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ABSTRACT 

The liver is a vital organ in the human body. The prevalence of liver problems has 

surged worldwide at an unprecedented rate as a result of unhealthy lifestyles and 

excessive alcohol usage. Chronic liver disease is a leading cause of mortality that 

impacts a significant section of the global population. Obesity, undiscovered hepatitis 

infection, alcohol misuse, hemoptysis or hematemesis, renal or hepatic failure, jaundice, 

hepatic encephalopathy, and various other conditions contribute to this condition. 

Therefore, prompt action is necessary to diagnose the ailment before it becomes critical. 

The assigned task examines several deep-learning models for gathering data from 

exhaled breath samples. The model's performance is evaluated based on various criteria, 

including accuracy, specificity, sensitivity, precision, recall, and F1-Score. These 

factors are examined using the training dataset to determine the training and testing loss. 

The proposed work does a comprehensive experimental examination of these 

parameters, exploring their impact on accuracy and loss function. 
Additionally, it evaluates the appropriateness of these models. The deep learning models utilized in the 

recommended work are BiLSTM, LSTM, GRU, and 1D-CNN. The dataset is divided into 80% for 

training and 20% for testing, using 24 liver patient samples and 15 healthy person samples. Of the several 

algorithms, the BiLSTM and 1D-CNN had superior performance in predicting liver illness, achieving 

accuracies of 0.99 and 0.98, respectively. In addition, these two algorithms demonstrated superior 

precision, F1-Score, recall, specificity, and sensitivity. Therefore, these two algorithms are regarded as 

the superior methods for early detection of liver disease.. 

 

 

1 INTRODUCTION 

 

Hepatitis, fibrosis, and cirrhosis are just a few of the many disorders that can impact the body's 

principal organ, the liver, which controls metabolism and protein absorption [1]. About 2 million people 

die every year from liver disease, making it one of the leading causes of death worldwide [2]. Limiting the 

incidence of liver disease and related fatalities requires practical prevention efforts, such as limiting 

alcohol intake, promoting healthy lifestyles, and vaccination against viral hepatitis [3]. Liver function tests 

and imaging approaches are also used for liver diagnosis. However, the blood test requires conventional 

labs and imaging techniques, which have other intrinsic challenges connected to contrast, such as more 

expensive equipment, operator experience, and other problems [4].  
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By detecting specific proteins and liver enzymes in a blood sample, a liver function test is the initial 

diagnostic tool for a range of liver illnesses. Fetor hepaticus, the classic musty breath scent, was once one 

of the most essential clinical symptoms doctors looked for when diagnosing liver insufficiency [5]. The 

expelled breath already contained thousands of volatile organic compounds. Exhaled breath contains 

nitrogen, oxygen, carbon dioxide, and hundreds of volatile organic and inorganic chemicals. These 

volatile organic compounds might originate from either internal or external sources. The content or profile 

of volatile organic compounds (VOCs) is regulated by many metabolic causes [6, 7]. Since the levels of 

VOCs in the breath of healthy individuals and patients with specific diseases differ, these VOCs can be 

used as biomarkers for certain disorders [8]. Using breath biomarkers has many benefits, one of which is 

that it is an easy, painless, and repeatable process. Using breath biomarkers to diagnose and monitor 

several diseases, such as COVID-19, cancer, diabetes, and infectious diseases, has demonstrated 

encouraging results [9, 10]. Breath provides more rational advantages than blood test procedures and has 

an unlimited supply. Better patient outcomes, lower healthcare expenditures, and more advanced medical 

research are all possible outcomes of deep learning's revolutionary potential in the healthcare industry 

[11]. The purpose of its application in predictive analytics is to enhance the precision of medical 

diagnoses, new drug development, and the identification of risk factors for the beginning or progression of 

illness [12]. Breath biomarkers, when used with either a single VOC or a panel of VOCs, can reliably 

detect liver illness, according to previous studies [13]. Patients preferred the breath test because it was less 

invasive and took less time than conventional blood testing without sacrificing accuracy. Liver disease 

changes numerous metabolic pathways, which impacts innumerable VOCs, as the liver is in charge of 

metabolism. Many different types of VOCs have connections to these pathways [14]. 

