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ABSTRACT:
Uﬁri!rmai[grsl al Unmanned Aerial Vehicles (UAVs) also referred to as drones are competent of performing
vVehicles mission related operations in an autonomous fashion. For the purpose of more accurately
: ) tracking designated trajectories with minimal response time and convergence speed, humerous
Trajectory . N . .
- .. trajectory tracking in UAV have been proposed. Progresses in computer and electronic
Tracking, Denavit . S . . . .
Hartenberg technolog_les _hav_e_smoothen(_ed eyolutlon in automation contro_l and mtelhgt_ent algorlthm_s an_d
Newton ' also certain significant contributions have been made into action on the trajectory tracking in
i UAV. In this work a method called, Denavit Hartenberg and Newton Optimized Iterative
pum " Deming Regression (DH-NOIDR) trajectory tracking in UAV with the objective of minimizing
Iterative, Deming : . N )
Regression the response time and convergence speed is proposed. The DH-NOIDR method is divided into

two parts, namely path planning and trajectory tracking. UAV path planning enables UAVs to
key away from impediments and tracks the target in an efficient manner. To produce optimal
paths without impediments collision for UAVS, a novel path planning algorithm based on 3D
position information and frames of reference using Denavit Hartenberg parameters are initially
proposed. With this type of design employing Denavit Hartenberg parameters results in the
optimal path planning therefore reducing response time, and improving accuracy. Second, with
the path planning results, a combination of TDoA and machine learning technique employing
Deming Regression function is proposed that with the aid of three distinct characteristics, fine
tuning the positioning of the drone, enhancing the iteration to ensure optimal search and setting
the termination condition by reducing the sum of square residuals (SoSR) convergence-
efficient trajectory tracking results are said to be obtained. The testing results have revealed
that the DH-NOIDR method surpassed the state-of-the-art on the drone dataset in terms of
response time, accuracy, error and convergence speed. In particular, the response time and
convergence speed were reduced by 38% and 36% in comparison to earlier work respectively.

1.Introduction

Not long ago the trajectory tracking applications of UAVs have been extensively utilized in
innumerable real world applications where human functioning is restricted. With the shooting up
of data volume and accuracy prerequisites for specific applications, the reliable operations of
UAV, i.e. minimizing the response time has been identified as one of the most essential factors.
Efficient trajectory tracking algorithms enable optimal and smooth trajectory with minimum
response time.

