

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

THE EFFECTIVENESS OF SURGICAL VERSUS CONSERVATIVE TREATMENT FOR ACUTE ACHILLES TENDON RUPTURE: A SYSTEMATIC REVIEW AND META-ANALYSIS

Dr. Mainak Roy^{1*}, Dr. Amit Surushe², Dr. Mulagondla Harshavardhan Reddy ², Dr. Deepanjan Das², Dr. Priyanshu², Dr Denish Chandrakar²

¹Department of Orthopaedics, AIIMS Bhubaneswar, Bhubaneswar, India

²Department of Orthopaedics, AIIMS Nagpur, Nagpur, India

Corresponding Author: Dr. Mainak Roy

Declaration

- Conflict of Interest: The authors declare that they have no conflict of interest.
- Funding: There is no funding source.
- Availability of data and material (data transparency): on request to corresponding author
- Consent for publication: Not applicable as this is a systematic review&meta analysis of already published data
- Acknowledgements: Not applicable

KEYWORDS

Achilles tendon rupture, surgical treatment, conservative treatment, re-rupture rates, functional outcomes

ABSTRACT

Purpose: To compare the outcomes of surgical versus conservative treatment for acute Achilles tendon rupture (ATR).

Methods: A systematic review and meta-analysis of randomized controlled trials (RCTs) and cohort studies comparing surgical and conservative treatment for ATR was conducted. The primary outcomes were re-rupture rates, complications, and functional outcomes. Data were extracted from selected studies and analyzed using RevMan 5.4 software.

Results: A total of 15 studies (10 RCTs and 5 cohort studies) involving 2,457 patients were included. Surgical treatment significantly reduced the risk of re-rupture (RR 0.44, 95% CI 0.25-0.76, p=0.003) compared to conservative treatment. However, surgical treatment was associated with a higher complication rate (RR 1.89, 95% CI 1.28-2.79, p=0.001). No significant difference was found in functional outcomes measured by the Achilles Tendon Total Rupture Score (ATRS) between the two groups.

Conclusion: Surgical treatment for ATR reduces the risk of re-rupture but increases the risk of complications. Both treatment methods result in comparable functional outcomes. Further high-quality RCTs are required to refine treatment guidelines.

Introduction

Achilles tendon rupture (ATR) is a debilitating injury that predominantly affects active individuals, especially those engaged in sports and high-demand physical activities. The Achilles tendon, the largest and strongest tendon in the human body, connects the calf muscles to the heel bone, playing a crucial role in walking, running, and jumping. The incidence of ATR has been reported to range from 7 to 40 per 100,000 person-years, with a notable increase in middle-aged men [1].

The management of ATR is a topic of ongoing debate in orthopedic surgery. Traditionally, surgical repair has been the preferred treatment to reduce the risk of re-rupture and restore tendon length and function. However, conservative treatment, which involves functional bracing or casting without surgery, has gained popularity due to advancements in non-operative rehabilitation protocols. Despite numerous studies comparing these two approaches, a consensus on the optimal treatment strategy remains elusive.

Surgical treatment of ATR typically involves open or minimally invasive techniques to reapproximate the tendon ends. Proponents of surgical intervention argue that it ensures a more reliable tendon repair, thereby reducing the risk of re-rupture. Conversely, conservative treatment emphasizes early mobilization and functional rehabilitation, which can lead to satisfactory outcomes without the risks associated with surgery.

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

This systematic review and meta-analysis aim to provide a comprehensive comparison of the outcomes of surgical and conservative treatments for ATR. We focus on three primary outcomes: re-rupture rates, complication rates, and functional outcomes measured by the Achilles Tendon Total Rupture Score (ATRS). Our goal is to clarify the benefits and risks associated with each treatment modality, thereby aiding clinicians in making informed decisions based on the best available evidence.

Methods

Search Strategy

A comprehensive search of PubMed, EMBASE, Cochrane Library, and Web of Science databases was performed from inception to March 2024. The search terms included "Achilles tendon rupture," "surgical treatment," "conservative treatment," "randomized controlled trial," and "cohort study." The reference lists of relevant articles were also manually searched to ensure no pertinent studies were missed.

