

• Qualitative validation of the metrics was performed through visual comparisons and 

insights into how well the models can recreate fine details and textures essential for 

medical diagnostics. 

• With the inclusion of multiple algorithms, we were able to perform a diverse analysis, 

showing how different algorithms cope with the special problems involved in medical 

imaging datasets, e.g. noise, subtle contrasts, and texture preservation. 

This methodology provided a robust evaluation framework that quantifies the models' 

performance and validates their practicality in real world medical imaging applications.  

IV. RESULTS 

This section presents the outcomes of applying various deep learning techniques to implement 

super-resolution of radiological structures in MRI images.  

Total 10 videos were used for testing, with details of the evaluation as under:  

Video No. PSNR SSIM 

Test 1 23.67 0.8369 

Test 2 21.07 0.7125 

Test 3 20.69 0.6659 

Test 4 24.15 0.8479 

Test 5 22.58 0.7364 

Test 6 22.13 0.7916 

Test 7 21.89 0.7163 

Test 8 21.67 0.8023 

Test 9 22.14 0.8125 

Test 10 24.44 0.8996 

Table 4.1: Video testing results 

4.1: Performance Metrics Comparison for different Metrics  

Model PSNR (dB) MSE SSIM 

 Standard 

result 

Medical 

Images 

Standard 

result 

Medical 

Images 

Standard 

result 

Medical 

Images 

Bicubic 

interpolation 

23.14 - 

33.66 

29.05 53.61 - 

210.35 

80.96 0.6574 - 

0.9299 

0.94 

SRCNN 24.52 -

33.05 

28.31 73.43 -

138.56 

95.89 0.7221 - 

0.9581 

0.96 

EDSR 26.64  - 

38.11 

20.36 28.15 - 

117.26 

(L1) 

1795.14 0.8033  - 

0.9601 

0.45 

ESRGAN 20.35 - 

34.82 

33.75 -- 82.44 1.96 -3.64 

(PI) 

0.98 

Table 4.2: Comparison of different Models on the generated image dataset 

Standard results refer to the parameter values obtained by these methods on general image 

datasets, while medical image results represent the evaluation of these parameters specifically 

on medical image datasets. 

4.1.1: Interpreting Performance Comparison Based on SSIM: Structural Similarity (SSIM) 

Analysis 

On Standard Images: The SSIM standard results indicate that ESRGAN achieves the highest 

structural similarity range (1.96-3.64) among the methods, closely followed by EDSR (0.80–

0.96). Bicubic interpolation demonstrates comparatively poorer performance (0.6574–0.9299), 

while SRCNN’s SSIM range (0.72-0.95) suggests a moderate performance. We can conclude 

that the ESRGAN outperforms all other algorithms for standard images on SSIM metric.  
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On Medical Images: SSIM evaluates the structural similarity between images, considering 

luminance, contrast, and structure. The low SSIM of 0.45 for EDSR on medical images 

suggests that it struggles with structural coherence, potentially due to its sensitivity to noise 

and artifacts in the dataset. Bicubic interpolation performs surprisingly well with an SSIM of 

0.94, indicating that it preserves structural content even if overall fidelity (as measured by 

PSNR) is not the best. Thus, it can be safely concluded that ESRGAN achieves the best SSIM 

(0.98). ESRGAN's superior SSIM highlights its ability to enhance texture and fine details 

critical for medical imaging.  

Insights from Mean Squared Error (MSE) 

MSE measures the average squared differences between pixel values, with lower values 

indicating better fidelity.  

Bicubic interpolation achieves an MSE of 80.96, indicating moderate pixel-level accuracy for 

medical images. SRCNN records a higher MSE of 95.89, suggesting suboptimal recovery at 

the pixel level despite leveraging basic deep learning principles, possibly due to limited 

network depth and simplicity. With such a high MSE value of 1795.14 it is clear that EDSR 

does not generalize well to medical datasets, possibly as a result of a training bias or sensitivity 

to noise artifacts. The MSE of ESRGAN is 82.44, which is comparable to Bicubic interpolation, 

and shows competitive pixel level accuracy while optimizing perceptual quality. Thus, it can 

be concluded that ESRGAN, though not outperforming Bicubic Interpolation, still performs 

decently, with a low MSE value.  