A joint optimization method considering delay and energy into factor called, Deep
Deterministic Policy Gradient (DDPG) was introduced in [1]. Initially, the unconstrained
dynamics with input saturation were included in Deep Reinforcement Learning (DRL) based
model with the purpose of significantly offloading tasks and efficiently managing allocation of
resources in a cost efficient manner. Based on the computational cost being a standardized function
of time delay and energy, UAV put forwards its solutions to End User Devices in such a manner
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S0 as to combine trajectory and cost optimization. However, the response time involved in 3D
trajectory dynamics were not focused. An improved Salp Swarm Algorithm (LASSA) with
Rapidly-exploring Random Trees (RRT) (LASSA-RRT) considering patrol effectiveness of UAV,
cost involved in trajectory and its corresponding cost involving power consumption was proposed
in [2]. In addition the predation process of the salps group was embodies into the random sampling
that in turn minimized the arbitrary point invalid sampling and conversed the search mechanism
with the purpose of enhancing global search with minimal sampling time and length. While UAV
will be pivotal in arriving at the objectives of future 6G networks, numerous proceedings must be
addressed in order to make the most of its prospective advantages. Such advantages consist of
computational load, response time and accuracy. A deep reinforcement learning (DRL) based
UAV method was designed in [3] that by optimizing the joint action therefore optimizing the
trajectory tracking efficiency in a significant manner. However under the presence of numerous
uncertainties along with external impediments time delay were said to be identified. To address on
this issue, a Linear Quadratic Tracker with Integrator model was presented in [4]. With this design
model and employing linear and angular velocity component, the delay time involved in tracking
was found to be improved. Yet another method to address uncertainty was handled in [5]
employing fuzzy adaptive tracking controller method. By employing this controller method the
constraints were provided in the form of linear matrix inequality that in turn not only reduced the
prediction error but also ensured high accuracy.Trajectory tracking for real time application has
long been a demanding issue but crucial element as far as robotics are concerned. Owing to the
pervasiveness of nonlinear dynamics, and high dimensionality, it is frequently found to be both
laborious and cumbersome in optimizing the trajectories. A bi-level optimization method
employing parametric nonlinear programming was proposed in [6] that with the aid of analytical
gradients ensured computation speed and accuracy to a greater extent. Yet another collaborative
target tracking method employing alternating direction penalty method was designed in [7].
Through the use of this collaborative mechanism ensured optimal performance with regard to time
and accuracy. Over the past several years, UAVs have manifested assurance for an extensive span
of real time applications, to name a few being disaster rescue, protection of wildlife and remote
surveillance. In most of the application to make certain the accomplishment of numerous tasks,
UAV must traverse in a safe manner between numerous locations to accomplish numerous tasks.
An optimization method employing proximal policy was presented in [8]. By using this proximal
policy and generalized deep reinforcement learning in a distributed manner ensured tracking
accuracy in a significant manner. Despite ensuring accuracy both the method did not concentrate
on the execution time. To address on this issue, hybrid method employing modified ant colony
optimization and memory efficient algorithm was proposed in [9]. By using this hybrid method by
means of first identifying efficient path and then tracking the trajectory resulted in the
improvement of both accuracy and response time to a greater extent. A refined deep reinforcement
learning approach focusing on the convergence was introduced in [10]. Here a specialized loss
function was presented that with the aid of stack ensured accuracy and convergence speed to a
greater extent. Yet another method focusing on the convergence speed employing novel DRL-
based end to end controller was proposed in [11]. By employing this controller the convergence
speed was improved to a greater extent. A trajectory planning method towards tracking was
designed in [12]. Here, with the aid of trajectory mapping network computation speed and accuracy
was ensured.

In this study, we introduce a method, called, Denavit Hartenberg and Newton Optimized
Iterative Deming Regression (DH-NOIDR) trajectory tracking in UAV. The primary goal of this
work is to reduce the response time in addition to convergence speed by designing an optimal
method for trajectory tracking in UAV. Many studies have been introduced focusing on
optimization and machine learning techniques. In contrast, the DH-NOIDR method combines the
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path planning and trajectory tracking in UAV. First drone data is collected using the drone dataset
and stored in the form of input vector. Next, with the obtained traffic data, DenavitHartenberg
UAYV path planning is designed to focus on the response time and accuracy. Following which,
Optimized Iterative Deming Regression algorithm is applied to the obtained optimal path for
tracking the trajectory with minimal convergence and error.

1.1 Contributing remarks

@® To design an optimal method for minimizing response time during trajectory tracking in
UAV, Denavit Hartenberg and Newton Optimized Iterative Deming Regression (DH-
NOIDR) method is introduced on the basis of two distinct processes namely, path planning
and trajectory tracking.

@ To select optimal path, Denavit Hartenberg UAV path planning is applied to the collected
drone data and finally the interpolated results are arrived at towards efficient path planning
with minimal response time and maximum trajectory tracking accuracy.

® Newton Optimized Iterative Deming Regression-based optimal trajectory tracking is then
applied for arriving at the accurate trajectory tracking with minimal error.

® Immense experiments are organized to measure the performance of the DH-NOIDR
method and state-of-the-art methods. The results achieved shows that our proposed, DH-
NOIDR method provides enhanced performance regarding response time, trajectory
tracking accuracy, convergence rate, efficiency and trajectory tracking error.

1. Related works

Autonomous drones are progressively used to accumulating pertinent technical data about
the Earth. In recent decades, swift technological evolutions have unfastened their prospective as a
pliable, cost efficient tool ensuring smooth tracking.

