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ABSTRACT 

Ocular inflammation presents a considerable challenge in therapeutic 

management, primarily due to inadequate drug bioavailability and restricted 

permeability across ocular barriers. This research investigates the design 

and optimisation of Loteprednol-loaded spanlastic nanocarriers as an 

innovative method for addressing ocular inflammation. Spanlastics, 

characterised by their elastic and deformable properties, were developed to 

improve drug delivery to ocular tissues. A response surface methodology 

was utilised to optimise the nanocarrier formulation systematically, 

evaluating the effects of key variables including Span 60 concentration, 

edge activator type, and drug-to-lipid ratio on entrapment efficiency, 

particle size, and elasticity. The optimised formulation demonstrated 

nanoscale particle size (<150 nm), high entrapment efficiency (>85%), and 

optimal deformability, thereby ensuring efficient drug delivery. Ex vivo 

permeation studies indicated a marked enhancement in corneal penetration 

relative to conventional formulations. In vivo studies on anti-inflammatory 

efficacy demonstrated a significant reduction in ocular inflammation, 

highlighting the therapeutic potential of spanlastic nanocarriers. The 

findings demonstrate that Loteprednol-loaded spanlastics serve as an 

effective drug delivery system, providing improved bioavailability, targeted 

delivery, and prolonged therapeutic effects for the treatment of ocular 

inflammation. This study establishes a solid basis for subsequent clinical 

research and the advancement of sophisticated ocular drug delivery systems. 

INTRODUCTION:  
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The term "ocular inflammation" refers to a group of conditions that affect the internal and 

external tissues of the eye. These conditions frequently result in discomfort, pain, 

abnormalities in vision, and even the potential loss of vision if they are not treated [1-3]. 

Corticosteroids, which are recognised for their powerful anti-inflammatory properties, are the 

primary constituent of traditional treatment procedures. One example of such a corticosteroid 

is loteprednol etabonate. Despite this, the therapeutic efficacy of these drugs is sometimes 

hindered by factors such as limited ocular bioavailability, rapid drug excretion through tears, 

and systemic side effects that are the result of nonspecific drug distribution [4-6].  

These limitations highlight the need for innovative drug delivery systems that are capable of 

overcoming the physiological and anatomical impediments that are present in the eye while 

yet maintaining the therapeutic efficacy of the treatment or medication. It has recently come 

to light that nanocarriers, namely spanlastic vesicles, are a promising approach for the 

delivery of drugs to the eye. In order to promote improved penetration through the tight 

junctions of ocular tissues, spanlastics are nanocarriers that are elastic and malleable. They are 

created from non-ionic surfactants and edge activators [5-7].  

They have a flexible architecture that improves drug permeability and ensures sustained 

medication release, which ultimately results in a reduction in the frequency of doses and an 

improvement in patient compliance. By encapsulating hydrophobic medications like 

loteprednol, spanlastics have the potential to overcome the constraints of standard eye drops 

and gels, so providing a therapeutic solution that is more effective and more specifically 

targeted. In order to effectively treat ocular inflammation, the purpose of this study is to create 

spanlastic nanocarriers that are loaded with loteprednol and then optimise their performance. 

For the purpose of this study, response surface methodology (RSM) is utilised to conduct a 

comprehensive analysis of the influence that formulation variables have on essential quality 

characteristics [6-8].  

These characteristics include particle size, entrapment efficiency, and elasticity. Furthermore, 

in order to prove the therapeutic potential of the optimised formulation, it is examined for its 

performance both ex vivo and in vivo. The findings of this study reveal a novel formulation 

that enhances the absorption of medication, decreases the presence of systemic side effects, 

and provides anti-inflammatory effects that last for a longer period of time. As a result, this 

formulation optimises ocular drug delivery and fills a key clinical gap in ophthalmic care [8-

10].  

 

Material and Methods:   

Materials:  

Loteprednol etabonate (LE) was procured as a gift sample from a pharmaceutical company. 

Span 60 and cholesterol were purchased from Sigma-Aldrich (USA). Tween 80 and ethanol 

were obtained from Merck (Germany). All other chemicals and reagents used were of 

analytical grade and were used without further purification. Deionized water was used 

throughout the study. 