Insights from PSNR 

On standard images: PSNR range of EDSR (26.64–38.11 dB) is highest, which implies that 

EDSR has better reconstruction accuracy than Bicubic interpolation and SRCNN. The latter 

shows a broader range, but perceives the optimal perceptual quality to a slight decrease of 

PSNR in comparison with EDSR. 

On medical images: A reliable baseline is provided by bicubic interpolation with PSNR of 

29.05 dB. SRCNN slightly under-performs with PSNR of 28.31 dB due to its limited 

enhancement capability in this specialized domain. PSNR of 33.75 dB is achieved by 

ESRGAN, which is the highest quality reconstruction among the methods tested, while EDSR 

shows a much lower performance (20.36 dB) due to poor generalization to medical datasets. 

The results are summarized in table 4.1.  

Metric Observation Interpretation 

PSNR ESRGAN achieves 33.75 dB 

on medical images, with 

Bicubic at 29.05 dB and 

SRCNN at 28.31 dB. 

ESRGAN maintains strong 

perceptual quality with 

reasonable pixel-level 

accuracy. Bicubic and 

SRCNN perform moderately. 

SSIM ESRGAN achieves the 

highest SSIM (0.98), 

followed by SRCNN (0.96) 

and Bicubic (0.94). 

ESRGAN excels at 

preserving structural and 

textural details, while 

Bicubic and SRCNN retain 

decent structural consistency. 

MSE ESRGAN and Bicubic have 

similar MSE scores (82.44 

and 80.96), with SRCNN 

higher at 95.89. EDSR 

struggles with 1795.14. 

ESRGAN optimizes 

perceptual loss for quality 

images, while EDSR's high 

MSE reflects poor 

generalization to medical 

image datasets. 

Table 4.3: Metrics Comparison, observation and interpretation 
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4.2: Performance Metrics Comparison for different Models  

Bicubic Interpolation Performs Well as a Baseline 

Despite being a traditional non deep-learning method, Bicubic interpolation achieved a 

respectable SSIM of 0.94 and a low MSE of 80.96 on medical images. 

Reason: Bicubic interpolation preserves the overall structural content of the images by 

smoothing pixel values. While it lacks the ability to enhance details like deep learning models, 

its simplicity and reliability ensure minimal distortion, making it a practical baseline for 

comparison. 

EDSR Performs Poorly on Medical Images 

EDSR, despite its strong performance on standard benchmarks, delivered the lowest SSIM 

(0.45) and the highest MSE (1795.14) on medical images. 

Reason: The model’s architecture is optimized for standard image datasets, which might lack 

the unique noise patterns and subtle contrasts of medical images. This mismatch likely led to 

poor generalization, making EDSR less effective in handling the complexities of medical 

imaging datasets. 

SRCNN Balances Performance Across Metrics 

SRCNN achieved a PSNR of 28.31, an SSIM of 0.96, and an MSE of 95.89, showing a 

balanced performance across metrics. 

Reason: The relatively simple architecture of SRCNN effectively learns features from low-

resolution images, offering consistent improvements in image quality without the complexity 

of advanced models like ESRGAN or EDSR. 

ESRGAN Achieves the Best SSIM and PSNR  

ESRGAN recorded the highest SSIM (0.98) and PSNR (33.75) on medical images, 

demonstrating its capability to preserve fine details and texture critical for radiological analysis. 

Reason: The model’s use of perceptual loss and adversarial training prioritizes the perceptual 

quality of images over pixel-level fidelity. This approach ensures that the reconstructed images 

are visually and diagnostically coherent, making ESRGAN particularly suitable for medical 

applications where subtle structural details are essential. 