A combination of an adaptive neuro fuzzy logic and particle swarm optimization was
introduced in [13] to minimize tracking error. The applications of trajectory tracking have been
extended from medical to healthcare and agriculture. In [14] variable resolution images were
obtained using coarse grid search for accurate agriculture monitoring. A review of multi-agent
trajectory tracking employing optimization methods were investigated in [15]. In recent decades
there are at present big challenges as far as urban environments are concerned. Moreover novelty
is materials and methods have been approaching owing to the increase in traffic and space
utilization. However, electrically powered UAVs are an environmentally and time-efficient
substitute even in remote locations. With the objective of optimizing flight trajectories tailored a
star algorithm was introduced in [16] to minimizing the energy required for UAV in city
environments. Autonomous drone detection and tracking employing multi frame deep learning
technique was introduced in [17]. In [18] focus was made on ensuring good adaptability, speed
and significant tracking performance employing double critic network and deterministic
probabilistic gradient model. Yet another energy efficient mechanism using first order taylor series
expansion was designed in [19]. However, issues were not addressed as far as complex scenarios
were concerned. To focus on this issue, piecewise potential field was designed in [20] that with
the aid of lead plane wingman structure ensured accuracy even in the context of complicated
scenarios.

Inspired through the aforementioned articles, though some trajectory tracking mechanism in
UAYV ensures accuracy but failed to concentrate on the response time factor. Conversely, despite
improvement observed regarding overhead incurred in trajectory tracking, two major trajectory
tracking aspects, like convergence speed and error rate were not focused. To concentrate on all the
above said four performance metrics, in this work, an optimal method for trajectory tracking in
UAYV focusing on the response time called, DenavitHartenberg and Newton Optimized Iterative
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Deming Regression (DH-NOIDR) is designed. The elaborate description of the DH-NOIDR
method is provided in the following sections.
2. DenavitHartenberg and Newton Optimized Iterative Deming Regression (DH-
NOIDR) trajectory tracking in UAV
UAVs have become very admired amidst researchers in recent years, owing to their
potentialities of several applications including meteorological surveillance, monitoring disaster,
military surveillance and so on. To minimize response time and convergence speed , numerous
investigations have been carried out for UAVs. Nevertheless, due to nonlinearity traditional
method may perform poorly under uncertainty. In this work a method called Denavit Hartenberg
and Newton Optimized Iterative Deming Regression (DH-NOIDR) trajectory tracking in UAV is
proposed. The DH-NOIDR method is divided into two parts, and a summary is provided below.
2.1 Denavit Hartenberg UAV path planning
The first and foremost objective in the design of trajectory tracking in UAV is to minimizes
the response time in an optimal manner. To achieve this objective, path planning remains the major
issues to be handled so that the target can be tracked in an efficient manner. Also, the main purpose
of path planning remains in minimizing response time and maximizing accuracy involved in
trajectory tracking in UAV. With this objective in this section a Denavit Hartenberg UAV path
planning model i laned. Figure 1 shows the structure of Denavit Hartenberg UAV path
planni

Drone dataset (UAV)

Horizontal Vertical Angular Velocity function

_/

Verticalvelocity

Apply Denavit Hartgnberg parameters

/ Q)ptimal path fSIanning )

Vel,

Figure 1 Structure of DenavitHartenberg UAV path planning model
Taking 3D position information and frames of reference of UAV as objective function, the path
planning model is improved to minimize computational cost and time for optimal trajectory
tracking in UAV. As illustrated in the above figure, initially, 3D position information is achieved
through the Horizontal Vertical Angular Velocity function. By obtaining this 3D position
information, the i.e., the horizontal, vertical and angular velocity into consideration the response
time will gets faster or earlier. Following which Denavit Hartenberg parameters like origin, scale
and orientation is considered to model optimal path planning. By employing the Denavit
Hartenberg parameters accuracy is also said to be maintained.

