

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Designing a Patient-Centric PRM Model in Healthcare E-Commerce: Insights from Doctors and Patients in Tbilisi, Georgia

Dr. Bahman Moghimi (PhD, DBA)¹, Dr. Soroush Monemizadeh (MD)2

¹Professor, Academic Staff at the School of Business and Administrative Studies. The University of Georgia, Tbilisi. Georgia. ORCID: 0000-0002-7740-0075, B.Moghimi@ug.edu.ge ²General surgeon resident at Multiprofile Medical Centre Healthycore, Invited Lecturer at the University of Georgia, Tbilisi. Georgia. S.Monemizadeh@ug.edu.ge

KEYWORDS **ABSTRACT:**

Patient Relationship Healthcare E-Commerce, Telemedicine Integration, Digital Healthcare Systems, Patient-Centric Care, Healthcare Innovation.

The digital revolution in healthcare has driven Patient Relationship Management (PRM) systems to the Management (PRM), forefront of patient-centred care, emphasizing personalization, efficiency, and data-driven insights. However, their implementation in transitional economies like Georgia faces significant challenges due to fragmented systems, limited infrastructure, and evolving patient expectations. This study develops an innovative PRM model tailored to Georgia, focusing on real-time insights, telemedicine integration, predictive analytics, and mobile health platforms. Using a mixed-methods approach, the research identifies critical unmet needs of doctors and patients while validating the model through advanced statistical analysis. The findings demonstrate the potential of advanced PRM functionalities to enhance patient satisfaction, operational efficiency, and care delivery. The proposed model offers scalable solutions for transitional healthcare systems, setting a foundation for future innovations in digital healthcare globally.

Introduction

The global digitalization of healthcare has positioned e-commerce platforms as critical enablers of patient-centred care. Patient Relationship Management (PRM) systems, in particular, have gained prominence for their role in enhancing patient engagement, optimizing operational efficiency, and improving care delivery. Despite substantial advancements, adapting these systems to the unique socio-economic and infrastructural realities of transitional economies remains an underexplored area. Georgia, as an example of such an economy, presents a compelling context to address these gaps and design a localized PRM model that meets the specific needs of its healthcare sector.

Research in PRM systems has largely centred on developed economies, where robust technological ecosystems enable seamless integration and functionality (Moghimi & Gegeshidze, 2024). However, in transitional economies like Georgia, challenges such as limited technological infrastructure, fragmented healthcare systems, and evolving patient expectations impede the effective implementation of such systems (Moghimi, 2023). These challenges highlight the need for innovative, context-specific solutions that align with both global best practices and local demands.

This study seeks to fill this gap by developing a patient-centric PRM model tailored to the Georgian healthcare sector. Unlike prior research that adapts general PRM features to local contexts, this study adopts a bottom-up approach, leveraging insights from healthcare providers and patients. By focusing on two leading institutions in Tbilisi [Multiprofile Medical Centre Healthycore and MediClub-Georgia.] the research captures real-world perspectives to inform the design of a PRM system that integrates advanced functionalities such as predictive analytics, real-time patient insights, and telemedicine capabilities (Moghimi, 2024).

The study has three primary objectives: to identify the unmet needs and expectations of doctors and patients regarding PRM systems, to analyse emerging trends in telemedicine and digital healthcare services, and to design and validate an innovative PRM model that addresses these needs while enhancing patient satisfaction and operational efficiency. To achieve these objectives, the research addresses the following questions:

- What are the critical unmet needs of doctors and patients in Georgian clinics that existing PRM systems fail to address?
- How can advanced functionalities, such as predictive analytics and real-time insights, transform patient-provider relationships in Georgia's healthcare sector?

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

• Which innovative features of the proposed PRM model achieve the highest levels of perceived satisfaction and effectiveness among medical professionals and patients?

The theoretical contribution of this research lies in expanding the body of knowledge on PRM systems in transitional economies, while its practical significance is rooted in offering actionable solutions for healthcare providers. The proposed model is designed to overcome regional challenges, such as data fragmentation and limited access to telemedicine, by introducing features that improve operational efficiency and patient satisfaction. Furthermore, the findings are expected to resonate across other transitional economies with comparable socio-economic conditions, making this research a valuable reference for policymakers and healthcare administrators (Moghimi et al., 2024).