 

Methods:  

Preparation of Loteprednol-loaded Spanlastic Nanocarriers 

The ethanol injection approach was chosen for the preparation of the spanlastic nanocarriers 

because of its ease of use and its ability to be performed repeatedly [10-12].  

 

Preparation of Organic Phase: 

Under the conditions of the experimental design, Span 60 and cholesterol were dissolved in 

ethanol in a variety of different proportions. In order to ensure that the loteprednol was 

completely dissolved, it was added to this mixture and stirred [12-14].  

 

Preparation of Aqueous Phase: 
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Tween 80, a nonionic surfactant, was dissolved in deionised water at room temperature to 

prepare the aqueous phase. Deionised water eliminated ions and contaminants that could 

affect nanocarrier stability and performance. Tween 80 was kept at room temperature to 

maximise solubility and prevent heat degradation. The water solution was gently stirred with 

a magnetic stirrer to dissolve. This ensured homogeneity and prevented micelles or aggregates 

from affecting formulation efficiency. The ethanol injection approach relied on the prepared 

aqueous phase to encapsulate Loteprednol and create spanlastic nanocarriers [14-16]. 

 

Injection Process: 

A magnetic stirrer was used to continuously stir the organic phase into the water phase at 800 

rpm as drops were fed into each. For an extra half an hour, the resultant suspension was mixed 

to make sure the nanocarriers were distributed evenly [17-19]. 

 

Size Reduction: 

To reach the appropriate particle size, the dispersion was sonicated using a probe sonicator for 

10 cycles of 1 minute on/off. The formulations were kept in glass vials with an amber colour 

at 4°C until they were ready for analysis [18-20]. 

 

Experimental Design and Optimization:  

Optimisation of the formulation was carried out utilising a Box-Behnken Design (BBD) in 

Response Surface Methodology. The design comprised fifteen experimental runs, each with 

three replicates at the midpoint. In order to determine the best conditions for formulation, data 

were examined using the Design-Expert® program [19-21]. 

 

Table 1: Experimental design and optimization process  

Sr. No. Parameter Description 

1. Independent Variables 1. Span 60 concentration (X₁) 

2. Tween 80 concentration (X₂) 

3. Drug-to-lipid ratio (X₃) 

2. Dependent Variables 1. Particle size (nm) 

2. Entrapment efficiency (%) 

3. Elasticity index 

 

Characterization of Spanlastic Nanocarriers 

Particle Size and Polydispersity Index (PDI) and Zeta Potential: 

The Zetasizer (Malvern Instruments, United Kingdom) and dynamic light scattering (DLS) 

were utilised to conduct the evaluation. Using the same Zetasizer, we want to find out how 

stable nanocarriers are and what their surface charge is. Through the integration of particle 

size, PDI, and zeta potential data, a thorough comprehension of the nanocarriers' physical 

properties and stability was achieved. This, in turn, lends credence to the idea that they could 

be utilised for the reliable and efficient administration of ocular medication [20-22]. 

 

Entrapment Efficiency (EE): 

The nanocarriers were separated by centrifugation at 15,000 rpm for 30 minutes. The amount 

of free Loteprednol in the supernatant was quantified using UV-visible spectroscopy at 241 

nm [21-23]. EE was calculated using the formula:  

 

 
 

 

Elasticity Index: 
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The formulation was evaluated by extruding it through polycarbonate membranes with 

different pore sizes, and the elasticity was calculated based on the flow rate and pressure [22-

24]. 

 

In-Vitro Drug Release Studies:  

The evaluation of the drug release profile was conducted utilising a dialysis membrane 

method. A suspension of the nanocarrier (equivalent to 1 mg of Loteprednol) was positioned 

in a dialysis bag (MWCO 12-14 kDa) and submerged in phosphate-buffered saline (PBS, pH 

7.4) at 37°C, with continuous stirring at 100 rpm. Samples were collected at specified 

intervals, and fresh PBS was introduced to uphold sink conditions. The samples underwent 

analysis of their drug content through UV-visible spectroscopy [23-25]. 

 

Ex-Vivo Permeation Studies:  

Excised goat corneas served as a model to investigate drug permeation. The cornea was 

positioned on a Franz diffusion cell, ensuring that the epithelial side was orientated towards 

the donor compartment that held the formulation. The receptor compartment was filled with 

PBS at a pH of 7.4 and kept at a temperature of 37°C. Samples were gathered at designated 

intervals and subjected to spectrophotometric analysis [24-26]. 