Summary 

ESRGAN’s highest SSIM, highest PSNR and relatively competitive MSE (82.44) establish it 

as the best model for enhancing medical images, striking a balance between perceptual quality 

and pixel accuracy. 

Reason: ESRGAN’s ability to focus on perceptual quality ensures that critical radiological 

details are preserved and enhanced, which is crucial for diagnostic purposes. Its use of 

adversarial training also helps produce realistic textures that mimic the high-resolution ground 

truth more effectively than other models. The results are summarized in below table.  

Model PSNR 

(dB) 

SSIM MSE Key Insights 

Bicubic 29.05 0.94 80.96 Preserves structural content but lacks 

advanced resolution recovery capabilities. 

SRCNN 28.31 0.96 95.89 Slight improvement over Bicubic due to 

deep learning, but struggles with pixel-level 

accuracy. 

EDSR 20.36 0.45 1795.14 Lowest SSIM and PSNR shows its inability 

to generalize to medical images, and noise 

sensitivity. 

ESRGAN 33.75 0.98 82.44 Demonstrates the best structural 

preservation and perceptual quality, suitable 

for medical images. 

Table 4.4: Key Insights 
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4.3: Visual Quality Assessment 

Figure 4.1 provides a qualitative comparison of image reconstruction: 

 
• Fig 4.1 (a): Displays the low-resolution image, demonstrating significant loss of detail 

and clarity, especially in fine structures essential for medical diagnostics. 

• Fig 4.1 (b): Represents the super-resolution image reconstructed by ESRGAN. The 

quality is remarkably close to the high-resolution ground truth (c), as ESRGAN 

successfully restores fine details and enhances textures. 

• Fig 4.1 (c): Shows the original high-resolution image, serving as a reference. 

The enhancement of key details in (b) as compared to the original image (c) visually validates 

ESRGAN’s superior performance in medical image super-resolution. 

Key Observations 

• ESRGAN demonstrates a strong balance between perceptual quality and structural 

integrity, as evidenced by the highest SSIM and the visual similarity between its output 

and the ground truth. 

• The method’s use of perceptual loss during training contributes to its ability to 

reconstruct fine textures and structural details critical for medical imaging. 

In summary, ESRGAN not only outperforms other methods in structural similarity and 

perceptual quality but also proven effective in real-world scenarios, as shown in the visual 

analysis. 

V. DISCUSSION 

This study evaluated the effectiveness of various super-resolution models on radiological 

structures in MRI images using deep learning techniques. Metrics such as PSNR, SSIM, and 

MSE were used to compare models, with specific attention to their performance on medical 

images. 

5.1: Summary of the Findings 

Quantitative Performance Analysis 

Peak Signal-to-Noise Ratio (PSNR): We find that ESRGAN is the best-performing model in 

PSNR with a score of 33.75 dB. This illustrates the better ability of this system to recreate and 

improve medical images. PSNR values of 29.05 dB for Bicubic interpolation and 28.31 dB for 

SRCNN were found to be in moderate effectiveness. However, EDSR suffered greatly, with a 

PSNR value of ~20.36 dB, indicating its limited flexibility in dealing with unique noise patterns 

and hardness of medical imaging datasets. 

Structural Similarity Index (SSIM) and Mean Squared Error (MSE): Regarding SSIM, 

ESRGAN produced a score of 0.98, a tremendous performance given it was able to preserve 

and preserve the structural and textural details, the most important for accurate diagnostics. 