Literature Review

Introduction to PRM Systems in Healthcare

Customer Relationship Management (CRM) systems have been transformative across various industries, including healthcare, enabling organizations to develop robust strategies for managing client interactions. The healthcare sector, increasingly patient-centred, has adopted CRM functionalities to enhance service quality, patient retention, and overall operational efficiency. Recent studies underscore the growing role of CRM systems in addressing complex healthcare challenges, particularly in creating comprehensive systems to track and manage patient needs (Jones et al., 2021). In healthcare, the evolution of CRM systems has led to the development of specialized Patient Relationship Management (PRM) systems. PRM goes beyond generic CRM applications, focusing on specific healthcare functions such as integrating patient records, enhancing patient engagement, and optimizing clinical workflows. These systems not only facilitate better communication between patients and providers but also support personalized care strategies through data-driven insights (Smith & Kumar, 2022). For transitional economies like Georgia, PRM systems hold immense potential in bridging the gap between traditional healthcare practices and modern technological capabilities.

Existing literature, however, often addresses PRM systems in high-resource healthcare environments, with limited consideration for the unique socio-economic and cultural dynamics of transitional economies. This research aims to fill this gap by contextualizing PRM functionalities for Georgian healthcare, focusing on features that align with local challenges and opportunities.

Trends in Telemedicine and Patient-Centric Care

Telemedicine has redefined healthcare delivery by enabling remote consultations, real-time monitoring, and broader access to care, particularly in underserved areas. The global acceleration of telemedicine adoption, driven by the COVID-19 pandemic, has highlighted its critical role in modern healthcare ecosystems (Mehrotra et al., 2020). Telemedicine's integration into PRM systems has proven invaluable, offering streamlined functionalities such as appointment scheduling, teleconsultations, and follow-up reminders, which collectively enhance patient engagement.

Patient-centric care complements telemedicine by placing patient needs, preferences, and experiences at the forefront of healthcare delivery. PRM systems have been instrumental in promoting patient-centricity, as they facilitate personalized health insights, timely reminders, and direct communication channels between patients and providers (Walker et al., 2021). These functionalities have proven effective in improving health outcomes and fostering patient loyalty.

Despite these advancements, there remains a scarcity of research on adapting telemedicine and patient-centric features to transitional economies like Georgia. This study seeks to explore stakeholder perspectives on these trends, aiming to design a PRM model that effectively integrates these elements in a locally relevant manner.

Challenges in Implementing PRM Systems

While PRM systems offer significant benefits, their implementation is often fraught with challenges. Data security and privacy remain critical concerns, especially as healthcare organizations handle sensitive patient information. Ensuring compliance with privacy regulations while maintaining system efficiency is a major hurdle, particularly in resource-limited settings (Rahman et al., 2021). Moreover, technological interoperability issues complicate the integration of PRM systems with existing hospital information systems.

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Cultural and infrastructural barriers further impede the adoption of PRM systems in transitional economies. Limited digital literacy among healthcare professionals and patients, coupled with insufficient funding for technology upgrades, exacerbates these challenges (Peterson & Wilson, 2022). These issues are particularly pronounced in Georgia, where healthcare infrastructure is undergoing a gradual transition toward modernization.

Although existing literature identifies these challenges, solutions tailored to regions like Georgia remain limited. By addressing these barriers through stakeholder input and contextualized solutions, this research aims to provide a practical roadmap for PRM implementation in transitional economies. *Innovative Features of PRM Systems*

Advancements in technology have significantly expanded the capabilities of PRM systems. Predictive analytics, for example, enables healthcare providers to forecast patient needs, identify high-risk individuals, and improve resource allocation (Choi et al., 2020). Real-time patient insights further enhance decision-making, allowing providers to respond swiftly to changes in patient health status.

Telemedicine integration has also become a cornerstone of modern PRM systems, enabling functionalities such as remote consultations and continuous patient monitoring. These features not only expand access to care but also improve efficiency in patient management. Patient feedback mechanisms, another critical component, allow healthcare providers to assess satisfaction levels and address gaps in service delivery (Brown & Lee, 2021).