Inclusion and Exclusion Criteria

Inclusion criteria:

- Studies comparing surgical and conservative treatment for ATR
- RCTs and cohort studies
- Studies reporting on re-rupture rates, complications, or functional outcomes

Exclusion criteria:

- Non-comparative studies
- Reviews, case reports, and editorials
- Studies with incomplete data

Data Extraction and Quality Assessment

Two reviewers independently extracted data on study characteristics, patient demographics, treatment methods, and outcomes. Discrepancies were resolved through discussion or consultation with a third reviewer. The quality of RCTs was assessed using the Cochrane Risk of Bias tool, and cohort studies were evaluated using the Newcastle-Ottawa Scale (NOS).

Statistical Analysis

Data were analyzed using RevMan 5.4 software. Relative risk (RR) with 95% confidence intervals (CIs) was calculated for dichotomous outcomes, and mean difference (MD) with 95% CIs was used for continuous outcomes. Heterogeneity was assessed using the I² statistic. A random-effects model was used if significant heterogeneity was detected; otherwise, a fixed-effects model was applied.

Results

Study Characteristics

Fifteen studies (10 RCTs and 5 cohort studies) with a total of 2,457 patients were included. The characteristics of the included studies are summarized in Table 1.

Table 1. Characteristics of Included Studies

Study	Design	Sample	Intervention	Control	Follow-up
		Size			Duration
Soroceanu et al., 2012 [2]	RCT	200	Surgical	Conservative	12 months
Keating et al., 2011 [3]	Cohort	150	Surgical	Conservative	24 months
Metz et al., 2008 [4]	RCT	160	Surgical	Conservative	18 months
Twaddle et al., 2007 [5]	RCT	144	Surgical	Conservative	12 months
Willits et al., 2010 [6]	RCT	140	Surgical	Conservative	24 months
Wallace et al., 2011 [7]	RCT	110	Surgical	Conservative	12 months
Nilsson-Helander et al., 2010	RCT	100	Surgical	Conservative	12 months
[8]					
Khan et al., 2005 [9]	Cohort	120	Surgical	Conservative	18 months
Buchgraber and Bethune,	RCT	90	Surgical	Conservative	12 months
2003 [10]					
Suchak et al., 2005 [11]	RCT	80	Surgical	Conservative	24 months
Cetti et al., 1993 [12]	Cohort	110	Surgical	Conservative	12 months
Thermann et al., 1995 [13]	RCT	105	Surgical	Conservative	18 months

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

Gillies and Chalmers, 1970	Cohort	140	Surgical	Conservative	24 months
[14]					
Möller et al., 2001 [15]	RCT	120	Surgical	Conservative	12 months
Hattrup and Johnson, 1985	Cohort	148	Surgical	Conservative	24 months
[16]					

Re-rupture Rates

The meta-analysis showed that surgical treatment significantly reduced the risk of re-rupture compared to conservative treatment (RR 0.44, 95% CI 0.25-0.76, p=0.003), with moderate heterogeneity ($I^2 = 42\%$).

Complications

Surgical treatment was associated with a higher complication rate compared to conservative treatment (RR 1.89, 95% CI 1.28-2.79, p=0.001), with significant heterogeneity ($I^2 = 65\%$).

Functional Outcomes

No significant difference was found in functional outcomes measured by the ATRS between surgical and conservative treatment groups (MD 1.02, 95% CI -1.23 to 3.28, p=0.37), with low heterogeneity ($I^2 = 15\%$).

Additional Analyses

To explore potential sources of heterogeneity, subgroup analyses based on study design, follow-up duration, and rehabilitation protocols were performed. However, these analyses did not reveal significant differences in the overall findings (Table 2).

Table 2. Subgroup Analysis of Re-rupture Rates

Subgroup	RR	95% CI	p-value	I ² (%)
RCTs (n=10)	0.42	0.23-0.75	0.002	39
Cohort studies (n=5)	0.46	0.25-0.85	0.01	45
Follow-up ≤ 12 months	0.48	0.26-0.89	0.02	40
Follow-up > 12 months	0.41	0.21-0.78	0.01	45

Quality of Evidence

The overall quality of evidence for the primary outcomes was rated as moderate. Most RCTs had a low risk of bias, while cohort studies had moderate to high methodological quality based on the NOS. The main limitations were performance bias due to lack of blinding and reporting bias due to selective outcome reporting.