GC-MS, IMS, and GC-FID are the procedures most often used when testing breath. These procedures 

necessitate a qualified operator and are time-consuming and costly. An easy, quick, and inexpensive way 

to get improved accuracy, sensitivity, and specificity results is to use an electronic nose (E-Nose) for 

breath analysis. Although e-noses are accessible, they can be pricey and complicated to operate. That is 

why we need to developmore straightforward and more cost-effective systems. 

This study aims to assess the precision of various deep learning algorithms in predicting liver 

disorders, namely LSTM, GRU, Bi-LSTM, and 1D-CNN. It will be achieved by analyzing a self-

generated dataset of exhaled breath using an IoT-based analyzer device. The performance of these 

algorithms will be compared to determine their effectiveness. The primary contributions of the proposed 

work include conducting experimental analysis on different deep learning models, performing a 

comparative study of the models based on observations with various parameters, evaluating the strengths 

and weaknesses of each model through testing, and suggesting the suitability of these models in specific 

application areas based on the experimental analysis and evaluations. 

The work is structured as follows: section 2 outlines the methodology, section 3 introduces the 

suggested model architecture, sections 4 and 5 showcase the results of several deep learning algorithms, 

and lastly, the paper concludes in section 5. Table 1 gives an overview of the recent studies on diagnosing 

liver disease using the exhaled breath analysis method. 

 

2. METHODOLOGY 

 

The flow chart for the comparative study of different deep learning algorithms for disease 

identification and classification includes several essential components and processes. The system is 

specifically designed to assist in developing, training, and evaluating deep learning models using highly 

relevant medical datasets. Here is a breakdown of each component of the proposed system. Here is the 

flow chart of this study, as depicted in Figure 1. 
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2.1. Data Set 

 

The dataset is obtained and converted into CSV format, containing the following columns: TGS-2600, 

TGS-2602, TGS-822, MQ-7, MQ-9, gender, and disease. A value of zero shows the absence of disease, 

while a value of one indicates the presence of disease. 

The dataset comprises 24 liver patient samples, of which 15 are healthy. To train a resilient model, 

ensure the data is thorough, encompassing a diverse set of values for each characteristic. Figure 2 displays 

the dataset that has been sampled.  
 

 

2.2 Data Preprocessing 

 

The gathered data is subjected to preprocessing to guarantee uniformity, purity, and compatibility with 

deep learning methods. It involves addressing the issue of missing values. Eliminating data points that 

deviate significantly from the average and standardizing attributes to maintain consistency across datasets. 

In addition, data augmentation techniques can be used to enhance the diversity and size of datasets, hence 

improving the resilience of the trained models. 

 

2.3 Dataset Training 

 

The dataset is partitioned into 80% for training and 20% for testing. The models are trained on 

preprocessed datasets utilizing a subset of the data expressly set aside for training. During training, the 

models progressively acquire knowledge from the input data, modifying their parameters to reduce the 

discrepancy between the predicted and actual illness classifications. Validation sets are employed to assess 

the performance of a model and mitigate the risk of overfitting. Early stopping methods can be used to 

cease training when the validation performance starts to deteriorate, thus preventing the model from 

diverging. 

 
 

Table 1 Summary of the related work 

 

