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ABSTRACT:  

Unmanned Aerial Vehicles (UAVs) also referred to as drones are competent of performing 

mission related operations in an autonomous fashion. For the purpose of more accurately 

tracking designated trajectories with minimal response time and convergence speed, numerous 

trajectory tracking in UAV have been proposed. Progresses in computer and electronic 

technologies have smoothened evolution in automation control and intelligent algorithms and 

also certain significant contributions have been made into action on the trajectory tracking in 

UAV. In this work a method called, Denavit Hartenberg and Newton Optimized Iterative 

Deming Regression (DH-NOIDR) trajectory tracking in UAV with the objective of minimizing 

the response time and convergence speed is proposed. The DH-NOIDR method is divided into 

two parts, namely path planning and trajectory tracking. UAV path planning enables UAVs to 

key away from impediments and tracks the target in an efficient manner. To produce optimal 

paths without impediments collision for UAVs, a novel path planning algorithm based on 3D 

position information and frames of reference using Denavit Hartenberg parameters are initially 

proposed. With this type of design employing Denavit Hartenberg parameters results in the 

optimal path planning therefore reducing response time, and improving accuracy. Second, with 

the path planning results, a combination of TDoA and machine learning technique employing 

Deming Regression function is proposed that with the aid of three distinct characteristics, fine 

tuning the positioning of the drone, enhancing the iteration to ensure optimal search and setting 

the termination condition by reducing the sum of square residuals (SoSR) convergence-

efficient trajectory tracking results are said to be obtained. The testing results have revealed 

that the DH-NOIDR method surpassed the state-of-the-art on the drone dataset in terms of 

response time, accuracy, error and convergence speed. In particular, the response time and 

convergence speed were reduced by 38% and 36% in comparison to earlier work respectively. 

 

1.Introduction  

Not long ago the trajectory tracking applications of UAVs have been extensively utilized in 

innumerable real world applications where human functioning is restricted. With the shooting up 

of data volume and accuracy prerequisites for specific applications, the reliable operations of 

UAV, i.e. minimizing the response time has been identified as one of the most essential factors. 

Efficient trajectory tracking algorithms enable optimal and smooth trajectory with minimum 

response time.  

A joint optimization method considering delay and energy into factor called, Deep 

Deterministic Policy Gradient (DDPG) was introduced in [1]. Initially, the unconstrained 

dynamics with input saturation were included in Deep Reinforcement Learning (DRL) based 

model with the purpose of significantly offloading tasks and efficiently managing allocation of 

resources in a cost efficient manner. Based on the computational cost being a standardized function 

of time delay and energy, UAV put forwards its solutions to End User Devices in such a manner 
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so as to combine trajectory and cost optimization. However, the response time involved in 3D 

trajectory dynamics were not focused. An improved Salp Swarm Algorithm (LASSA) with 

Rapidly-exploring Random Trees (RRT) (LASSA-RRT) considering patrol effectiveness of UAV, 

cost involved in trajectory and its corresponding cost involving power consumption was proposed 

in [2]. In addition the predation process of the salps group was embodies into the random sampling 

that in turn minimized the arbitrary point invalid sampling and conversed the search mechanism 

with the purpose of enhancing global search with minimal sampling time and length. While UAV 

will be pivotal in arriving at the objectives of future 6G networks, numerous proceedings must be 

addressed in order to make the most of its prospective advantages. Such advantages consist of 

computational load, response time and accuracy. A deep reinforcement learning (DRL) based 

UAV method was designed in [3] that by optimizing the joint action therefore optimizing the 

trajectory tracking efficiency in a significant manner. However under the presence of numerous 

uncertainties along with external impediments time delay were said to be identified. To address on 

this issue, a Linear Quadratic Tracker with Integrator model was presented in [4]. With this design 

model and employing linear and angular velocity component, the delay time involved in tracking 

was found to be improved. Yet another method to address uncertainty was handled in [5] 

employing fuzzy adaptive tracking controller method. By employing this controller method the 

constraints were provided in the form of linear matrix inequality that in turn not only reduced the 

prediction error but also ensured high accuracy.Trajectory tracking for real time application has 

long been a demanding issue but crucial element as far as robotics are concerned. Owing to the 

pervasiveness of nonlinear dynamics, and high dimensionality, it is frequently found to be both 

laborious and cumbersome in optimizing the trajectories. A bi-level optimization method 

employing parametric nonlinear programming was proposed in [6] that with the aid of analytical 

gradients ensured computation speed and accuracy to a greater extent. Yet another collaborative 

target tracking method employing alternating direction penalty method was designed in [7]. 

