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ABSTRACT

This study focuses on the application of deep learning algorithms to super-
resolution in medical MRI images to improve radiological structures, which
has, in the recent times become extremely important to the diagnostics. The
methodology for the purpose involved preprocessing and augmentation MRI
images, to improve model generalization. Multiple algorithms which use
differing flows to enhance an image, were selected for evaluation. These
included: 1) Bicubic Interpolation, 2) SRCNN, 3) EDSR, and 4) ESRGAN. The
models were assessed using key performance metrics like Peak Signal-to-
Noise-Ratio (PSNR), Mean Squared Error (MSE) and Structural Similarity
Index Measure (SSIM). ESRGAN was found to have highest PSNR (33.75 dB)
and SSIM (0.98), while one of the lowest MSE (82.44). Conclusively,
ESRGAN showed a superior and structural integrity and perceptual quality
over all other models on medical images. It was demonstrated that ESRGAN
is able to better restore fine details and textures than the state of the art,
especially for medical imaging where precision is critical. The qualitative
visual assessments also confirmed that ESRGAN dominates in the super-
resolution image quality, as its reconstructed images matched high resolution
and very precisely maintained critical radiological features. As this study
concludes, ESRGAN is the most effective for super-resolution of MRI images,
and has great potential for improving the diagnostic capabilities in medical
imaging.

I. INTRODUCTION

1.1: Overview

The domain of medical image processing, particularly in the context of radiology, has seen
significant advancements with the integration of deep learning techniques. One of the major
challenges in this field is improving the resolution of medical images, such as MRI scans,
without compromising critical structural details [12]. With the recent increasing interest in
super resolution (SR) techniques as a way to improve the resolution of low-res medical images,
there has been a significant amount of effort put into developing these techniques. The
algorithms it uses include particularly complex algorithms, such as deep learning models, to
reconstruct high resolution images from low resolution scan images [13-15]. These techniques
could increase image clarity and help in better diagnoses — especially in radiological analysis
when fine structures such as tissues, organs and lesions require very precise imagery for correct
diagnostics. A sample low-res image of an MRI scan, and a super-resolution enhanced image
set is shown in fig 1.1.
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Fig 1.1: Al Regenerated vs High resolution MRI images

As the need for high quality imaging in healthcare continues to grow, the opportunity to
improve medical image resolution through deep learning is a transformative opportunity in the
diagnostic process.

1.2: Aim and Objectives

In this work, we evaluate the effectiveness of multiple deep learning models in reconstructing
MRI image to high resolution via super resolution techniques. Ten MRI videos were picked
out for testing, and the performances of various super resolution models were evaluated with
PSNR, SSIM, and MSE as the common image quality metrics. To evaluate, four models were
chosen, namely:

1. Bicubic Interpolation

2. SRCNN (Super-Resolution Convolutional Neural Network),

3. EDSR (Enhanced Deep Super-Resolution Network) and

4. ESRGAN (Enhanced Super-Resolution Generative Adversarial Network).

Objectives
The primary objectives of this study are as follows:

1. Model Training and Implementation: Implement the complete Machine Learning
and Deep Learning implementation flow, which involves collecting the dataset, pre-
processing the dataset, splitting the dataset and finally training the models.

2. Performance Evaluation: Evaluate the performance of deep learning based super
resolution models in improving the quality of medical images, in particular MRI scans.
In this evaluation, both quantitative and qualitative evaluation are considered.

o  Qualitative evaluation of super-resolution MRI images: A visual comparison of
reconstructed images with the low-res images will help establish the
performance and validation of perceptual quality and structural integrity of each
model, and understand whether these models can preserve and improve on key
radiological structures

o Quantitative evaluation of super-resolution MRI images: Compare the chosen
super resolution models on performance metrics like PSNR, SSIM and MSE.
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II. LITERATURE REVIEW

This literature review delves into the advancements in super-resolution techniques,
emphasizing their role in enhancing the quality of medical imaging.

[1], [9-11] studied the usage of 3D convolutional neural networks for super resolution of brain
MRI data and showed the effectiveness of network design factors, such as optimization
methods and residual learning. In addition, they also extended their approach to multimodal
super resolution using inter modality priors and demonstrated promising results in real clinical
settings.