In this work to perform trajectory tracking in UAV in order to minimize the response
time and maximize the accuracy as said before, a raw drone dataset Unmanned Aerial Vehicle
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(Rotary Wing Unmanned Aerial Vehicles) obtained from
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav is considered as input. The
drone dataset comprises of 2718 files. Here the overall files in the form of JPG and txt files are
split into 1359 each to perform trajectory tracking with minimal response time. Also in the text
file five features ‘F = {F,, F,, F5, Fy, Fs}’ (i.e., x width (‘x,,”), y width (‘y,,”), x height (‘x};”) and
y height (‘y,,’) respectively are present. The input matrix for performing the corresponding task
of trajectory tracking in UAV is mathematically stated as given below.
IM = [SL,F,SLiF, ... SLE,SLF,SI,Fy ... S,Ey . e oo . SLyFySIF, ... SILE,] (1)
From the above equation (1) provided with the input matrix ‘/M’ the width and height of
each sample drone images are obtained for further processing. Let us further consider the drone
(UAV) in a 3-dimensional (3D) environment. The vector ‘p(t)’, ‘q(t)’ and ‘r(t)’ provides with
the present 3D location or position of the UAV in action and is mathematically formulated as given
below.

p(t) = b(t)cos(u(t)),whereb(t) € [0, z] 2
q(t) = b()sin(u(®)) 3)
u(t) = c(t),wherec(t) € [—z,, z,] 4)
r(t) = a(t), wherea(t) € [—z3, z3] (5)

From the above equations (2), (3), (4) and (5) the 3D location or position information p(t)’,
‘q(t)’ and ‘r(t)’ are obtained based on the cosine and sine angle of the horizontal plane ‘u(t)’,
horizontal velocity ‘b(t)’, angular velocity ‘c(t)’ and vertical velocity ‘a(t)’ respectively. These
functional values are said to be varying according to the control inputs ‘[z,, z,, z3]’ (i.e., class_ID,
width and height of each drone sample). Moreover to ensure optimal path planning, Denavit
Hartenberg parameters are employed wherein with the application of frames of reference (i.e.,
origin, scale and orientation) as set by a reference points. Here, the reference points are regarded
as a two-dimensional coordinates that not only retains dynamic system characteristics but also
decreases the amount of input (i.e., coordinates). The coordinate transformations along a serial
UAV consisting of ‘I’ links form the kinematics equations of the UAV is then represented as given
below.

[T] = [bs][ai]lb][a:] ... [bi][a/] (6)

With the above coordinate transformations (6) as illustrated in figure, ‘Vel,’ and ‘Vel,’
represent the UAV horizontal and vertical velocities, ‘c’ representing the UAV angular velocity
and ‘0, denoting the heading angle of UAV respectively. Then, the UAV position increment
alongside the coordinate transformations ‘At’ is mathematically stated as given below.

Aa = Vel AtCos6, — Vel, AtSin0, @)
Ab = Vel AtSin8, — Vel,AtCos0; (8)
At = cAt 9

From the above equations (7), (8) and (9), the transformation ‘[T]’, the joints connecting
the links ‘b;” and ‘a;’ are mathematically stated as given below.

[b;] = [CosO; — SinB;00Sinb;CosH;0000100001] (10)

[a;] = [10000Cosa; ;41 — Sina;;1100Sina; ;41 Cosa;;4,00001](11)

From the above formulates (10) and (11), “8;’ refers to the rotation around ‘b;’ axis whereas
‘a; 41 refers to the angle measured around ‘a;’ axis. Finally, by considering the 3D position
information and frames of reference of UAV into action, optimal path planning towards target
tracking is said to be achieved.