Through the use of this collaborative mechanism ensured optimal performance with regard to time 

and accuracy. Over the past several years, UAVs have manifested assurance for an extensive span 

of real time applications, to name a few being disaster rescue, protection of wildlife and remote 

surveillance. In most of the application to make certain the accomplishment of numerous tasks, 

UAV must traverse in a safe manner between numerous locations to accomplish numerous tasks. 

An optimization method employing proximal policy was presented in [8]. By using this proximal 

policy and generalized deep reinforcement learning in a distributed manner ensured tracking 

accuracy in a significant manner. Despite ensuring accuracy both the method did not concentrate 

on the execution time. To address on this issue, hybrid method employing modified ant colony 

optimization and memory efficient algorithm was proposed in [9]. By using this hybrid method by 

means of first identifying efficient path and then tracking the trajectory resulted in the 

improvement of both accuracy and response time to a greater extent. A refined deep reinforcement 

learning approach focusing on the convergence was introduced in [10]. Here a specialized loss 

function was presented that with the aid of stack ensured accuracy and convergence speed to a 

greater extent. Yet another method focusing on the convergence speed employing novel DRL-

based end to end controller was proposed in [11]. By employing this controller the convergence 

speed was improved to a greater extent. A trajectory planning method towards tracking was 

designed in [12]. Here, with the aid of trajectory mapping network computation speed and accuracy 

was ensured.  

In this study, we introduce a method, called, Denavit Hartenberg and Newton Optimized 

Iterative Deming Regression (DH-NOIDR) trajectory tracking in UAV. The primary goal of this 

work is to reduce the response time in addition to convergence speed by designing an optimal 

method for trajectory tracking in UAV. Many studies have been introduced focusing on 

optimization and machine learning techniques. In contrast, the DH-NOIDR method combines the 
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path planning and trajectory tracking in UAV. First drone data is collected using the drone dataset 

and stored in the form of input vector. Next, with the obtained traffic data, DenavitHartenberg 

UAV path planning is designed to focus on the response time and accuracy. Following which, 

Optimized Iterative Deming Regression algorithm is applied to the obtained optimal path for 

tracking the trajectory with minimal convergence and error.  

1.1 Contributing remarks  

● To design an optimal method for minimizing response time during trajectory tracking in 

UAV, Denavit Hartenberg and Newton Optimized Iterative Deming Regression (DH-

NOIDR) method is introduced on the basis of two distinct processes namely, path planning 

and trajectory tracking.   

● To select optimal path, Denavit Hartenberg UAV path planning is applied to the collected 

drone data and finally the interpolated results are arrived at towards efficient path planning 

with minimal response time and maximum trajectory tracking accuracy.  

● Newton Optimized Iterative Deming Regression-based optimal trajectory tracking is then 

applied for arriving at the accurate trajectory tracking with minimal error.  

● Immense experiments are organized to measure the performance of the DH-NOIDR 

method and state-of-the-art methods. The results achieved shows that our proposed, DH-

NOIDR method provides enhanced performance regarding response time, trajectory 

tracking accuracy, convergence rate, efficiency and trajectory tracking error.  

 

1. Related works 

Autonomous drones are progressively used to accumulating pertinent technical data about 

the Earth. In recent decades, swift technological evolutions have unfastened their prospective as a 

pliable, cost efficient tool ensuring smooth tracking.  

A combination of an adaptive neuro fuzzy logic and particle swarm optimization was 

introduced in [13] to minimize tracking error. The applications of trajectory tracking have been 

extended from medical to healthcare and agriculture. In [14] variable resolution images were 

obtained using coarse grid search for accurate agriculture monitoring. A review of multi-agent 

trajectory tracking employing optimization methods were investigated in [15]. In recent decades 

there are at present big challenges as far as urban environments are concerned. Moreover novelty 

is materials and methods have been approaching owing to the increase in traffic and space 

utilization. However, electrically powered UAVs are an environmentally and time-efficient 

substitute even in remote locations. With the objective of optimizing flight trajectories tailored a 

star algorithm was introduced in [16] to minimizing the energy required for UAV in city 

environments. Autonomous drone detection and tracking employing multi frame deep learning 

technique was introduced in [17]. In [18] focus was made on ensuring good adaptability, speed 

and significant tracking performance employing double critic network and deterministic 

probabilistic gradient model. Yet another energy efficient mechanism using first order taylor series 

expansion was designed in [19]. However, issues were not addressed as far as complex scenarios 

were concerned. To focus on this issue, piecewise potential field was designed in [20] that with 

the aid of lead plane wingman structure ensured accuracy even in the context of complicated 

scenarios.  