In another study [2], it was shown that iterative super-resolution algorithms can be used to
improve spatial resolution in 2D multi slice MRI. Isotropic resolution, which is essential for
some diagnostic applications, and better edge definition in the slice select direction, resulting
in better visualization and earlier diagnosis, is achieved by their method. In [3], their systematic
review of super resolution techniques in brain MRI focuses on the state-of-the-art
convolutional neural networks (CNNs), Generative Adversarial Networks (GANs) and
Transformer based models. While advances have been made, the study also found that the
maintenance of fine details at higher scaling factors is a challenge for clinical diagnostics.

A novel relation model which incorporates gradient information from multi-contrast MRI
images was introduced in [4] to enhance edge details in reconstructed images. The researchers
showed that this approach outperformed state of the art methods, achieving high visual and
objective quality criteria including edge enhancement for low resolution observations.
DeepResolve, a 3D convolutional neural network, was presented by researchers in [5] for
reconstructing thin-slice knee MRIs from thick slices. We show that their model learns to
interpolate in both structural similarity and peak SNR, and outperforms conventional and state
of the art interpolation methods in both structural similarity and overall diagnostic quality, with
substantial agreement among radiologists in diagnostic evaluations.

These challenges were overcome by [6], where the researchers introduced Fused Attentive
Generative Adversarial Networks (FA-GAN) with local fusion feature blocks and global
feature fusion modules which are able to provide better image quality. PSNR and SSIM values
across the board were better than the contemporary methodologies, and the FA-GAN was able
to reduce scan times while keeping the resolution high. Further, An adversarial learning
approach based on the SRGAN model with 3D convolutions was proposed in [7] to improve
volumetric MRI imaging. To improve the reconstruction accuracy, the method combined least
squares adversarial loss and content loss. The results were promising with respect to
perceptually convincing reconstructions and outperform classical interpolation methods with a
focus on high downsampling factors. To explicitly incorporate multi contrast MRI relationship
and observation models into the SR process, [8] developed a Model Guided Deep Unfolding
Network (MGDUN). MGDUN outperformed conventional methods with high PSNR on both
IXI and BraTs datasets by utilizing an unfolding iterative network and a well-designed
objective function. It gave improved interpretability and trustworthiness in clinical settings.
Research Gap

Medical imaging based super resolution methods have many limitations. [1] and [2] used 3D
CNNs and iterative algorithms to improve MRI resolution but lacked good fine details at higher
scaling factors. Reconstruction challenges for preserving structural integrity were highlighted
in [3], and edge enhancement was achieved using gradient based models in [4], but the
generalizability was lacking. [5] was limited to thin slice reconstruction and was only
applicable to knee MRI. Although current SR methods for MRI have made significant
advances, little work has been done on the integration of robust perceptual quality assessment
mechanisms and comprehensive cross contrast fusion strategies. To fill this gap, we propose a
novel framework which combines advances in fusion models and perceptual evaluation to
improve clinical applicability.
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These gaps identify the need for a framework that can learn to enhance pixel level accuracy
and structural details while simultaneously generalizing across various imaging modalities. We
solve these challenges with an implementation that runs robustly on multiple datasets.

III. METHODOLOGY

The methodology was structured into a systematic process for super resolution of radiological
structures in MRI images. This included dataset preparation, model selection, dataset splitting,
model evaluation and comparative analysis. The broad-level flow followed is shown in fig 3.1.

Testing

1b Dataset 2b

Training
Dataset

Algorithm Evaluation
3a 3b

3c

Production
|
Fig 3.1: Methodology Flow

1. Dataset Preparation: The primary dataset considered was a dataset of low-res MRI

videos. Images were sliced frame-by-frame from the MRI scan videos. For all further
processing, these images were considered as the dataset.
Pre-processing of this dataset was performed to have uniform image size and remove
artifacts or noise that may hamper model’s performance. The dataset was augmented
further to increase the dataset diversity and to improve model generalization
capabilities.