 
Reference Methods/Technology Used Dataset Accuracy Sample Collection Biomarkers 

15 Selective Ion Flow Tube Mass 
Spectrometry (SIFT-MS), Kruskal-

Wallis Test, Pearson’s  chi-square tests, 

Multivariable logistic regression 

61 85% Mylar Bag, 8H fast Acetone, Benzene, Carbon 
Disulfide, Isoprene, 

Pentane and Ethane 

16 GC-MS, ANOVA, Multivariable logistic 

regression 

30- NAFLD with or 

without cirrhosis, 15- 

Healthy 

98% Tedlar Bag, Overnight 

fasting 

Isoprene, Acetophenone, 

Terpinene 

17 Thermal Desorption GC-MS, Shapiro-
wilk test, Mann Whitney U test, Least 

square regression 

32-Cirrhotic,12-Cirrhotic 
Patients with HCC, 40- 

Healthy 

78% ReCIVA Breath Sampler, 
No dietary restrictions 

Limonene 
 

18 E-nose, PLS-DA 39-NCCLD, 65-Liver 
Cirrhosis 

81.3% Pneumopip,  Fasting 12 
H 

VOCs 

19 TD-GC-FAIMS, 1D-CNN, Wilcoxon 

Rank, Kruskal-Wallis Rank 

35-Liver Cirrhosis,  

11-Healthy 

90% ReCIVA Breath Sampler, 

Fasted at least 4H 

VOCs 

20 
 

GC-tof-MS, Mann-Whitney U-test, Chi-
Square test, PLS-DA 

87- Chronic Liver 
Disease(CLD), 34- 

Compensated 

Cirrhosis(CIR), 31-
Healthy 

81% Tedlar Bag, 
No dietary restrictions 

3-methyl butanal, Octane, 
Propanoic acid, Terpene, 

Dimethyl Disulfide 

21  Mann-Whitney U test, Kruskal-Wallis 

test, RF,Naïve Bayes 

30-Liver, 33-Healthy 84-94% Perkin Elmer, No dietary 

restrictions 

Acetone, Alkane, Toluene, 

Isopropyl Alcohol, Ethyl 

Acetate, Furan 

22 GC-MS, Hierarchical Clustering, Mann-

Whitney U-test 

46-Cirrhosis, 

42-Control 

95% ReCIVA Breath Sampler,  

No dietary restrictions 

Pentene, Limonene, 

Benzene, Terpepe 
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2.4 Deep Learning Classification Model 

 

Deep learning, a branch of machine learning, transforms decision-making by emulating the neural 

networks seen in the human brain. The system employs an artificial neural network (ANN) of 

interconnected neurons that manipulate and convert incoming data over multiple layers. In contrast to 

traditional programming, deep learning acquires knowledge independently by analyzing extensive 

datasets, revealing intricate patterns and connections. Convolutional neural networks (CNNs) are highly 

proficient at  

Recognizing images, whereas recurrent neural networks (RNNs) are specialized in processing 

sequential data. The success of deep learning in several fields is attributed to its capability to learn 

hierarchical data representations. It has led to breakthroughs in artificial intelligence and has opened up 

new possibilities for innovation, especially with the rise in processing power and data availability[27]. 

 

2.4.1. Long Short-Term Memory (LSTM) 

 

LSTM networks, a specific variant of RNNs, perform exceptionally in processing sequential data that 

contains extensive dependencies across vast distances.       In contrast to conventional RNNs, LSTM 

networks address the issue of disappearing gradients by including a memory cell, which allows them to 

preserve information for longer durations. LSTMs, equipped with three gates that control the flow of 

information, can choose to retain, modify, or reject data. This makes them particularly well-suited for 

natural language processing (NLP) tasks and time seriesforecasting. Their capacity to comprehend 

complex patterns in sequential data, particularly in medical contexts involving temporal relationships, 

highlights their importance. In addition, LSTM models can be improved by incorporating attention 

mechanisms, which can enhance their ability to comprehend intricate sequential material in several 

areas[27]. 
 

  1  ,t i t t ii W h x b        (1) 

 1[ , ]t f t t ff W h x b                                        (2) 

 1[ , ]t o t t oo W h x b                             (3) 

 

Where it   = represents the input gate, ft = forget gate, ot = represents the output gate, σ = represents a 

sigmoid functionwx = weight for the respective gate (x) neurons, ht-1 = output of the previous LSTM block 

(at timestamp t-1), xt = input at the current timestamp, bx = biases for the respective gates (x). The 

equation for the cell state, candidate cell state, and the final output are as follows.  