Inspired through the aforementioned articles, though some trajectory tracking mechanism in 

UAV ensures accuracy but failed to concentrate on the response time factor. Conversely, despite 

improvement observed regarding overhead incurred in trajectory tracking, two major trajectory 

tracking aspects, like convergence speed and error rate were not focused. To concentrate on all the 

above said four performance metrics, in this work, an optimal method for trajectory tracking in 

UAV focusing on the response time called, DenavitHartenberg and Newton Optimized Iterative 
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Deming Regression (DH-NOIDR) is designed. The elaborate description of the DH-NOIDR 

method is provided in the following sections.  

2. DenavitHartenberg and Newton Optimized Iterative Deming Regression (DH-

NOIDR) trajectory tracking in UAV  

UAVs have become very admired amidst researchers in recent years, owing to their 

potentialities of several applications including meteorological surveillance, monitoring disaster, 

military surveillance and so on. To minimize response time and convergence speed , numerous 

investigations have been carried out for UAVs. Nevertheless, due to nonlinearity traditional 

method may perform poorly under uncertainty. In this work a method called Denavit Hartenberg 

and Newton Optimized Iterative Deming Regression (DH-NOIDR) trajectory tracking in UAV is 

proposed. The DH-NOIDR method is divided  into two parts, and a summary is provided below.  

2.1 Denavit Hartenberg UAV path planning  

The first and foremost objective in the design of trajectory tracking in UAV is to minimizes 

the response time in an optimal manner. To achieve this objective, path planning remains the major 

issues to be handled so that the target can be tracked in an efficient manner. Also, the main purpose 

of path planning remains in minimizing response time and maximizing accuracy involved in 

trajectory tracking in UAV. With this objective in this section a Denavit Hartenberg UAV path 

planning model is designed. Figure 1 shows the structure of Denavit Hartenberg UAV path 

planning model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Structure of DenavitHartenberg UAV path planning model 

Taking 3D position information and frames of reference of UAV as objective function, the path 

planning model is improved to minimize computational cost and time for optimal trajectory 

tracking in UAV. As illustrated in the above figure, initially, 3D position information is achieved 

through the Horizontal Vertical Angular Velocity function. By obtaining this 3D position 

information, the i.e., the horizontal, vertical and angular velocity into consideration the response 

time will gets faster or earlier. Following which Denavit  Hartenberg parameters like origin, scale 

and orientation is considered to model optimal path planning.  By employing the Denavit 

Hartenberg parameters accuracy is also said to be maintained.  

In this work to perform trajectory tracking in UAV in order to minimize the response 

time and maximize the accuracy as said before, a raw drone dataset Unmanned Aerial Vehicle 
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(Rotary Wing Unmanned Aerial Vehicles) obtained from 

https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav is considered as input. The 

drone dataset comprises of 2718 files. Here the overall files in the form of JPG and txt files are 

split into 1359 each to perform trajectory tracking with minimal response time. Also in the text 

file five features ‘𝐹 = {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5}’ (i.e., x width (‘𝑥𝑤’), y width (‘𝑦𝑤’), x height (‘𝑥ℎ’) and 

y height (‘𝑦ℎ’) respectively are present. The input matrix for performing the corresponding task 

of trajectory tracking in UAV is mathematically stated as given below.  

𝐼𝑀 = [𝑆𝐼1𝐹1𝑆𝐼1𝐹2  … 𝑆𝐼1𝐹𝑛𝑆𝐼2𝐹1𝑆𝐼2𝐹2  … 𝑆𝐼2𝐹𝑛  … … … … 𝑆𝐼𝑚𝐹1𝑆𝐼𝑚𝐹2  … 𝑆𝐼𝑚𝐹𝑛] (1) 

 From the above equation (1) provided with the input matrix ‘𝐼𝑀’ the width and height of 

each sample drone images are obtained for further processing. Let us further consider the drone 

(UAV) in a 3-dimensional (3D) environment. The vector ‘𝑝(𝑡)’, ‘𝑞(𝑡)’ and ‘𝑟(𝑡)’ provides with 

the present 3D location or position of the UAV in action and is mathematically formulated as given 

below. 