1241 |Page


https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav

DENAVIT HARTENBERG NEWTON OPTIMIZED ITERATIVE DEMING REGRESSION BASED
gEﬁ’“ OPTIMAL TRAJECTORY TRACKING
@ SEEJPH Volume XXVI, 2025, ISSN: 2197-5248; Posted:04-01-2025

Input: Dataset ‘DS’, Sample images ‘SI = {SI;, ..., SI,,}’ Features ‘F = {F;,.., E,}

Output: Optimal path planning results ‘([b;][a;])

Step 1: Initialize ‘m’, ‘n’

Step 2: Begin

Step 3: For each Dataset ‘DS’ with Sample images ‘SI’ and Features ‘F’

Step 4: Formulate input matrix as given in equation (1)

Step 5: Formulate 3D location or position of the UAV in action as given in equations (2), (3),
(4) and (5)

Step 6: Evaluate coordinate transformations along a serial UAV as given in equation (6)

Step 7: Evaluate UAV position increment alongside the coordinate transformations as given in
equations (7), (8) and (9) for ‘I’ links

Step 8: Obtain the joints connecting the links ‘b;’ and ‘a;’ as given in equations (10) and (11)
to model path planning

Step 9: Return optimal path planning results ‘([b;][a;])’

Step 10: End for

Step 11: End

Algorithm 1 DenavitHartenberg UAV path planning algorithm

In algorithm 1, with the raw drone dataset obtained as input, initially, the path planning
mission is modeled in detail by formulating the input matrix for performing the corresponding task
of trajectory tracking in UAV. Then, the optimal path vector is proposed to optimize UAV
trajectory through the use of 3D location or position information. As per the target position
information, with the aid of Denavit Hartenberg parameters ensuring optimal observation in the
vertical plane, as well as converge to the standoff distance in the horizontal plane, therefore
corroborating the objective of maximizing the accuracy and minimizing the response time.

2.2 Newton Optimized Iterative Deming Regression-based optimal trajectory tracking in

UAV

With the sophisticated drone technology shifting towards real time, traditional trajectory
tracking cannot be applied to UAV owing to constrained computational resources and the unstable
movements of UAVSs in dynamic environments, therefore resulting in error and enhancing the
overhead incurred with a greater number of iterations. To address on this issue, in our work,
Newton Optimized Iterative Deming Regression-based optimal trajectory tracking in UAV is
designed that with the aid of three different functionalities achieve the objective. Figure 2 shows
the structure of Newton Optimized Iterative Deming Regression-based optimal trajectory tracking
in UAV.
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Drone dataset (UAV)
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— Fine tuning using Time Difference of Arrival
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Deming Regression

@vergence-efﬁcient accurate trajectory trackiD

Figure 2 Structure of Newton Optimized Iterative Deming Regression-based optimal
trajectory tracking

As illustrated in the above figure, to start with fine tuning of particles (i.e., drones) for
optimization at the next moment are performed in such a manner wherein the initial conditions and
optimization functions at adjoining time instances are proportionately homogenous. The fine tuned
optimal solution has a high likelihood of emerging near the optimal solution. Let us consider that
the location of the ‘i — th’ UAV at time ‘t’ is ‘Pos;(t) = [a;(t), b;(t), c;(t)]’. Moreover, Time
Difference of Arrival (TDoA) factor is employed in our work to calculate the tracked trajectory
entities in a precise and accurate manner. TDoA is among the mechanisms employed in tracking
the trajectory by determining the difference between the time-of- arrival ‘ToA’ of radio signals of
the corresponding sample drones.

In order to ensure that the optimal trajectory tracking is made TDoA optimization is
required.  Then, let  ‘Soly,e = Sol;j,(t+1) = [Soll-(t + 1), Sol;(t + 1), Sol, (t + 1)]’
represents the optimal solution. At this time, as long as the ‘i — th’, ‘j — th’ and ‘k — th’ UAV
move to the optimized position, the optimal positioning of the target is said to be achieved. The
TDoA positioning is initially formulated according to the primary location and secondary location.
Then, the gap separating the trajectory to be tracked and the primary location is represented as
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‘Dis;’ and in a similar manner, the distance between the trajectory to be tracked and the secondary
location is denoted as ‘Dis;’ and is mathematically stated as given below.