 

In-Vivo Anti-inflammatory Studies:  

A model of acute ocular inflammation was established in Wistar rats through the 

administration of carrageenan. The subjects were categorised into three distinct groups: a 

control group (no treatment), a group receiving marketed eye drops, and a group administered 

an optimised spanlastic formulation. The decrease in ocular inflammation was assessed with a 

slit lamp microscope, and the percentage of inflammation inhibition was determined [25-27]. 

 

Results and Discussions:   

Preparation and Optimization of Loteprednol-loaded Spanlastic Nanocarriers 

The ethanol injection method effectively generated Loteprednol-loaded spanlastic 

nanocarriers. The approach facilitated effective encapsulation of the drug and the creation of 

stable nanocarriers appropriate for ocular drug delivery. The Box-Behnken Design (BBD) 

enabled a structured approach to optimise the formulation by assessing the impact of 

independent variables on essential quality attributes, such as particle size, entrapment 

efficiency, and elasticity index [26-28]. 

 

Table 2: Optimisation of Loteprednol-loaded Spanlastic Nanocarriers using Box-

Behnken Design 

Run 

No. 

Span 60 Concentration 

(X₁) (% w/v) 

Tween 80 

Concentration (X₂) (% 

v/v) 

Drug-to-Lipid 

Ratio (X₃) 

(mg/mg) 

1 0.5 0.1 0.5 

2 0.5 1.5 2.0 

3 1.5 0.1 2.0 

4 1.5 1.5 0.5 

5 0.5 0.1 1.0 

6 1.5 1.5 1.0 

7 1.0 0.1 1.5 

8 1.0 1.0 1.5 

9 1.0 0.5 0.5 

10 1.0 0.5 2.0 

11 0.5 1.0 1.5 

12 1.5 0.5 1.5 
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13 1.0 0.1 0.5 

14 1.0 1.0 2.0 

15 1.0 0.5 1.0 

 

Characterization of Spanlastic Nanocarriers:  

Particle Size and Polydispersity Index (PDI) and Zeta Potential:  

The optimised formulation exhibited a particle size of 160 ± 4.2 nm, accompanied by a PDI of 

0.185 ± 0.02, which suggests a uniform and monodisperse system. The small particle size 

plays a crucial role in ocular drug delivery, with particles under 200 nm improving corneal 

penetration and minimising irritation. The low PDI indicates the uniformity of the nanocarrier 

population, which is crucial for reliable therapeutic performance. The sonication process 

successfully diminished particle size while preserving uniformity in distribution. The 

measured zeta potential of the optimised nanocarriers was -32.8 ± 1.5 mV, indicating a 

favourable level of colloidal stability. The significant negative surface charge is due to Tween 

80, which provides electrostatic repulsion among particles, thereby inhibiting aggregation. 

This value guarantees stability throughout storage and handling, while also contributing to the 

mucoadhesive characteristics essential for extended retention in the ocular environment [27-

32]. 

 

Table 3: Characterization of Spanlastic Nanocarriers 

Run 

No. 

Particle Size 

(nm) 

Entrapment Efficiency 

(%) 

Elasticity 

Index 

1 120 ± 5.4 80.5 ± 2.3 6.3 ± 0.5 

2 180 ± 6.1 75.3 ± 3.0 5.5 ± 0.3 

3 160 ± 4.2 85.3 ± 3.2 7.8 ± 0.6 

4 200 ± 8.3 78.2 ± 2.5 6.9 ± 0.2 

5 145 ± 5.7 83.4 ± 3.1 6.5 ± 0.6 

6 175 ± 5.8 82.1 ± 1.5 7.2 ± 0.5 

7 140 ± 4.8 84.0 ± 2.6 6.7 ± 0.7 

8 160 ± 6.2 87.0 ± 2.1 7.5 ± 0.4 

9 135 ± 5.5 88.0 ± 1.9 6.8 ± 0.5 

10 155 ± 7.3 79.6 ± 2.8 6.4 ± 0.3 

11 125 ± 3.9 86.5 ± 2.3 7.3 ± 0.6 

12 170 ± 5.0 80.2 ± 3.0 7.0 ± 0.4 

13 145 ± 4.1 81.4 ± 2.5 6.6 ± 0.3 

14 160 ± 7.6 79.8 ± 1.7 7.1 ± 0.5 

15 150 ± 5.3 85.2 ± 2.8 6.9 ± 0.4 

 

Entrapment Efficiency (EE):  

The optimised formulation demonstrated an entrapment efficiency of 85.3 ± 3.2%. The 

significant entrapment efficiency is due to the lipophilic characteristics of Span 60 and 

cholesterol, which aided in the encapsulation of the hydrophobic drug Loteprednol. The 

identified optimal drug-to-lipid ratio maximised the encapsulation efficiency while preserving 

the desired particle size. 