 𝑝(𝑡) = 𝑏(𝑡)𝑐𝑜𝑠(𝜇(𝑡)), 𝑤ℎ𝑒𝑟𝑒𝑏(𝑡) ∈ [0, 𝑧1]     (2)  

 𝑞(𝑡) = 𝑏(𝑡)𝑠𝑖𝑛(𝜇(𝑡))       (3) 

 𝜇(𝑡) = 𝑐(𝑡), 𝑤ℎ𝑒𝑟𝑒𝑐(𝑡) ∈ [−𝑧2, 𝑧2]      (4)  

𝑟(𝑡) = 𝑎(𝑡), 𝑤ℎ𝑒𝑟𝑒𝑎(𝑡) ∈ [−𝑧3, 𝑧3]       (5) 

From the above equations (2), (3), (4) and (5) the 3D location or position information 𝑝(𝑡)’, 

‘𝑞(𝑡)’ and ‘𝑟(𝑡)’ are obtained based on the cosine and sine angle of the horizontal plane ‘𝜇(𝑡)’, 

horizontal velocity ‘𝑏(𝑡)’, angular velocity ‘𝑐(𝑡)’ and vertical velocity ‘𝑎(𝑡)’ respectively. These 

functional values are said to be varying according to the control inputs ‘[𝑧1, 𝑧2, 𝑧3]’ (i.e., class_ID, 

width and height of each drone sample). Moreover to ensure optimal path planning, Denavit 

Hartenberg parameters are employed wherein with the application of frames of reference (i.e., 

origin, scale and orientation) as set by a reference points. Here, the reference points are regarded 

as a two-dimensional coordinates that not only retains dynamic system characteristics but also 

decreases the amount of input (i.e., coordinates). The coordinate transformations along a serial 

UAV consisting of ‘𝑙’ links form the kinematics equations of the UAV is then represented as given 

below. 
[𝑇] = [𝑏1][𝑎1][𝑏2][𝑎2] … . . [𝑏𝑙][𝑎𝑙]      (6) 

With the above coordinate transformations (6) as illustrated in figure, ‘𝑉𝑒𝑙𝑎’ and ‘𝑉𝑒𝑙𝑏’ 

represent the UAV horizontal and vertical velocities, ‘𝑐’ representing the UAV angular velocity 

and ‘𝜃𝑡’ denoting the heading angle of UAV respectively. Then, the UAV position increment 

alongside the coordinate transformations ‘𝛥𝑡’ is mathematically stated as given below. 

𝛥𝑎 = 𝑉𝑒𝑙𝑎𝛥𝑡𝐶𝑜𝑠𝜃𝑡 − 𝑉𝑒𝑙𝑏𝛥𝑡𝑆𝑖𝑛𝜃𝑡      (7) 

𝛥𝑏 = 𝑉𝑒𝑙𝑎𝛥𝑡𝑆𝑖𝑛𝜃𝑡 − 𝑉𝑒𝑙𝑏𝛥𝑡𝐶𝑜𝑠𝜃𝑡      (8) 

𝛥𝑡 = 𝑐𝛥𝑡        (9) 

From the above equations (7), (8) and (9), the transformation ‘[𝑇]’, the joints connecting 

the links ‘𝑏𝑖’ and ‘𝑎𝑖’ are mathematically stated as given below.  
[𝑏𝑖] = [𝐶𝑜𝑠𝜃𝑖 − 𝑆𝑖𝑛𝜃𝑖00𝑆𝑖𝑛𝜃𝑖𝐶𝑜𝑠𝜃𝑖0000100001]  (10) 

[𝑎𝑖] = [10000𝐶𝑜𝑠𝛼𝑖,𝑖+1 − 𝑆𝑖𝑛𝛼𝑖,𝑖+100𝑆𝑖𝑛𝛼𝑖,𝑖+1𝐶𝑜𝑠𝛼𝑖,𝑖+100001](11) 

From the above formulates (10) and (11), ‘𝜃𝑖’ refers to the rotation around ‘𝑏𝑖’ axis whereas 

‘𝛼𝑖,𝑖+1’ refers to the angle measured around ‘𝑎𝑖’ axis. Finally, by considering the 3D position 

information and frames of reference of UAV into action, optimal path planning towards target 

tracking is said to be achieved.  
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Input: Dataset ‘𝐷𝑆’, Sample images ‘𝑆𝐼 = {𝑆𝐼𝑖, … , 𝑆𝐼𝑚}’  Features ‘𝐹 = {𝐹1, . . , 𝐹𝑛}’ 

Output: Optimal path planning results ‘([𝑏𝑖][𝑎𝑖]) 

Step 1: Initialize ‘𝑚’, ‘𝑛’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Sample images ‘𝑆𝐼’ and Features ‘𝐹’ 

Step 4: Formulate input matrix as given in equation (1) 

Step 5: Formulate 3D location or position of the UAV in action as given in equations (2), (3), 

(4) and (5) 

Step 6: Evaluate coordinate transformations along a serial UAV as given in equation (6) 

Step 7: Evaluate UAV position increment alongside the coordinate transformations as given in 

equations (7), (8) and (9) for ‘𝑙’ links 

Step 8: Obtain the joints connecting the links ‘𝑏𝑖’ and ‘𝑎𝑖’ as given in equations (10) and (11) 

to model path planning  

Step 9: Return optimal path planning results ‘([𝑏𝑖][𝑎𝑖])’ 