2. Dataset Splitting: Training and testing subsets were made from the primary dataset. A
typical split ratio of 80:20 was applied, wherein the 80% images were used to train the
algorithms, and remaining 20% were used to test the trained models.

3. Algorithm Selection: Due to its established performance in super resolution tasks,
various deep learning algorithms such as Bicubic Interpolation, SRCNN, EDSR,
ESRGAN were selected. The reason for choosing these algorithms specifically, is that
they have different architectural approaches, and thus give a diversity of the
methodology to reconstruct low-res MRI images.

4. Evaluation of Selected Models: Three key metrics, Peak Signal to Noise Ratio
(PSNR), Mean Squared Error (MSE) and Structural Similarity Index Measure (SSIM)
were used to evaluate the selected models. These metrics were chosen to provide a
holistic understanding of the models' performance:

e PSNR evaluates the pixel-level fidelity of the reconstructed images.

e MSE measures pixel-wise accuracy by calculating the average squared
difference between original and reconstructed images.

e SSIM assesses the structural similarity between images, accounting for
luminance, contrast, and texture.

5. Performance Comparison: Results of the models were compared based on PSNR,
MSE and SSIM metrics. It served to help evaluate the strengths and weaknesses of each
model with respect to structural preservation, perceptual quality, and pixel level fidelity.
Visual quality assessments were also performed by comparing the low-resolution input,
the super resolution output, and the high-resolution original image.
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Rationale Behind the Evaluation Approach:

e To evaluate the models in a balanced way, multiple quantitative metrics were compared
to assess how its ability to improve image quality affects diagnostic features.

¢ Qualitative validation of the metrics was performed through visual comparisons and
insights into how well the models can recreate fine details and textures essential for
medical diagnostics.

e With the inclusion of multiple algorithms, we were able to perform a diverse analysis,
showing how different algorithms cope with the special problems involved in medical
imaging datasets, e.g. noise, subtle contrasts, and texture preservation.

This methodology provided a robust evaluation framework that quantifies the models'
performance and validates their practicality in real world medical imaging applications.

IV. RESULTS

This section presents the outcomes of applying various deep learning techniques to implement
super-resolution of radiological structures in MRI images.

Total 10 videos were used for testing, with details of the evaluation as under:

Video No. PSNR SSIM
Test 1 23.67 0.8369
Test 2 21.07 0.7125
Test 3 20.69 0.6659
Test 4 24.15 0.8479
Test 5 22.58 0.7364
Test 6 22.13 0.7916
Test 7 21.89 0.7163
Test 8 21.67 0.8023
Test 9 22.14 0.8125
Test 10 24.44 0.8996

Table 4.1: Video testing results
4.1: Performance Metrics Comparison for different Metrics

Model PSNR (dB) MSE SSIM
Standard  Medical Standard  Medical Standard  Medical
result Images result Images result Images
Bicubic 23.14 - 29.05 53.61 - 80.96 0.6574 - 094
interpolation 33.66 210.35 0.9299
SRCNN 2452 - 2831 73.43 - 95.89 0.7221 - 0.96
33.05 138.56 0.9581
EDSR 26.64 - 20.36 28.15 - 1795.14 0.8033 - 045
38.11 117.26 0.9601
(L1)
ESRGAN 2035 - 33.75 -- 82.44 1.96 -3.64 0.98
34.82 (PD)

Table 4.2: Comparison of different Models on the generated image dataset

Standard results refer to the parameter values obtained by these methods on general image
datasets, while medical image results represent the evaluation of these parameters specifically
on medical image datasets.