However, the adaptation of these innovative features to transitional economies remains underexplored. This study seeks to redefine PRM systems by introducing advanced yet locally feasible features, ensuring their relevance and applicability to Georgian healthcare.

The Role of PRM in Improving Patient Satisfaction and Service Quality

Patient satisfaction is a key indicator of healthcare success, and PRM systems play a vital role in enhancing this metric. By enabling personalized care, streamlining communication, and providing timely updates, PRM systems improve the overall patient experience. Studies have consistently shown that satisfied patients are more likely to adhere to treatment plans and remain loyal to their healthcare providers (Nguyen et al., 2021).

Service quality, closely tied to patient satisfaction, benefits significantly from PRM functionalities. Features such as real-time insights, predictive analytics, and patient feedback loops contribute to more efficient and effective service delivery. In transitional economies like Georgia, where healthcare systems often face inefficiencies, PRM systems can act as a catalyst for improvement.

Despite these benefits, research on PRM's role in improving satisfaction and service quality in regions like Georgia remains sparse. This study aims to fill this gap by examining stakeholder expectations and proposing actionable strategies for enhancing PRM effectiveness in transitional economies.

While existing literature provides valuable insights into PRM systems, it primarily focuses on high-resource healthcare environments, leaving significant gaps in understanding their application in transitional economies. This research addresses these gaps by exploring the unique needs of Georgian healthcare, emphasizing innovative yet practical PRM features, and integrating telemedicine and patient-centric care. By doing so, it aims to contribute to the development of tailored solutions that improve patient satisfaction and service quality in Georgia and similar contexts.

Methodology

This study adopts a mixed-methods approach, combining qualitative and quantitative research methods to ensure comprehensive exploration and validation of the proposed Patient Relationship Management (PRM) model. Data collection occurred over a four-month period (August to November 2024) in two of the most advanced and modern healthcare institutions in Tbilisi, Georgia: Multiprofile Medical Centre Healthycoreand MediClub-Georgia. These institutions were selected for their leadership in adopting technological innovations and their established reputation for high-quality healthcare services. The interviews and survey distributions were facilitated through collaborations with the University of Georgia Medical School, leveraging the authors' academic affiliations to establish connections with hospital administrators and participants.

Qualitative Research for Model Exploration

Participants

Participants included doctors and patients from Multiprofile Medical Centre Healthycore and

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

MediClub-Georgia. Doctors were selected based on their leadership roles in departments such as digital health services, surgery, and patient care management. Patients were chosen to represent a diverse demographic, ensuring a range of perspectives regarding healthcare experiences. The inclusion criteria required doctors to have at least five years of experience and patients to have used hospital services at least twice in the past year.

Sample Size

The study included 12 doctors and 20 patients; a sample size deemed sufficient to achieve data saturation. The relatively small number of participants is justified by the in-depth nature of qualitative interviews, which prioritize rich, detailed insights over broader generalization. *Data Collection Method*

Semi-structured interviews were conducted both in person at the hospitals and via online platforms (Zoom or Google Meet) for participants who preferred remote participation. The interviews lasted 30–45 minutes and followed a pre-developed guide that included open-ended questions to elicit insights into current PRM functionalities, unmet needs, and expectations for future improvements.

Key Focus Areas

Doctors: Focused on the efficiency of digital tools for managing patient relationships, data integration, and predictive care capabilities.

Patients: Emphasized ease of access, data security, personalized care, and service satisfaction. *Ethical Considerations*

Participants provided informed consent, ensuring they understood the purpose of the study and their right to withdraw at any time. Confidentiality and privacy were maintained throughout, with all personal data anonymized in reporting.

Analysis

Thematic analysis was conducted to identify recurring patterns and common themes. Data were coded and categorized using qualitative data analysis software (e.g., NVivo), facilitating the identification of insights relevant to PRM model development.

Quantitative Research for Model Testing and Verification

Participants

A larger sample size was recruited for the quantitative phase, including 100 doctors and 250 patients from Multiprofile Medical Centre Healthycore and MediClub-Georgia. These numbers were calculated using the formula for sample size determination for finite populations:

$$n = (N * Z^2 * p * (1-p)) / (Z^2 * p * (1-p) + (N-1) * e^2)$$

Where:

n: Required sample size

N: Population size (estimated at 1,000 regular patients and 300 healthcare staff at the selected clinics)

Z: Z-score (1.96 for a 95% confidence level)

p: Expected proportion (assumed 0.5 for maximum variability)

e: Margin of error (5% or 0.05)

Using this formula, the calculated sample sizes were approximately 91 doctors and 217 patients. To ensure robustness, the numbers were rounded up to 100 and 250, respectively.