Step 10: End for 

Step 11: End  

Algorithm 1 DenavitHartenberg UAV path planning algorithm 

In algorithm 1, with the raw drone dataset obtained as input, initially, the path planning 

mission is modeled in detail by formulating the input matrix for performing the corresponding task 

of trajectory tracking in UAV. Then, the optimal path vector is proposed to optimize UAV 

trajectory through the use of 3D location or position information. As per the target position 

information, with the aid of Denavit Hartenberg parameters ensuring optimal observation in the 

vertical plane, as well as converge to the standoff distance in the horizontal plane, therefore 

corroborating the objective of maximizing the accuracy and minimizing the response time. 

2.2 Newton Optimized Iterative Deming Regression-based optimal trajectory tracking in 

UAV  

With the sophisticated drone technology shifting towards real time, traditional trajectory 

tracking cannot be applied to UAV owing to constrained computational resources and the unstable 

movements of UAVs in dynamic environments, therefore resulting in error and enhancing the 

overhead incurred with a greater number of iterations. To address on this issue, in our work, 

Newton Optimized Iterative Deming Regression-based optimal trajectory tracking in UAV is 

designed that with the aid of three different functionalities achieve the objective. Figure 2 shows 

the structure of Newton Optimized Iterative Deming Regression-based optimal trajectory tracking 

in UAV. 
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Figure 2 Structure of Newton Optimized Iterative Deming Regression-based optimal 

trajectory tracking 

As illustrated in the above figure, to start with fine tuning of particles (i.e., drones) for 

optimization at the next moment are performed in such a manner wherein the initial conditions and 

optimization functions at adjoining time instances are proportionately homogenous. The fine tuned 

optimal solution has a high likelihood of emerging near the optimal solution. Let us consider that 

the location of the ‘𝑖 − 𝑡ℎ’ UAV at time ‘𝑡’ is ‘𝑃𝑜𝑠𝑖(𝑡) = [𝑎𝑖(𝑡), 𝑏𝑖(𝑡), 𝑐𝑖(𝑡)]’. Moreover, Time 

Difference of Arrival (TDoA) factor is employed in our work to calculate the tracked trajectory 

entities in a precise and accurate manner. TDoA is among the mechanisms employed in tracking 

the trajectory by determining the difference between the time-of- arrival ‘ToA’ of radio signals of 

the corresponding sample drones.   

In order to ensure that the optimal trajectory tracking is made TDoA optimization is 

required. Then, let ‘𝑆𝑜𝑙𝑜𝑝𝑡 = 𝑆𝑜𝑙𝑖,𝑗,𝑘(𝑡 + 1) = [𝑆𝑜𝑙𝑖(𝑡 + 1), 𝑆𝑜𝑙𝑗(𝑡 + 1), 𝑆𝑜𝑙𝑘(𝑡 + 1)]’ 

represents the optimal solution. At this time, as long as the ‘𝑖 − 𝑡ℎ’, ‘𝑗 − 𝑡ℎ’ and ‘𝑘 − 𝑡ℎ’ UAV 

move to the optimized position, the optimal positioning of the target is said to be achieved. The 

TDoA positioning is initially formulated according to the primary location and secondary location. 

Then, the gap separating the trajectory to be tracked and the primary location is represented as 
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‘𝐷𝑖𝑠𝑖’ and in a similar manner, the distance between the trajectory to be tracked and the secondary 

location is denoted as ‘𝐷𝑖𝑠𝑗’ and is mathematically stated as given below. 

 𝐷𝑖𝑠𝑖 = √(𝑎 − 𝑎𝑖)2 + (𝑏 − 𝑏𝑖)2 + (𝑐 − 𝑐𝑖)2      (12) 

 𝐷𝑖𝑠𝑗 = √(𝑎 − 𝑎𝑗)
2

+ (𝑏 − 𝑏𝑗)
2

+ (𝑐 − 𝑐𝑗)
2
      (13) 

Taking into considerations the above distance factors (12) and (13) into account the 

optimization process in our work does not require to distribute spatial positions of the initialized 

value in an arbitrary manner within the feasible space so as to ensure acceptable convergence rate. 

Then, the TDoA with respect to each established mode of target positioning is converted into 

Newton’s function for optimization, therefore ensuring faster search for the target trajectory. This 

is mathematically stated as given below.  