 

  1      ,t c t t cC tanh W h x b                        (4) 

1   *     * t t t t tC f C i C 
                                 

(5) 

    * t

t th o tanh C                                          (6)  

Where Ct = Cell state (memory) at timestamp (t) 

𝐶𝑡  ̃ = Represents candidate for cell state at timestamp (t). 
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2.4.2. Gated Recurrent Unit (GRU) 

 

GRU, a type of RNN, tackles issues such as the vanishing gradient problem and difficulties in 

capturing long-term relationships in sequential data. GRU, a simplified version of the LSTM network, 

merges the forget and input gates into a single update gate. This consolidation reduces computing 

complexity while maintaining the ability to propagate information over time. GRUs are highly effective at 

acquiring knowledge from sequential data, making them well-suited for natural language processing and 

medical data analysis applications. GRU is well-suited for applications with limited computational 

resources or severe latency requirements due to quicker training timeframes and lower parameters than 

LSTMs. Despite these advantages, GRU performs competitively in modeling temporal dependencies and 

capturing complicated patterns[23]. 

  1    ,t r t tr W h x                           (7) 

  1    ,t z t tz W h x 
                        (8) 

1(1 )* * tt t t th Z h Z h                  (9) 

Where σ = represents the sigmoid activation function, Xt= present input, Ht-1= = previous hidden state, Rt 

= Reset gate, Zt = Update gate, Wr, Wz= Weights for the rest and update gate, Ht= present hidden state 

output of the present cell, ℎ̂= New Cell state. 

 

2.4.3. Bidirectional Long-Short-term Memory (BiLSTM) 

 

BiLSTM networks improve upon typical LSTM architectures by capturing preceding and subsequent 

context in sequential data. BiLSTM, unlike normal LSTM, employs two distinct LSTM layers that process 

the input sequence in both the forward and reverse orientations. BiLSTMs enhance their capacity to grasp 

long-range dependencies and subtle patterns by integrating the outputs from both layers, thus thoroughly 

comprehending the input. The Bidirectional technique employed by BiLSTM is particularly well-suited 

for tasks such as NLP and time series forecasting, where the inclusion of context from both directions is 

essential. BiLSTMs outperform unidirectional LSTMs in understanding sequential data with intricate 

temporal dynamics and dependencies[26]. 

 1     t i t i t ii W x U h b                   (10) 

 1   t f t f t ff W x U h b              (11) 

 1 t o t o t oo W x U h b               (12) 

1 t tC f C                                        (13) 

      t t th o tanh c                             (14) 

 

The variables xt, σ, and ct represent the input sample at time t, the sigmoid activation function, and the 

memory unit, respectively. The abbreviations (bi, bf, bo) and (wi, wf, wo) represent each gate's bias and 

weight matrices, respectively. The symbol ʘ represents the multiplication operation between the 

elements. Initially, the ht-1, ct-1, and xt transmit the input data to the LSTM unit. The forward layer (ℎ𝑡
𝑓

) 

and the backward layer (ℎ𝑡
𝑏) of the BiLSTM model produces the following output: 

f b

t t th h h                     (15) 

    t ty h
                         (16) 

Where α and σ are the numerical factors respecting the equality α+σ=1. 
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2.4.4. One-Dimensional Convolutional Neural Networks (1D-CNN) 

 

1D-CNN is designed to handle sequential data such as time series or text sequences. Contrary to 

conventional CNNs, these operate on one-dimensional input, extracting local patterns by sliding filters 

along the sequence. 1D-CNNs capture meaningful patterns at different levels of abstraction by utilizing 

convolutional processes and activation functions to learn hierarchical representations. Their expertise lies 

in speech recognition, NLP, and biological signal processing, where analyzing local patterns is paramount. 