DiSi = \/(a - ai)z + (b - bi)Z + (C - Ci)z (12)

pis; = (a—a)’ +(b-b)" +(c - ) 13)

Taking into considerations the above distance factors (12) and (13) into account the
optimization process in our work does not require to distribute spatial positions of the initialized
value in an arbitrary manner within the feasible space so as to ensure acceptable convergence rate.
Then, the TDoA with respect to each established mode of target positioning is converted into
Newton’s function for optimization, therefore ensuring faster search for the target trajectory. This
is mathematically stated as given below.

fila,b,c) =+/(a—a)?+ (b —b)*+ (c — ¢;)? — \/(a - aj)z +(b- bj)z + (c - cj)z

(14)

The speed update in the above formulate (14) only takes into consideration the local
optimal and global optimal of this search. At the preliminary stages of the search, both the local
optimal and the global optimal were found to be relatively poor, however, by employing the
Newtons function by employing gradient of a function iteratively solve the optimizations issues in
an accurate manner, therefore minimizing the error to a greater extent. The gradient of a function
to iteratively solve the optimization issues using Newtons function via Jacobian matrix is
mathematically stated as given below.

, 0f1 0fy 0f1 0f> Of; 0f, 0fs Of3 0
flab,e) = G S S o S e o o) (15)
With the above target position evaluated using equation (15), line of best fit for two

dimensional (i.e., coordinate) axis is formulated using Deming Regression with the objective of
reducing the error factor to a greater extent. Let us assume that the available trajectory position be
‘(b;, a;)’ be the measured observations of the true trajectory positional values ‘(b;, a;)’ that lie on
the regression line as given below.

bi = bll + & (16)

a; = a; +1); 17)

From the above equations (16) and (17), the errors ‘g;” and ‘n;’ are set to be in such a
aé

manner that ‘6 = poi 1’. Finally, to minimize the overall response time, the total number of

n
iterations has to be made as shorter as possible. Hence, a termination condition employing Sum of
Squared Residuals (SoSR) is employed in our work that stops the tracking process when the
trajectory converges, keeping away from succeeding incoherent operations.

2 2 1 , ,
SoSR =%k, (S+I)=ZTE, (b= fo+ Fuail® +8la - i) = (SoSR)

(18)