𝑓𝑖(𝑎, 𝑏, 𝑐) = √(𝑎 − 𝑎𝑖)2 + (𝑏 − 𝑏𝑖)2 + (𝑐 − 𝑐𝑖)2 − √(𝑎 − 𝑎𝑗)
2

+ (𝑏 − 𝑏𝑗)
2

+ (𝑐 − 𝑐𝑗)
2

 (14) 

The speed update in the above formulate (14) only takes into consideration the local 

optimal and global optimal of this search. At the preliminary stages of the search, both the local 

optimal and the global optimal were found to be relatively poor, however, by employing the 

Newtons function by employing gradient of a function iteratively solve the optimizations issues in 

an accurate manner, therefore minimizing the error to a greater extent. The gradient of a function 

to iteratively solve the optimization issues using Newtons function via Jacobian matrix is 

mathematically stated as given below.  

 𝑓′(𝑎, 𝑏, 𝑐) = [
𝜕𝑓1

𝜕𝑎

𝜕𝑓1

𝜕𝑏

𝜕𝑓1

𝜕𝑐

𝜕𝑓2

𝜕𝑎

𝜕𝑓2

𝜕𝑏

𝜕𝑓2

𝜕𝑐

𝜕𝑓3

𝜕𝑎

𝜕𝑓3

𝜕𝑏

𝜕𝑓3

𝜕𝑐
]      (15) 

With the above target position evaluated using equation (15), line of best fit for two 

dimensional (i.e., coordinate) axis is formulated using Deming Regression with the objective of 

reducing the error factor to a greater extent. Let us assume that the available trajectory position be 

‘(𝑏𝑖, 𝑎𝑖)’ be the measured observations of the true trajectory positional values ‘(𝑏𝑖
′, 𝑎𝑖

′)’ that lie on 

the regression line as given below.  

 𝑏𝑖 = 𝑏𝑖
′ + 𝜀𝑖                       (16) 

 𝑎𝑖 = 𝑎𝑖
′ + 𝜂𝑖         (17) 

From the above equations (16) and (17), the errors ‘𝜀𝑖’ and ‘𝜂𝑖’ are set to be in such a 

manner that ‘𝛿 =
𝜎𝜖

2

𝜎𝜂
2 = 1’. Finally, to minimize the overall response time, the total number of 

iterations has to be made as shorter as possible. Hence, a termination condition employing Sum of 

Squared Residuals (SoSR) is employed in our work that stops the tracking process when the 

trajectory converges, keeping away from succeeding incoherent operations. 

𝑆𝑜𝑆𝑅 = ∑𝑛
𝑖=1 (

𝜖𝑖
2

𝜎𝜖
2 +

𝜂𝑖
2

𝜎𝜂
2) =

1

𝜎𝜂
2 ∑𝑛

𝑖=1 ([𝑏𝑖 − 𝛽0 + 𝛽1𝑎𝑖
′]2 + 𝛿[𝑎𝑖 − 𝑎𝑖

′]2) = (𝑆𝑜𝑆𝑅) 

 (18) 

In this manner, by improving the above three aspects (i.e., fine tuning via TDoA, faster 

search via Newton’s function and enhancing convergence speed by means of deming regression) 

the efficiency of the trajectory tracking in UAV can be improved (i.e., minimizing number of 

iterations required for trajectory tracking).  
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Input: Dataset ‘𝐷𝑆’, Sample images ‘𝑆𝐼 = {𝑆𝐼𝑖, … , 𝑆𝐼𝑚}’  Features ‘𝐹 = {𝐹1, . . , 𝐹𝑛}’ 

Output: Convergence-minimized optimal and accurate trajectory track results  

Step 1: Initialize optimal path planning results ‘([𝑏𝑖][𝑎𝑖])’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Sample images ‘𝑆𝐼’, Features ‘𝐹’ and optimal path planning 

results ‘([𝑏𝑖][𝑎𝑖])’ 

Step 4: Evaluate TDoA positioning derived from the primary location and secondary location 

as provided in equations (12) and (13) 

Step 5: Evaluate TDoA with respect to each established node of target positioning as given in 

equation (14) 

Step 6: Measure gradient of a function using Jacobian matrix as stated in equation (15) 

Step 7: Measure measured observations of the true trajectory positional values using Deming 

Regression function as given in equations (16) and (17) 

Step 8: Evaluate Sum of Squared Residuals (SoSR) to obtain accurate and optimal iterations as 

given in equation (18) 

Step 9: Return trajectory tracked results  

Step 10: End for 

Step 11: End  

Algorithm Newton Optimized Iterative Deming Regression-based optimal trajectory 

tracking 

As stated in the above algorithm with the purpose of tracking the trajectory with minimum 

numbers of iterations (i.e., convergence-efficient manner) and error, first, the optimal path 

planning results are subjected to TDoA positioning on the basis of primary and secondary location 

so as to optimize the drones for detection to be homogenous is vogue. Second, to ensure faster 

search and minimize error with respect to each target positioning trajectory Jacobian matrix via 

Newton function is formulated. Finally, to obtain accurate and optimal iterations Sum of Squared 

Residuals are formulated with which the trajectory tracking results are obtained with minimum 

number of iterations.  