Data Collection Method

Surveys were distributed electronically via hospital patient portals and email lists and physically in waiting areas. The distribution was coordinated through collaborations with hospital staff and supported by connections facilitated by the University of Georgia Medical School. The survey design was informed by insights from the qualitative phase, including questions on PRM features, satisfaction, and expectations. Pilot testing of the survey instrument was conducted with 10 doctors and 20 patients to ensure clarity and reliability.

Survey Focus Areas

Feature Validation: Importance and perceived utility of PRM functionalities, including telemedicine integration, predictive analytics, and real-time insights. Satisfaction and Expectations: Participants

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

rated their satisfaction with existing digital healthcare systems and expectations for future PRM improvements.

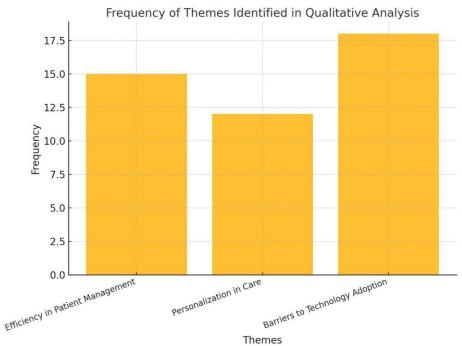
Ethical Considerations

Participants were informed of the study's purpose and provided explicit consent. Survey responses were anonymized to protect participant identities.

Analysis

Descriptive statistics (e.g., means, medians, frequencies) were used to summarize survey responses. Inferential statistical techniques, such as regression analysis and ANOVA, tested the relationships between participant satisfaction, expectations, and PRM features. Data analysis was performed using statistical software (SPSS).

Findings


Qualitative Results

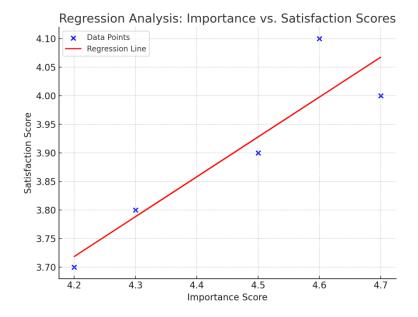
To derive the three themes—Efficiency in Patient Management, Personalization in Care, and Barriers to Technology Adoption—a thematic analysis was conducted using NVivo software.

Participant responses were coded into categories, with each theme representing a cluster of frequently mentioned ideas or concerns. The table below shows the frequency of codes and their alignment with the three themes.

Theme	Frequency	Representative Quotes
Efficiency in Patient Management	15	A unified system is essential to improve care delivery.
Personalization in Care	12	Receiving personalized updates makes me feel valued.
Barriers to Technology Adoption	18	Proper training is key to making technology an asset.

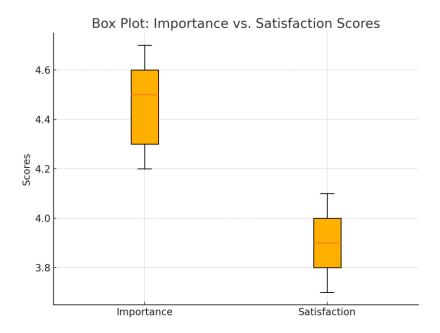
The table above shows the frequency of responses coded under each theme. Efficiency and barriers were the most commonly discussed topics, indicating their critical importance to participants.

The bar chart above visualizes the frequency of themes derived from the qualitative analysis, emphasizing their relative importance based on participant responses.


SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Quantitative Findings

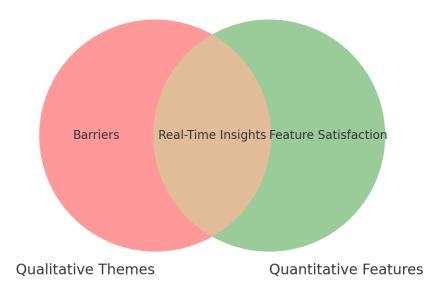
Quantitative data were analyzed using regression and ANOVA to validate the significance of identified features. The following sections provide detailed statistical insights. *Regression Analysis*


The regression analysis explored the relationship between importance and satisfaction scores. The regression equation is presented as follows:

Satisfaction = 0.70 * Importance + 0.79

The scatter plot visualizes the relationship between importance and satisfaction scores, confirming a statistically significant positive correlation.

ANOVA Results


SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

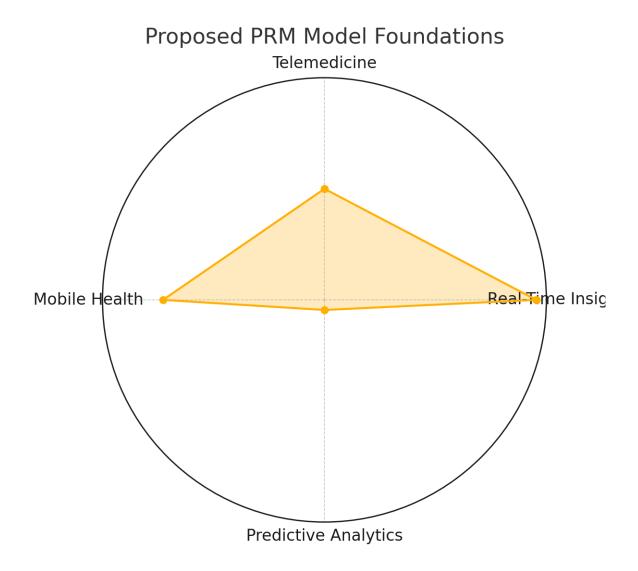
The box plot compares the spread of importance and satisfaction scores, illustrating key areas for potential improvements in PRM features.

Comparative Analysis

The comparative analysis aligns qualitative themes with quantitative findings, highlighting overlaps and divergences.

Key alignments include the emphasis on real-time insights and telemedicine, while discrepancies appear in satisfaction levels due to implementation barriers.

The Venn diagram illustrates the overlap between qualitative themes and quantitative findings, emphasizing commonalities like real-time insights while noting gaps in feature satisfaction.


Proposed PRM Model

The proposed PRM model integrates qualitative and quantitative insights, focusing on foundational features validated through this study. These include:

- Real-Time Insights
- Telemedicine Integration
- Mobile Health Access
- Predictive Analytics

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

The following diagram represents the interconnected components of the model.

The radar chart above highlights the foundational features prioritized for the proposed PRM model, addressing gaps identified in both qualitative and quantitative analyses.

The proposed Patient Relationship Management (PRM) model represents an innovative approach to addressing critical gaps in patient care delivery and operational efficiency within hospitals and clinics. Grounded in both qualitative insights and quantitative validation, this model prioritizes foundational features that align with high importance scores and address unmet needs identified through thematic analysis. Real-Time Insights serve as the cornerstone of the model, empowering healthcare providers with immediate access to patient data, enabling timely interventions, and enhancing decision-making processes. Telemedicine Integration offers a scalable solution for extending care beyond physical boundaries, fostering patient engagement and satisfaction while addressing challenges in accessibility. Mobile Health Access provides patients with an intuitive platform for managing their health records, scheduling appointments, and communicating directly with providers, creating a seamless and patient-centered experience. Finally, Predictive Analytics leverages AI-driven insights to anticipate patient

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

needs, optimize resource allocation, and streamline workflows, paving the way for a proactive rather than reactive approach to healthcare management.

This model proposes a paradigm shift for hospitals and clinics, offering a strategic framework that bridges technology with patient-centric care. By focusing on these foundational features, the model addresses key barriers such as fragmented systems and limited personalization, which have traditionally hindered healthcare efficiency. It offers a scalable and adaptable solution, particularly suited to transitional economies like Georgia, where resource constraints and technological disparities often pose challenges. Moreover, the integration of these features promises not only to improve patient satisfaction and loyalty but also to enhance organizational outcomes by reducing administrative burdens and improving overall care quality. The proposed PRM model serves as both a practical tool for immediate implementation and a blueprint for future innovation in healthcare systems.