4.1.1: Interpreting Performance Comparison Based on SSIM: Structural Similarity (SSIM)
Analysis

On Standard Images: The SSIM standard results indicate that ESRGAN achieves the highest
structural similarity range (1.96-3.64) among the methods, closely followed by EDSR (0.80—
0.96). Bicubic interpolation demonstrates comparatively poorer performance (0.6574—0.9299),
while SRCNN’s SSIM range (0.72-0.95) suggests a moderate performance. We can conclude
that the ESRGAN outperforms all other algorithms for standard images on SSIM metric.
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On Medical Images: SSIM evaluates the structural similarity between images, considering
luminance, contrast, and structure. The low SSIM of 0.45 for EDSR on medical images
suggests that it struggles with structural coherence, potentially due to its sensitivity to noise
and artifacts in the dataset. Bicubic interpolation performs surprisingly well with an SSIM of
0.94, indicating that it preserves structural content even if overall fidelity (as measured by
PSNR) is not the best. Thus, it can be safely concluded that ESRGAN achieves the best SSIM
(0.98). ESRGAN's superior SSIM highlights its ability to enhance texture and fine details
critical for medical imaging.

Insights from Mean Squared Error (MSE)

MSE measures the average squared differences between pixel values, with lower values
indicating better fidelity.

Bicubic interpolation achieves an MSE of 80.96, indicating moderate pixel-level accuracy for
medical images. SRCNN records a higher MSE of 95.89, suggesting suboptimal recovery at
the pixel level despite leveraging basic deep learning principles, possibly due to limited
network depth and simplicity. With such a high MSE value of 1795.14 it is clear that EDSR
does not generalize well to medical datasets, possibly as a result of a training bias or sensitivity
to noise artifacts. The MSE of ESRGAN is 82.44, which is comparable to Bicubic interpolation,
and shows competitive pixel level accuracy while optimizing perceptual quality. Thus, it can
be concluded that ESRGAN, though not outperforming Bicubic Interpolation, still performs
decently, with a low MSE value.

Insights from PSNR

On standard images: PSNR range of EDSR (26.64-38.11 dB) is highest, which implies that
EDSR has better reconstruction accuracy than Bicubic interpolation and SRCNN. The latter
shows a broader range, but perceives the optimal perceptual quality to a slight decrease of
PSNR in comparison with EDSR.

On medical images: A reliable baseline is provided by bicubic interpolation with PSNR of
29.05 dB. SRCNN slightly under-performs with PSNR of 28.31 dB due to its limited
enhancement capability in this specialized domain. PSNR of 33.75 dB is achieved by
ESRGAN, which is the highest quality reconstruction among the methods tested, while EDSR
shows a much lower performance (20.36 dB) due to poor generalization to medical datasets.
The results are summarized in table 4.1.

Metric Observation Interpretation
PSNR ESRGAN achieves 33.75 dB  ESRGAN maintains strong
on medical images, with perceptual quality with
Bicubic at 29.05 dB and reasonable pixel-level
SRCNN at 28.31 dB. accuracy.  Bicubic  and
SRCNN perform moderately.
SSIM ESRGAN achieves the ESRGAN excels at

highest SSIM (0.98), preserving structural and
followed by SRCNN (0.96) textural  details,  while

and Bicubic (0.94). Bicubic and SRCNN retain
decent structural consistency.
MSE ESRGAN and Bicubic have ESRGAN optimizes

similar MSE scores (82.44 perceptual loss for quality
and 80.96), with SRCNN images, while EDSR's high
higher at 95.89. EDSR MSE reflects poor
struggles with 1795.14. generalization to medical
image datasets.
Table 4.3: Metrics Comparison, observation and interpretation
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4.2: Performance Metrics Comparison for different Models

Bicubic Interpolation Performs Well as a Baseline

Despite being a traditional non deep-learning method, Bicubic interpolation achieved a
respectable SSIM of 0.94 and a low MSE of 80.96 on medical images.

Reason: Bicubic interpolation preserves the overall structural content of the images by
smoothing pixel values. While it lacks the ability to enhance details like deep learning models,
its simplicity and reliability ensure minimal distortion, making it a practical baseline for
comparison.

EDSR Performs Poorly on Medical Images

EDSR, despite its strong performance on standard benchmarks, delivered the lowest SSIM
(0.45) and the highest MSE (1795.14) on medical images.

Reason: The model’s architecture is optimized for standard image datasets, which might lack
the unique noise patterns and subtle contrasts of medical images. This mismatch likely led to
poor generalization, making EDSR less effective in handling the complexities of medical
imaging datasets.