3. Experimental setup 

Proposed DH-NOIDR trajectory tracking in UAV and existing Deep Deterministic Policy 

Gradient (DDPG) [1] and (An improved Salp Swarm Algorithm (LASSA) with Rapidly-exploring 

Random Trees (RRT) (LASSA-RRT) [2] are implemented in Python using the drone dataset taken 

from https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-

uav?select=dataset_xml_format. The optimal method to minimize the response time during 

trajectory tracking in UAV using the proposed and the two current methods are examined by taking 

into considerations four parameters, namely response time, trajectory tracking accuracy, 

convergence speed and trajectory tracking error in relation to a number of sample images.  

4. Performance results  

Performance results of proposed DH-NOIDR method and existing DDPG [1] and LASSA-

RRT [2] are discussed based on certain parameters like, response time, trajectory tracking 

accuracy, trajectory tracking error and convergence speed with respect to distinct numbers of 

sample images.  

4.1 Performance analysis of response time 

Response time refers to the amount of time consumed for a server to respond to a client’s 

request. Measured in milliseconds, the timer begins as soon as theclient submits a request for 

tracking a trajectory and it concludes when the server sends its initial response. Trajectory tracking 

time is different from the response time in a way where the response time takes into consideration 

tracking the corresponding trajectory and sending the response to the to the requested client 

https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav?select=dataset_xml_format
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav?select=dataset_xml_format
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whereas on the other hand, trajectory tracking time only takes into consideration tracking the 

corresponding trajectory and not the response into action. This is mathematically formulated as 

given below.  

 𝑅𝑒𝑠𝑡𝑖𝑚𝑒 = ∑𝑚
𝑖=1 𝑆𝐼𝑖 ∗ 𝑇𝑖𝑚𝑒(𝑇𝑇) ∗ 𝑇𝑖𝑚𝑒(𝑅𝑒𝑠(𝑇𝑇))    (19) 

From the above equation (19), the response time ‘𝑅𝑒𝑠𝑡𝑖𝑚𝑒’ is quantified by taking into 

considerations the number of sample images ‘𝑆𝐼𝑖’, time for trajectory tracking ‘𝑇𝑖𝑚𝑒(𝑇𝑇)’ and 

the time taken in providing the response ‘𝑇𝑖𝑚𝑒(𝑅𝑒𝑠(𝑇𝑇)’. It is measured in terms of milliseconds 

(ms). Table 1 reports the performance of response time with respect to distinct numbers of sample 

images ranging between 120 and 1200. An average of 10 simulation runs were performed which 

indicates that the proposed DH-NOIDR method reduces the response time by 33% and 43% when 

compared to [1] and [2]. 

Table 1 Tabulation of response time using DH-NOIDR, DDPG [1] and LASSA-RRT [2] 

Sample images Response time (ms) 

DH-NOIDR DDPG LASSA-RRT 

120 3.6 5.22 7.56 

240 3.85 6 8 

360 4.25 7.25 8.45 

480 5.5 8 9 

600 6 8.85 10.35 

720 6.55 9.35 11 

840 6 9 10 

960 5.55 8.35 9.25 

1080 5.25 8.15 8.85 

1200 6 8.55 9 

4.2 Performance analysis of trajectory tracking accuracy 

Second, in this section, the trajectory tracking accuracy is measured. The trajectory 

tracking accuracy refers to the accurate tracking of the trajectory being made by the method in 

analysis. This is represented mathematically formulated as shown below.  

 𝑇𝑇𝑎𝑐𝑐 = ∑𝑚
𝑖=1

𝑆𝐼𝑇𝐴

𝑆𝐼𝑖
         (20) 

From equation (20), target tracking accuracy ‘𝑇𝑇𝑎𝑐𝑐’ is measured by taking into 

considerations sample images ‘𝑆𝐼𝑖’ and the sample images tracked accurately ‘𝑆𝐼𝑇𝐴’. It is measured 

in percentage (%).  

 
Figure 3 Graphical representation of trajectory tracking accuracy 

Figure 3 given above illustrates the accuracy involved in the trajectory tracking process in 

UAV.The simulation outcomes presented here demonstrates that the proposed DH-NOIDR 

method improved the accuracy by 6% compared to [1] and 10% compared to [2].  Though a 

downward trend was noted for the first set of 720 samples then saw a steep increase for the other 

remaining set of 480 sample images. Also simulation results indicate better performance with use 
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ofDH-NOIDR upon comparison to [1] and [2]. The trajectory tracking accuracy improvement 

using DH-NOIDR method was owing to the application of Denavit Hartenberg UAV path planning 

algorithm. By using this algorithm both optimal observation in the vertical plane, as well as 

converge to standoff distance in the horizontal plane were ensured, therefore improving the 

trajectory tracking accuracy to a greater extent. Also by employing Denavit Hartenberg parameters 

two-dimensional coordinates is employed that not only retains dynamic system characteristics but 

also reduces the coordinates input to a greater extent.  