1D-CNNs are commonly employed in practical scenarios that require sequential data processing due to 

their effectiveness and ability to handle large-scale datasets[24].    
1

,  

0

  ,       
cn p

j j c c

c k p

y b x j k w k


 

                  (17) 

,

, 

c i i k

p

c k

k px y

w
 




 


 
                                      (18) 

,

1

,

0
c k j

m

c j k

jw y

x
 





 


 
                                        (19) 

 

jb j y

  


 
                                            (20) 

 

2.5 EVALUATION METRICS 

 

Four distinct metrics are considered to assess the efficacy of the deep learning model: Accuracy, 

Precision, Recall, and F1-Score. The ratio of correct predictions to the total number of forecasts. The 

accuracy metric measures the ratio of accurate predictions to the total number of projections. Accuracy is 

the measure used to evaluate classification effectiveness [25,26]. 
 

        /  Accuracy ACC TP TN TP FP FN TN         (21) 

 

Precision refers to the measure of accurate forecasts that determine the quality of predictions. The positive 

predictions can be determined using the following formula. 

   /   Precision P TP TP FP            (22) 

The recall refers to the proportion of actual examples successfully retrieved from the total number of 

examples available.  

   /Recall R TP TP FN                  (23) 

The F1 score is a suitable metric to leverage the occurrence. Analogously, the F1 score can be used to 

observe the relationship between precision and recall, and the issue of jagged class propagation persists. 

   1 2* * /                F Score P R P R    (24) 

More precisely, when α = 1, the formula for the F1-Score becomes less complex. These formulas allow us 

to calculate accuracy, precision, recall, and the F1-Score, commonly used metrics for evaluating 

classification performance[25]. 
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2.6 Compare Performance 

 

The algorithms BiLSTM, LSTM, GRU, and 1D-CNN were utilized, and their performance was compared 

to determine the most satisfying one. 

 

3. PROPOSED MODEL ARCHITECTURE 

 

Figure 3 displays the layered architecture model consisting of BiLSTM, LSTM, and GRU. The input 

layer comprises the unprocessed sensor data in the BiLSTM, LSTM, and GRU models. The dropout layer 

is a regularization approach employed to mitigate overfitting by randomly deactivating a portion of input 

units to zero during the training process. By implementing dropout, the neural network enhances its 

resilience and ability to generalize to unfamiliar input, enhancing its performance on real-world tasks. The 

dense layer receives the concatenated output from the layers and converts it into the appropriate output 

shape. It is commonly employed for classification or regression tasks. The ultimate layer in the network 

generates the ultimate predictions or classifications relying on the processed sequential input. 

The Bi-LSTM layer incorporates input and output gates that regulate the movement of input and output 

data within the LSTM cell. The input gate is responsible for selecting and integrating new information 

into the cell state, while the output gate controls the flow of information to the subsequent layer. The 

forget gate determines whether information should be excluded from the cell state, assisting the model in 

disregarding unimportant input. The cell state in a recurrent neural network retains important information 

over multiple time steps and is modified by gates that consider both current inputs and previous states. 

Bidirectional processing involves processing each sequence in both the forward and backward directions. 

The outputs from both directions are then concatenated, allowing for capturing context from past and 

future data. Within the BiLSTM model, dropout can be implemented on the input and recurrent 

connections to the LSTM units, reducing interdependencies among neurons. The dropout rates vary 

between 0.2 and 0.5, indicating the number of units removed during training. The dense layer establishes 

connections between each neuron and every neuron in the preceding layer, facilitating a thorough 

integration of the data acquired by the BiLSTM. An activation function, such as ReLU, sigmoid, or 

softmax, introduces non-linearity and maps the output to the desired range. 

LSTM layers employ three gates, namely the input gate, the forget gate, and the output gate, to control 

the flow of information. These gates ensure that relevant information is retained while irrelevant 

information is rejected. The memory cell state facilitates the transmission of the information at different 

time intervals, allowing the network to sustain long-term connections. At each time step, the hidden state 

and the input are combined to generate an output that can be utilized for subsequent processing or 

predictions. The sigmoid and hyperbolic tangent functions are used in the gates and memory cells to 

control and modify the flow of information efficiently. The dropout rate parameter in dropout layers 

determines the proportion of input units that are randomly dropped during training. This parameter usually 

ranges from 0.1 to 0.5, with larger values indicating a more aggressive dropout strategy. The dense layer 

comprises several neurons (units) that are entirely coupled to the output of the LSTM layer. Every 

individual neuron within the thick layer performs a calculation where it multiplies the output of the LSTM 

layer by a set of weights and then applies an activation function such as softmax for classification or linear 

activation for regression. 