SRCNN Balances Performance Across Metrics

SRCNN achieved a PSNR of 28.31, an SSIM of 0.96, and an MSE of 95.89, showing a
balanced performance across metrics.

Reason: The relatively simple architecture of SRCNN effectively learns features from low-
resolution images, offering consistent improvements in image quality without the complexity
of advanced models like ESRGAN or EDSR.

ESRGAN Achieves the Best SSIM and PSNR

ESRGAN recorded the highest SSIM (0.98) and PSNR (33.75) on medical images,
demonstrating its capability to preserve fine details and texture critical for radiological analysis.
Reason: The model’s use of perceptual loss and adversarial training prioritizes the perceptual
quality of images over pixel-level fidelity. This approach ensures that the reconstructed images
are visually and diagnostically coherent, making ESRGAN particularly suitable for medical
applications where subtle structural details are essential.

Summary

ESRGAN’s highest SSIM, highest PSNR and relatively competitive MSE (82.44) establish it
as the best model for enhancing medical images, striking a balance between perceptual quality
and pixel accuracy.

Reason: ESRGAN’s ability to focus on perceptual quality ensures that critical radiological
details are preserved and enhanced, which is crucial for diagnostic purposes. Its use of
adversarial training also helps produce realistic textures that mimic the high-resolution ground
truth more effectively than other models. The results are summarized in below table.

Model PSNR SSIM  MSE Key Insights
(dB)

Bicubic 29.05 0.94 80.96 Preserves structural content but lacks
advanced resolution recovery capabilities.

SRCNN 28.31 0.96 95.89 Slight improvement over Bicubic due to
deep learning, but struggles with pixel-level
accuracy.

EDSR 20.36 0.45 1795.14 Lowest SSIM and PSNR shows its inability
to generalize to medical images, and noise
sensitivity.

ESRGAN 33.75 0.98 82.44 Demonstrates the best structural

preservation and perceptual quality, suitable
for medical images.
Table 4.4: Key Insights

3182 | Page



ADVANCING MRI SUPER-RESOLUTION: AN INNOVATIVE DEEP LEARNING
APPROACH FOR ENHANCED RADIOLOGICAL STRUCTURE SUPER-RESOLUTION

SEEJPH SEEJPH Volume XXV.S2, 2024, ISSN: 2197-5248; Posted.05-12-2024

4.3: Visual Quality Assessment
Figure 4.1 provides a qualitative comparison of image reconstruction:

LR Image

Superresolution Orig. HR image

o Fig 4.1 (a): Displays the low-resolution image, demonstrating significant loss of detail
and clarity, especially in fine structures essential for medical diagnostics.

o Fig 4.1 (b): Represents the super-resolution image reconstructed by ESRGAN. The
quality is remarkably close to the high-resolution ground truth (c), as ESRGAN
successfully restores fine details and enhances textures.

o Fig 4.1 (¢): Shows the original high-resolution image, serving as a reference.

The enhancement of key details in (b) as compared to the original image (c) visually validates
ESRGAN’s superior performance in medical image super-resolution.
Key Observations

e ESRGAN demonstrates a strong balance between perceptual quality and structural
integrity, as evidenced by the highest SSIM and the visual similarity between its output
and the ground truth.

e The method’s use of perceptual loss during training contributes to its ability to
reconstruct fine textures and structural details critical for medical imaging.

In summary, ESRGAN not only outperforms other methods in structural similarity and
perceptual quality but also proven effective in real-world scenarios, as shown in the visual
analysis.

V. DISCUSSION

This study evaluated the effectiveness of various super-resolution models on radiological
structures in MRI images using deep learning techniques. Metrics such as PSNR, SSIM, and
MSE were used to compare models, with specific attention to their performance on medical
images.

5.1: Summary of the Findings

Quantitative Performance Analysis

Peak Signal-to-Noise Ratio (PSNR): We find that ESRGAN is the best-performing model in
PSNR with a score of 33.75 dB. This illustrates the better ability of this system to recreate and
improve medical images. PSNR values of 29.05 dB for Bicubic interpolation and 28.31 dB for
SRCNN were found to be in moderate effectiveness. However, EDSR suffered greatly, with a
PSNR value of ~20.36 dB, indicating its limited flexibility in dealing with unique noise patterns
and hardness of medical imaging datasets.