In this manner, by improving the above three aspects (i.e., fine tuning via TDoA, faster
search via Newton’s function and enhancing convergence speed by means of deming regression)
the efficiency of the trajectory tracking in UAV can be improved (i.e., minimizing number of
iterations required for trajectory tracking).
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Input: Dataset ‘DS’, Sample images ‘SI = {SI;, ..., SI,,}’ Features ‘F = {F;,.., E,}
Output: Convergence-minimized optimal and accurate trajectory track results
Step 1: Initialize optimal path planning results ‘([b;][a;])’
Step 2: Begin
Step 3: For each Dataset ‘DS’ with Sample images ‘SI’, Features ‘F’ and optimal path planning
results ‘([b;][a;])’
Step 4: Evaluate TDoA positioning derived from the primary location and secondary location
as provided in equations (12) and (13)
Step 5: Evaluate TDoA with respect to each established node of target positioning as given in
equation (14)
Step 6: Measure gradient of a function using Jacobian matrix as stated in equation (15)
Step 7: Measure measured observations of the true trajectory positional values using Deming
Regression function as given in equations (16) and (17)
Step 8: Evaluate Sum of Squared Residuals (SOSR) to obtain accurate and optimal iterations as
given in equation (18)
Step 9: Return trajectory tracked results
Step 10: End for
Step 11: End
Algorithm Newton Optimized Iterative Deming Regression-based optimal trajectory
tracking
As stated in the above algorithm with the purpose of tracking the trajectory with minimum
numbers of iterations (i.e., convergence-efficient manner) and error, first, the optimal path
planning results are subjected to TDoA positioning on the basis of primary and secondary location
S0 as to optimize the drones for detection to be homogenous is vogue. Second, to ensure faster
search and minimize error with respect to each target positioning trajectory Jacobian matrix via
Newton function is formulated. Finally, to obtain accurate and optimal iterations Sum of Squared
Residuals are formulated with which the trajectory tracking results are obtained with minimum
number of iterations.
3. Experimental setup
Proposed DH-NOIDR trajectory tracking in UAV and existing Deep Deterministic Policy
Gradient (DDPG) [1] and (An improved Salp Swarm Algorithm (LASSA) with Rapidly-exploring
Random Trees (RRT) (LASSA-RRT) [2] are implemented in Python using the drone dataset taken
from https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-
uav?select=dataset xml_format. The optimal method to minimize the response time during
trajectory tracking in UAV using the proposed and the two current methods are examined by taking
into considerations four parameters, namely response time, trajectory tracking accuracy,
convergence speed and trajectory tracking error in relation to a number of sample images.
4. Performance results
Performance results of proposed DH-NOIDR method and existing DDPG [1] and LASSA-
RRT [2] are discussed based on certain parameters like, response time, trajectory tracking
accuracy, trajectory tracking error and convergence speed with respect to distinct numbers of
sample images.
4.1 Performance analysis of response time
Response time refers to the amount of time consumed for a server to respond to a client’s
request. Measured in milliseconds, the timer begins as soon as theclient submits a request for
tracking a trajectory and it concludes when the server sends its initial response. Trajectory tracking
time is different from the response time in a way where the response time takes into consideration
tracking the corresponding trajectory and sending the response to the to the requested client
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whereas on the other hand, trajectory tracking time only takes into consideration tracking the
corresponding trajectory and not the response into action. This is mathematically formulated as
given below.
ReSiime = 2iny Sl * Time(TT) * Time(Res(TT)) (19)
From the above equation (19), the response time ‘Res;m.’ is quantified by taking into
considerations the number of sample images ‘SI;’, time for trajectory tracking ‘Time(TT)’ and
the time taken in providing the response ‘Time(Res(TT)’. It is measured in terms of milliseconds
(ms). Table 1 reports the performance of response time with respect to distinct numbers of sample
images ranging between 120 and 1200. An average of 10 simulation runs were performed which
indicates that the proposed DH-NOIDR method reduces the response time by 33% and 43% when
compared to [1] and [2].
Table 1 Tabulation of response time using DH-NOIDR, DDPG [1] and LASSA-RRT [2]

Sample images Response time (ms)

DH-NOIDR DDPG LASSA-RRT
120 3.6 5.22 7.56
240 3.85 6 8
360 4.25 7.25 8.45
480 5.5 8 9
600 6 8.85 10.35
720 6.55 9.35 11
840 6 9 10
960 5.55 8.35 9.25
1080 5.25 8.15 8.85
1200 6 8.55 9

4.2 Performance analysis of trajectory tracking accuracy
Second, in this section, the trajectory tracking accuracy is measured. The trajectory
tracking accuracy refers to the accurate tracking of the trajectory being made by the method in
analysis. This is represented mathematically formulated as shown below.

SI
TTyee = ?;1 %iA (20)

From equation (20), target tracking accuracy ‘TT,.. 1is measured by taking into
considerations sample images ‘SI;” and the sample images tracked accurately ‘SIy,’. It is measured
in percentage (%).

Sample images Ve Trajectory tracking sccursc v (%)
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Figure 3 Graphical representation of trajectory tracking accuracy

Figure 3 given above illustrates the accuracy involved in the trajectory tracking process in
UAV.The simulation outcomes presented here demonstrates that the proposed DH-NOIDR
method improved the accuracy by 6% compared to [1] and 10% compared to [2]. Though a
downward trend was noted for the first set of 720 samples then saw a steep increase for the other
remaining set of 480 sample images. Also simulation results indicate better performance with use
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ofDH-NOIDR upon comparison to [1] and [2]. The trajectory tracking accuracy improvement
using DH-NOIDR method was owing to the application of Denavit Hartenberg UAV path planning
algorithm. By using this algorithm both optimal observation in the vertical plane, as well as
converge to standoff distance in the horizontal plane were ensured, therefore improving the
trajectory tracking accuracy to a greater extent. Also by employing Denavit Hartenberg parameters
two-dimensional coordinates is employed that not only retains dynamic system characteristics but
also reduces the coordinates input to a greater extent.
4.3 Performance analysis of trajectory tracking error

Third in this section the trajectory tracking error is measured and validated. While
performing trajectory tracking certain amount of wrong tracking are made and therefore resulting
in erroneous information. This is known as trajectory tracking error. This is represented
mathematically as shown below.