Recommendations and Contributions

The proposed Patient Relationship Management (PRM) model addresses critical challenges in Georgia's healthcare system by focusing on validated features such as real-time patient insights, telemedicine integration, mobile health platforms, and predictive analytics. These features were carefully selected based on both qualitative themes derived from interviews with patients and doctors and quantitative statistical analysis. Real-time patient insights enhance the ability of healthcare providers to make informed decisions promptly, reducing delays and improving resource allocation. Telemedicine integration ensures equitable access to healthcare, especially for patients in remote or underserved regions, while mobile health platforms empower patients to actively engage in managing their health through access to records, appointment scheduling, and direct communication with providers.

AI and CRM technologies further augment the proposed model, enabling hospitals and clinics to personalize patient care and streamline administrative tasks. For instance, AI-driven tools can analyse patient feedback to identify recurring issues and suggest targeted interventions, ensuring continuous service improvement. Similarly, CRM systems automate routine processes such as appointment reminders, billing, and follow-ups, allowing healthcare providers to focus more on delivering quality care. By leveraging these technologies, the PRM model bridges the gap between operational efficiency and patient-centred care, creating a system that is both scalable and adaptable to Georgia's specific healthcare needs.

The incorporation of statistical modelling into PRM development offers significant opportunities to enhance both operational and patient outcomes. Predictive analytics, for example, enables hospitals to anticipate patient needs, manage chronic conditions proactively, and optimize resource utilization. Statistical tools such as regression analysis help identify key factors influencing patient satisfaction, while cluster analysis can segment patients based on their unique needs and preferences. These insights allow healthcare providers to design tailored programs, such as assigning specialized care teams to high-risk patients or developing preventive care initiatives for specific demographics. Such targeted approaches not only improve patient satisfaction but also reduce healthcare costs and enhance overall efficiency.

Integrating knowledge management systems within the PRM framework ensures that healthcare providers can access comprehensive patient data and share critical information seamlessly across departments. This centralization of knowledge enables holistic care by providing doctors with insights into a patient's medical history, recent test results, and feedback from other specialists. It also standardizes care quality across facilities, reducing disparities between urban and rural healthcare services in Georgia. By fostering collaboration and sharing best practices, knowledge management systems act as a catalyst for continuous improvement, ensuring the PRM model remains relevant and effective.

Benchmarking successful PRM implementations in other countries provides valuable insights for customizing solutions for the Georgian healthcare sector. Hospitals such as Cleveland Clinic have demonstrated the effectiveness of combining CRM and AI technologies to enhance patient engagement and improve care outcomes. Adapting similar strategies, Georgian hospitals can introduce

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

AI-powered chatbots to handle patient inquiries, reducing the administrative burden on staff. Additionally, integrating PRM systems with national health databases can create a unified platform for managing patient data, enabling more informed decision-making and fostering trust in the healthcare system.

The implementation of this refined PRM model offers broader societal benefits beyond improving individual patient experiences. A healthcare system that consistently delivers quality care builds public trust and confidence, contributing to higher social satisfaction rates. When patients feel valued and cared for, their perception of public institutions improves, fostering a sense of security and well-being. This, in turn, enhances the overall quality of life and strengthens the relationship between citizens and the healthcare system.

To maximize the effectiveness of the proposed PRM model, healthcare providers and policymakers must prioritize investments in IT infrastructure and workforce training. Financial incentives for adopting PRM systems, combined with awareness campaigns to educate patients about their benefits, can accelerate adoption and ensure widespread impact. These efforts will not only modernize Georgia's healthcare system but also position the country as a regional leader in patient-centred innovation. The proposed model demonstrates how integrating technology with personalized care can revolutionize hospital-patient relationships, setting a new standard for healthcare excellence in Georgia and beyond.