SRCNN and Bicubic interpolation did pretty well, with SSIM of 0.96 and 0.94 respectively, 

but could not match ESRGAN’s fine detail ability. However, EDSR showed a low SSIM of 

0.45, which is the result of the difficulty of EDSR in preserving structural consistency in 

medical images. Bicubic interpolation and ESRGAN showed similar results in MSE analysis, 

with scores of 80.96 and 82.44, respectively, yielding high pixel level accuracy. With MSE 

95.89, SRCNN was lower than EDSR which was the worst with a huge MSE of 1795.14, 

further confirming SRCNN’s inability to generalize to medical datasets. 
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Visual Quality Assessment 

Further validation through visual comparison showed that ESRGAN’s reconstructed images 

were as close as possible to high resolution ground truth. ESRGAN is the most effective model 

in this study because the fine structural details and textures restored are vital to radiological 

imaging. 

5.1.3: Interpretation of Results 

The results show that even though Bicubic interpolation is a good baseline for traditional 

methods with minimal distortion, it doesn’t perform well with respect to advanced resolution 

recovery. Deep learning models such as ESRGAN and SRCNN enhance image quality 

significantly, with ESRGAN excelling due to its focus on perceptual quality through 

adversarial training. Conversely, EDSR, despite its benchmark success, struggles to adapt to 

medical datasets, underscoring the importance of dataset-specific optimization in medical 

imaging applications. 

5.2: Challenges Faced 

Several challenges were encountered during this study: 

• Training Time for Videos: Training the deep learning models, particularly ESRGAN, 

was computationally intensive and time-consuming. 

• GPU Speed: The available GPU resources-imposed limitations on processing speed, 

affecting the scalability of training and testing. 

• Limited Epochs: Due to resource constraints, the models were trained for a limited 

number of epochs, which might have impacted the overall optimization and 

performance. 

5.3: Future Scope 

1. Model Optimization for Medical Data: Future work could involve fine-tuning 

architectures like EDSR to improve their adaptability to medical datasets, addressing 

the noise and subtle contrast issues observed. 

2. Integration with Clinical Workflows: Extending the application of these models to 

real-world scenarios, such as automated diagnostics or assisting radiologists in 

interpreting low-resolution images, could enhance clinical utility. 

3. Resource-Efficient Training: Developing lighter, resource-efficient models capable of 

delivering high-quality super-resolution without extensive computational demands will 

be a key area of focus. 

4. Expanding Datasets: Incorporating diverse and larger medical datasets for training 

could improve model generalization and robustness, ensuring consistent performance 

across various imaging scenarios. 

VI. CONCLUSION 

This work implements super-resolution for medical images using various deep learning 

models, with a focus on MRI radiological structures. The findings demonstrate that ESRGAN 

achieves the highest SSIM of 0.98, PSNR of 33.75 dB, and a competitive MSE of 82.44 among 

other methods. This shows that ESRGAN is very good at improving both perceptual quality 

and structural coherence, and thus very well suited for medical imaging application where 

subtle textural and structural details are important for accurate diagnosis. On the other hand, 

deep-learning based models exhibited high resolution recovery capabilities but had a solid 

baseline provided by traditional methods such as Bicubic interpolation. SRCNN performed 

balanced, and EDSR, although performing better on standard benchmarks, failed to generalize 

to the novel challenges of medical datasets. 

This study demonstrates the need for specialized deep learning models for medical imaging, 

where the noise patterns and contrast nuance of these datasets are idiosyncratic to the task at 

hand. Future work can involve better tailoring architectures like EDSR to medical applications 

or hybrid approaches that combine the best of models like ESRGAN with pixel level fidelity 

methods. Moreover, the analysis can be extended to larger and more varied medical datasets to 



 ADVANCING MRI SUPER-RESOLUTION: AN INNOVATIVE DEEP LEARNING  
 APPROACH FOR ENHANCED RADIOLOGICAL STRUCTURE SUPER-RESOLUTION 

SEEJPH Volume XXV,S2, 2024, ISSN: 2197-5248;Posted:05-12-2024 

  

3185 | P a g e  
 

further validate these findings and drive further medical image super resolution improvements, 

improving diagnostic accuracy and clinical decision making. 
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