SI
TTerror = ?;1 #IiA (21)

From equation (21), the trajectory tracking error ‘TT,..,  is measured taking into
considerations the sample images ‘SI;’ and sample images tracked inaccurately ‘Slr;,’°. It is
measured in percentage (%).Table 2 lists performance of target tracking error using three methods.
The simulation findings presented here suggest thatproposed DH-NOIDR method reduced
tracking error by 32% and 50% than the [1], [2].

Table 2 Tabulation of trajectory tracking error

Sample images Trajectory tracking error (%o)
DH-NOIDR DDPG LASSA-RRT

120 3.33 5 6.66
240 3.55 5.25 7
360 3.85 5.85 7.35
480 4 6 8
600 4.15 6.75 8.75
720 5 7 9
840 4.35 6.35 8.25
960 4.15 6.16 8
1080 3.55 5.25 7.55
1200 3 4 7

4.4 Performance analysis of convergence speed
Finally, convergence speed or the number of iterations required to perform the actual
trajectory tracking process is detailed. Table 4 lists the performance of convergence speed using
the three methods.
Table 3 Tabulation of convergence speed

Methods Convergence speed (with | Convergence speed (without
optimization technique) — number | optimization technique) — number of
of iterations iterations

DH-NOIDR |3 5

DDPG 6 9

LASSA- 8 12

RRT

Table 3 given above lists the convergence speed or the quantity of iterations required to
track the trajectory in UAV. Measurements were made both the application of optimization
technique and without the application of optimization technique. First, using optimization
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technique the convergence speed or the number of iterations using DH-NOIDR method was
determined to be reduced upon comparison to [1] and [2]. Also simulation results performed with
1200 sample images also the convergence speed using DH-NOIDR method was better than [1]
and [2]. The reason was including three aspects like fine tuning via Time Difference of Arrival
(TDoA) determined the difference between time-of- arrival of the corresponding sample drones.
In addition, faster search was ensured using Newton’s function via Jacobian matrix and finally, to
enhance the convergence speed deming regression was applied that in turn ensured overall
convergence speed upon comparison to [1] and [2] respectively.
5. Conclusion

The conventional format of the trajectory tracking in UAV comprises of several latitude
and longitude data that is irrelevant to optimal path planning and hence these may be neglected.
For this reason, an optimization model employing Denavit Hartenberg parameters has been used
to handle this circumstance. For achieving this goal, the 3D location or position information
ensuring optimal observation in the vertical plane via Denavit Hartenberg parameters. In the initial
phase, the proposed DH-NOIDR method obtains the drone information from drone dataset and
finally interpolates them to model computationally efficient optimal path planning for further
processing, therefore minimizing the response time. In the next phase, trajectory tracking is
focused by employing Newton Optimized Iterative Deming Regression algorithm. In addition, to
focus on the trajectory tracking error and convergence speed, Demings regression function is
applied to analyze dynamic updates and obtain feasible solution and reducing the convergence
speed in a significant manner. Simulations are performed to validate the proposed DH-NOIDR
method and the state-of-the-art methods in terms of response time, trajectory tracking accuracy,
trajectory tracking error and convergence speed. Moreover, the simulation results exhibit that the
proposed DH-NOIDR method outperforms the conventional state-of-the-art methods in terms of
numerous performance matrices, therefore providing optimal trajectory tracking with minimal
response time. From the analysis and validation, the proposed DH-NOIDR method seems
promising results and outperforms its convention counterpart.
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