Structural Similarity Index (SSIM) and Mean Squared Error (MSE): Regarding SSIM,
ESRGAN produced a score of 0.98, a tremendous performance given it was able to preserve
and preserve the structural and textural details, the most important for accurate diagnostics.
SRCNN and Bicubic interpolation did pretty well, with SSIM of 0.96 and 0.94 respectively,
but could not match ESRGAN’s fine detail ability. However, EDSR showed a low SSIM of
0.45, which is the result of the difficulty of EDSR in preserving structural consistency in
medical images. Bicubic interpolation and ESRGAN showed similar results in MSE analysis,
with scores of 80.96 and 82.44, respectively, yielding high pixel level accuracy. With MSE
95.89, SRCNN was lower than EDSR which was the worst with a huge MSE of 1795.14,
further confirming SRCNN’s inability to generalize to medical datasets.
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Visual Quality Assessment

Further validation through visual comparison showed that ESRGAN’s reconstructed images
were as close as possible to high resolution ground truth. ESRGAN is the most effective model
in this study because the fine structural details and textures restored are vital to radiological
imaging.

5.1.3: Interpretation of Results

The results show that even though Bicubic interpolation is a good baseline for traditional
methods with minimal distortion, it doesn’t perform well with respect to advanced resolution
recovery. Deep learning models such as ESRGAN and SRCNN enhance image quality
significantly, with ESRGAN excelling due to its focus on perceptual quality through
adversarial training. Conversely, EDSR, despite its benchmark success, struggles to adapt to
medical datasets, underscoring the importance of dataset-specific optimization in medical
imaging applications.

5.2: Challenges Faced

Several challenges were encountered during this study:

e Training Time for Videos: Training the deep learning models, particularly ESRGAN,
was computationally intensive and time-consuming.

e GPU Speed: The available GPU resources-imposed limitations on processing speed,
affecting the scalability of training and testing.

e Limited Epochs: Due to resource constraints, the models were trained for a limited
number of epochs, which might have impacted the overall optimization and
performance.

5.3: Future Scope

1. Model Optimization for Medical Data: Future work could involve fine-tuning
architectures like EDSR to improve their adaptability to medical datasets, addressing
the noise and subtle contrast issues observed.

2. Integration with Clinical Workflows: Extending the application of these models to
real-world scenarios, such as automated diagnostics or assisting radiologists in
interpreting low-resolution images, could enhance clinical utility.

3. Resource-Efficient Training: Developing lighter, resource-efficient models capable of
delivering high-quality super-resolution without extensive computational demands will
be a key area of focus.

4. Expanding Datasets: Incorporating diverse and larger medical datasets for training
could improve model generalization and robustness, ensuring consistent performance
across various imaging scenarios.

VI. CONCLUSION

This work implements super-resolution for medical images using various deep learning
models, with a focus on MRI radiological structures. The findings demonstrate that ESRGAN
achieves the highest SSIM of 0.98, PSNR of 33.75 dB, and a competitive MSE of 82.44 among
other methods. This shows that ESRGAN is very good at improving both perceptual quality
and structural coherence, and thus very well suited for medical imaging application where
subtle textural and structural details are important for accurate diagnosis. On the other hand,
deep-learning based models exhibited high resolution recovery capabilities but had a solid
baseline provided by traditional methods such as Bicubic interpolation. SRCNN performed
balanced, and EDSR, although performing better on standard benchmarks, failed to generalize
to the novel challenges of medical datasets.

This study demonstrates the need for specialized deep learning models for medical imaging,
where the noise patterns and contrast nuance of these datasets are idiosyncratic to the task at
hand. Future work can involve better tailoring architectures like EDSR to medical applications
or hybrid approaches that combine the best of models like ESRGAN with pixel level fidelity
methods. Moreover, the analysis can be extended to larger and more varied medical datasets to
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further validate these findings and drive further medical image super resolution improvements,
improving diagnostic accuracy and clinical decision making.
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