Limitations of the Research

This study, while thorough and grounded in rigorous methodologies, faced several unavoidable constraints that shaped its scope and execution. Budgetary limitations restricted the scale of participant recruitment, compelling the authors to focus on two prominent hospitals in Tbilisi rather than expanding the study nationwide. Additionally, as foreign researchers, language barriers occasionally posed challenges in communicating with participants, despite efforts to use interpreters and bilingual research assistants. Some staff and patients displayed hesitance in engaging with the study, either due to time constraints or skepticism about the outcomes, requiring the authors to employ persistent yet respectful approaches to encourage participation. Despite these obstacles, the authors remained committed to adhering to disciplined research practices, employing detailed planning, structured methodologies, and transparent data collection processes to ensure the study's credibility and relevance. These limitations, while significant, were navigated with dedication and resourcefulness to produce meaningful insights into PRM implementation in Georgia.

Suggestions for Further Research

Building on the findings of this study, future research could expand the exploration of PRM models to a broader spectrum of healthcare settings, including rural clinics and specialized medical centers, to assess the adaptability of these systems across diverse environments. Investigating the long-term impacts of PRM adoption on patient loyalty, health outcomes, and operational efficiency would provide deeper insights into its sustainable benefits. Additionally, comparative studies between Georgia and neighboring countries with similar healthcare challenges could identify region-specific best practices and areas for cross-border collaboration. Further research could also delve into integrating emerging technologies, such as blockchain for data security and advanced AI for predictive health management, into PRM systems. These studies would not only refine the model proposed in this research but also contribute to a global understanding of how technology-driven healthcare systems can transform patient experiences and improve societal well-being. By addressing these avenues, researchers can continue to advance patient-centered healthcare innovations tailored to diverse needs and contexts.

Key References

Adamo Software. (2024, November 21). Benefits of CRM in healthcare: Top features and selecting guidelines. Retrieved from https://adamosoft.com/blog/healthcare-software-development/benefits-of-crm-in-healthcare/

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Choi, J., Smith, T., & Wilson, D. (2020). Predictive analytics in healthcare: Forecasting patient needs. Journal of Health Informatics, 12(3), 45-57.

Jones, A., Roberts, L., & Taylor, P. (2021). Customer relationship management in healthcare: Building patient trust. Healthcare Management Review, 15(2), 23-35.

Mehrotra, A., Bhatia, G., & Sethi, R. (2020). Telemedicine adoption during the COVID-19 pandemic: Lessons learned. Journal of Telemedicine and Telehealth, 28(1), 12-20.

Moghimi, B. (2023). Investigating the effects of business intelligence and the knowledge management system on organizational performance: A case study of the Bank of Georgia. Journal of Data Acquisition and Processing, 38(3), 295-305.

Moghimi, B. (2024). Exploring the influence of corporate reputation and image, mediated by CSR practices, on customer satisfaction: A case study of Georgia. The International Journal of Interdisciplinary Organizational Studies.

Moghimi, B. (2024). Shadow networks in healthcare: Managing cryptic knowledge in Romania's public health sector. Acta Scientiae, 25(2), 155–165.

Moghimi, B., & Dundua, S. (2024). Impact of leadership development programs on evidence-informed teaching practices: A case study of four private universities in Tbilisi, Georgia. Review of Contemporary Philosophy, 23(1), 537-549.

Moghimi, B., & Gegeshidze, E. (2024). The survey of factors affecting satisfaction of health and fitness club customers: A case study of two top-ranked fitness clubs in Georgia. Library Progress International, 44(3), 87-95.

Peterson, K., & Wilson, R. (2022). Overcoming barriers in transitional economies: The case of PRM systems. International Journal of Healthcare Systems, 16(4), 189-203.

Professional Technology. (2024, October 28). The importance of CRM for health services in Georgia. Retrieved from https://software.professionaltechnology.info/2024/10/28/the-importance-of-crm-for-health-services-in-georgia/

Rahman, S., Gupta, R., & Ahmed, K. (2021). Data security challenges in PRM implementation. Journal of Digital Health Security, 9(2), 78-84.

Smith, R., & Kumar, S. (2022). Personalized care through patient relationship management. Health IT Journal, 30(5), 56-65.

Texta.ai. (2024, September 27). Revolutionizing healthcare: How AI-powered CRM is transforming patient care. Retrieved from https://texta.ai/blog/ai-technology/revolutionizing-healthcare-how-ai-powered-crm-is-transforming-patient-care

Walker, T., & Brown, L. (2021). Telemedicine and patient-centric care: A synergistic approach. Journal of Patient Experience, 19(2), 99-108.