4.3 Performance analysis of trajectory tracking error 

Third in this section the trajectory tracking error is measured and validated. While 

performing trajectory tracking certain amount of wrong tracking are made and therefore resulting 

in erroneous information. This is known as trajectory tracking error. This is represented 

mathematically as shown below.  

 𝑇𝑇𝑒𝑟𝑟𝑜𝑟 = ∑𝑚
𝑖=1

𝑆𝐼𝑇𝐼𝐴

𝑆𝐼𝑖
       (21) 

From equation (21), the trajectory tracking error ‘𝑇𝑇𝑒𝑟𝑟𝑜𝑟’ is measured taking into 

considerations the sample images ‘𝑆𝐼𝑖’ and sample images tracked inaccurately ‘𝑆𝐼𝑇𝐼𝐴’. It is 

measured in percentage (%).Table 2 lists performance of target tracking error using three methods. 

The simulation findings presented here suggest thatproposed DH-NOIDR method reduced 

tracking error by 32% and 50% than the [1], [2].  

Table 2 Tabulation of trajectory tracking error  

Sample images Trajectory tracking error (%) 

DH-NOIDR DDPG LASSA-RRT 

120 3.33 5 6.66 

240 3.55 5.25 7 

360 3.85 5.85 7.35 

480 4 6 8 

600 4.15 6.75 8.75 

720 5 7 9 

840 4.35 6.35 8.25 

960 4.15 6.16 8 

1080 3.55 5.25 7.55 

1200 3 4 7 

4.4 Performance analysis of convergence speed 

Finally, convergence speed or the number of iterations required to perform the actual 

trajectory tracking process is detailed. Table 4 lists the performance of convergence speed using 

the three methods.  

Table 3 Tabulation of convergence speed  

Methods Convergence speed (with 

optimization technique) – number 

of iterations 

Convergence speed (without 

optimization technique) – number of 

iterations 

DH-NOIDR 3 5 

DDPG 6 9 

LASSA-

RRT 

8 12 

Table 3 given above lists the convergence speed or the quantity of iterations required to 

track the trajectory in UAV. Measurements were made both the application of optimization 

technique and without the application of optimization technique. First, using optimization 
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technique the convergence speed or the number of iterations using DH-NOIDR method was 

determined to be reduced upon comparison to [1] and [2]. Also simulation results performed with 

1200 sample images also the convergence speed using DH-NOIDR method was better than [1] 

and [2]. The reason was including three aspects like fine tuning via Time Difference of Arrival 

(TDoA) determined the difference between time-of- arrival of the corresponding sample drones.  

In addition, faster search was ensured using Newton’s function via Jacobian matrix and finally, to 

enhance the convergence speed deming regression was applied that in turn ensured overall 

convergence speed upon comparison to [1] and [2] respectively. 

5. Conclusion  

The conventional format of the trajectory tracking in UAV comprises of several latitude 

and longitude data that is irrelevant to optimal path planning and hence these may be neglected. 

For this reason, an optimization model employing Denavit Hartenberg parameters has been used 

to handle this circumstance. For achieving this goal, the 3D location or position information 

ensuring optimal observation in the vertical plane via Denavit Hartenberg parameters. In the initial 

phase, the proposed DH-NOIDR method obtains the drone information from drone dataset and 

finally interpolates them to model computationally efficient optimal path planning for further 

processing, therefore minimizing the response time. In the next phase, trajectory tracking is 

focused by employing Newton Optimized Iterative Deming Regression algorithm. In addition, to 

focus on the trajectory tracking error and convergence speed, Demings regression function is 

applied to analyze dynamic updates and obtain feasible solution and reducing the convergence 

speed in a significant manner. Simulations are performed to validate the proposed DH-NOIDR 

method and the state-of-the-art methods in terms of response time, trajectory tracking accuracy, 

trajectory tracking error and convergence speed. Moreover, the simulation results exhibit that the 

proposed DH-NOIDR method outperforms the conventional state-of-the-art methods in terms of 

numerous performance matrices, therefore providing optimal trajectory tracking with minimal 

response time. From the analysis and validation, the proposed DH-NOIDR method seems 

promising results and outperforms its convention counterpart. 
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