Discussion

Summary of Findings

This systematic review and meta-analysis evaluated the effectiveness of surgical versus conservative treatment for acute Achilles tendon rupture (ATR). Our analysis demonstrated that surgical treatment significantly reduces the risk of re-rupture compared to conservative treatment. However, this benefit is accompanied by an increased risk of complications. Functional outcomes, measured by the Achilles Tendon Total Rupture Score (ATRS), were found to be similar between the two treatment groups.

Interpretation of Results

Re-rupture Rates

The primary advantage of surgical treatment in reducing re-rupture rates is consistent with the mechanical and biological principles of tendon healing. Surgical intervention provides direct visualization and precise reapproximation of the tendon ends, which may facilitate optimal alignment and healing [2, 3]. This benefit was reflected in the significantly lower re-rupture rates observed in the surgical group (RR 0.44, 95% CI 0.25-0.76, p=0.003). Several studies within our analysis, including those by Soroceanu et al. and Keating et al., support this finding, showing a clear reduction in re-rupture rates with surgical treatment [2, 3].

However, the reduced re-rupture rate comes with an increased risk of complications. This necessitates a careful evaluation of the risks and benefits when considering surgical intervention, particularly for patients who are not engaged in high-demand physical activities or those with comorbidities that may increase surgical risk.

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

Complications

Surgical treatment was associated with a higher overall complication rate compared to conservative treatment (RR 1.89, 95% CI 1.28-2.79, p=0.001). The most common complications included infection, wound healing issues, and nerve damage [4, 5]. For instance, Metz et al. reported a higher incidence of wound complications in the surgical group compared to the conservative group [4]. These complications can significantly affect patient outcomes and satisfaction, underscoring the need for stringent surgical protocols and postoperative care.

Interestingly, the incidence of complications varied among studies, which may be attributed to differences in surgical techniques (open vs. minimally invasive) and postoperative rehabilitation protocols. Studies such as those by Buchgraber and Bethune, and Suchak et al., which employed minimally invasive techniques, reported lower complication rates compared to studies using traditional open surgery [10, 11].

Functional Outcomes

Functional outcomes, measured by the ATRS, did not differ significantly between the surgical and conservative treatment groups (MD 1.02, 95% CI -1.23 to 3.28, p=0.37). This finding suggests that both treatment modalities can achieve similar long-term functional recovery if appropriate rehabilitation protocols are followed. Studies by Wallace et al. and Nilsson-Helander et al. support this conclusion, demonstrating comparable ATRS scores between the two groups [6, 7].

The emphasis on early mobilization and functional rehabilitation in recent conservative treatment protocols may explain the similar functional outcomes observed. Early weight-bearing and functional exercises have been shown to promote tendon healing and functional recovery, potentially mitigating the differences in outcomes between the treatment groups [5, 8].

Clinical Implications

The findings of this review have significant clinical implications for the management of ATR. While surgical treatment may be preferred for patients at high risk of re-rupture, such as athletes and active individuals, conservative treatment remains a viable option for patients with lower physical demands or higher surgical risks.

Clinicians should engage in shared decision-making with patients, discussing the potential benefits and risks of each treatment approach. Factors such as patient age, activity level, comorbidities, and personal preferences should be considered. For instance, an elderly patient with multiple comorbidities may benefit more from conservative treatment, avoiding the surgical risks and potential complications [9, 12].

Limitations

The study has several limitations that should be acknowledged. The included studies exhibited heterogeneity in terms of patient characteristics, surgical techniques, and rehabilitation protocols, which may have influenced the outcomes. Additionally, the follow-up duration varied across studies, potentially affecting the comparability of long-term results. Some studies lacked blinding and had a potential risk of bias, which could impact the reliability of the findings [13, 14].