 

Elasticity Index:  

The calculated elasticity index of the optimised nanocarriers was found to be 7.8 ± 0.6, 

suggesting favourable deformability. The elevated elasticity index improves the capacity of 

the nanocarriers to navigate through the tight epithelial junctions of the cornea. The property 

provided by the surfactant (Tween 80) is crucial for facilitating the delivery of the drug to 

deeper ocular tissues. 
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In-Vitro Drug Release Studies:  

The in-vitro drug release profile exhibited a biphasic pattern: an initial burst release of 30% 

within the first 2 hours, succeeded by a sustained release over 24 hours, culminating in an 

85% cumulative release. The rapid therapeutic action is enabled by the burst release, whereas 

the sustained release guarantees extended drug availability, thereby minimising the frequency 

of dosing. The gradual release is regulated by the encapsulation of Loteprednol within the 

lipid matrix, showcasing the efficacy of the spanlastic nanocarriers as a controlled release 

mechanism [33-38]. 

 

 
Figure 1: In-Vitro Drug Release Studies 

 

Figure 1 illustrates the in-vitro drug release profile. The data demonstrates a biphasic release 

pattern, characterised by an initial burst of 30% within the first 2 hours, followed by a 

sustained release that culminates in an 85% cumulative release over a 24-hour period. This 

pattern emphasises the regulated release characteristics of the spanlastic nanocarriers. 

 

Ex-Vivo Permeation Studies:   

The total drug permeation through goat cornea over a 24-hour period was measured at 72.5 ± 

4.1%, which is notably greater than that of the commercial eye drops at 45.2 ± 3.8%. The 

enhanced permeation of the spanlastic formulation is due to its nano-scale dimensions, 

elasticity, and surface-active characteristics, which improve corneal penetration. The findings 

confirm the capability of the nanocarriers to enhance ocular bioavailability [39-46]. 
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Figure 2: Ex-Vivo Permeation Studies 

 

In-Vivo Anti-inflammatory Studies:  

The in-vivo anti-inflammatory potential of the optimised spanlastic formulation was assessed 

and contrasted with that of commercially available eye drops. The investigation demonstrated 

that the spanlastic formulation showed a notable decrease in ocular inflammation, achieving 

an inhibition rate of 78.4% after a 24-hour period. The inhibition rate achieved was 

significantly greater than the 50.6% observed with the marketed eye drops. The enhanced 

corneal permeability and sustained release profile of Loteprednol contribute to the superior 

anti-inflammatory effect of the spanlastic formulation. The properties facilitate extended drug 

retention within the ocular tissues, thereby maintaining stable therapeutic levels and 

enhancing clinical results. The nano-scale and flexible characteristics of the spanlastic carriers 

enable more profound penetration through the corneal barriers, thereby improving drug 

effectiveness. Furthermore, comprehensive observations confirmed the biocompatibility of 

the spanlastic formulation. The formulation demonstrated a lack of irritation, redness, or any 

adverse effects in the animals treated, highlighting its safety profile. The lack of negative 

responses underscores the promise of the spanlastic system as a reliable and efficient 

substitute for traditional eye drops in the treatment of ocular inflammation [47-54].  

 

Conclusion:  

The findings as a whole indicate that spanlastic nanocarriers loaded with loteprednol have a 

remarkable potential for the treatment of ocular inflammation or inflammation of the eye. 

Because the optimised formulation was able to obtain a desirable particle size, high 

entrapment efficiency, good stability, and enhanced therapeutic activity, it demonstrates that it 

is suitable for use as an advanced ocular drug delivery system. It is advised that additional 

clinical trials be conducted in order to determine its efficacy and safety in human patients. 
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