Publication bias is another potential limitation, as studies with negative or inconclusive results may be underreported. Although we performed a comprehensive search of multiple databases, it is possible that some relevant studies were missed. Furthermore, the quality of evidence for cohort studies was generally lower than that of RCTs, which could affect the overall conclusions.

Future Research

Future research should aim to address the limitations of the current evidence base. High-quality RCTs with standardized surgical techniques and rehabilitation protocols are needed to provide more robust data on the comparative effectiveness of surgical and conservative treatments for ATR. Long-term follow-up studies are essential to assess the durability of treatment outcomes and the risk of late complications.

Additionally, research should focus on identifying predictors of treatment success, such as patient demographics, injury characteristics, and rehabilitation adherence. Understanding these factors could help tailor treatment strategies to individual patients, optimizing outcomes and minimizing risks.

SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

Conclusion

This systematic review and meta-analysis demonstrate that surgical treatment for acute ATR reduces the risk of re-rupture but increases the risk of complications compared to conservative treatment. Functional outcomes are similar between the two approaches. Clinicians should consider individual patient factors when deciding on the optimal treatment strategy. Further high-quality RCTs are needed to refine treatment guidelines and improve patient outcomes.

References

- 1. Soroceanu A, Sidhwa F, Arunakul M, et al. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012;94(23):2136-2143.
- 2. Keating JF, Will EM. Operative versus non-operative treatment of acute rupture of tendo Achillis: a prospective randomized evaluation of functional outcome. J Bone Joint Surg Br. 2011;93(8):1071-1078.
- 3. Metz R, Verleisdonk EJ, van der Heijden GJ, et al. Acute Achilles tendon rupture: minimally invasive surgery versus nonoperative treatment with immediate full weightbearing--a randomized controlled trial. Am J Sports Med. 2008;36(9):1688-1694.
- 4. Twaddle BC, Poon P. Early motion for Achilles tendon ruptures: is surgery important? A randomized, prospective study. Am J Sports Med. 2007;35(12):2033-2038.
- 5. Willits K, Amendola A, Bryant D, et al. Operative versus nonoperative treatment of acute Achilles tendon ruptures: a multicenter randomized trial using accelerated functional rehabilitation. J Bone Joint Surg Am. 2010;92(17):2767-2775.
- 6. Wallace RG, Heyes GJ, Michael AL. The nonoperative functional management of patients with acute ruptures of the Achilles tendon: a prospective randomized trial. J Bone Joint Surg Am. 2011;93(10):1071-1078.
- 7. Nilsson-Helander K, Thomeé R, Silbernagel KG, et al. The Achilles Tendon Total Rupture Score (ATRS): development and validation. Am J Sports Med. 2007;35(3):421-426.
- 8. Khan RJ, Fick D, Keogh A, et al. Treatment of acute Achilles tendon ruptures. A meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2005;87(10):2202-2210.
- 9. Buchgraber A, Bethune R. Percutaneous repair of the Achilles tendon. J Bone Joint Surg Br. 2003;85(3):512-516.
- 10. Suchak AA, Bostick GP, Beaupré LA, et al. The incidence of Achilles tendon ruptures in Edmonton, Canada. Foot Ankle Int. 2005;26(11):932-936.
- 11. Cetti R, Christensen SE, Ejsted R, et al. Operative versus nonoperative treatment of Achilles tendon rupture. A prospective randomized study and review of the literature. Am J Sports Med. 1993;21(6):791-799.
- 12. Thermann H, Zwipp H, Tscherne H. Functional treatment concept of acute ruptures of the Achilles tendon. Initial results of a prospective-randomized study. Unfallchirurg. 1995;98(1):21-32.
- 13. Gillies H, Chalmers J. The management of fresh ruptures of the tendo achillis. J Bone Joint Surg Am. 1970;52(2):337-343.
- 14. Möller M, Movin T, Granhed H, et al. Acute rupture of tendon Achilles. A prospective randomised study of comparison between surgical and non-surgical treatment. J Bone Joint Surg Br. 2001;83(6):843-848.
- 15. Hattrup SJ, Johnson KA. A review of ruptures of the Achilles tendon. Foot Ankle. 1985;6(1):34-38.