The GRU layer integrates the forget and input gates into a unified update gate, resulting in decreased 

computational complexity compared to LSTM. The update gate regulates the quantity of previous 

information to preserve. The reset gate determines the extent to which previous information should be 

disregarded. The memory content is refreshed by employing candidate activation and the reset gate, 

effectively managing long-term dependencies. Dropout is implemented on the inputs, recurrent 

connections, or both, using a predetermined dropout rate P (e.g., 0.2), indicating the likelihood of a unit 

being assigned a zero value. By omitting units during training, the network's sensitivity to the individual 
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weights of neurons is reduced, which enhances its ability to handle many situations and make 

generalizations. Dropout is exclusively implemented during the training phase and not during the testing 

phase, guaranteeing that the model's performance is not negatively impacted. In a dense layer, each neuron 

receives input from every neuron in the preceding layer, allowing it to grasp intricate linkages and 

interactions within the data. The weight matrices and bias vectors are acquired during training to optimize 

the model's performance on the specified task. Figure 4 (a)-(d) displays the model summary of BiLSTM, 

LSTM, GRU, and 1D-CNN. 

The conv1D layer employs a collection of filters (or kernels) that traverse the input sequence to extract 

localized patterns. Every filter is implemented over the time dimension of the incoming data. The kernel 

size determines the extent of the filter by indicating the number of time steps it spans. It affects the extent 

of the receptive field for the convolutional process. Strides determine the magnitude of the step taken by 

the filter as it traverses the input sequence. It regulates the amount of displacement that occurs in the filter 

following each convolutional operation. An activation function, such as ReLU, Sigmoid, or tanh, is 

usually applied after each convolutional operation to create non-linearity. It allows the network to learn 

more intricate patterns. Padding is a technique that adds zeros to the input sequence at the boundaries. It 

can be applied in two ways: the same padding, which maintains the output length, and valid padding, 

which reduces the output length. 

The Maxpooling 1D layer decreases the dimensionality of the input sequence by selecting the highest 

value within a defined window. This process aids in downsampling the data and decreasing computing 

complexity. The algorithm moves a window of a predetermined size along the input sequence and returns 

the highest value within each window. The extent to which the input sequence is shortened is governed by 

the pool size and the stride. The dropout layer functions by selectively excluding specific nodes from the 

network during each training iteration, thereby compelling the model to acquire more resilient features. 

The dropout rate is a hyperparameter that specifies the fraction of neurons to be dropped, usually ranging 

from 0.2 to 0.5. 

The primary function of a dense layer in a 1D CNN is to carry out sophisticated reasoning and 

decision-making processes using the characteristics that the convolutional and pooling layers have 

recovered. The dense layer establishes connections between each neuron and every neuron in the 

preceding layer, allowing the integration of acquired data to form more intricate representations. The 

activation function used in dense layers includes ReLU and softmax. The softmax function is particularly 

beneficial for classification applications as it outputs probabilities. The dense layer combines and modifies 

the characteristics to get the ultimate result, such as class scores in classification problems or predictions 

in regression assignments. 
 

4. RESULTS  

 

Multiple deep-learning methods are evaluated using breath analysis data from individuals with liver 

conditions. The confused matrix for LSTM, Bi-LSTM, GRU, and 1D-CNN is depicted in Figure 6(a)-

6(d). 

The loss function steadily reduces as the number of training epochs increases. The efficiency of the 

training and testing algorithms gradually improves with an increase in the number of epochs. Figure 7(a) - 

7(d) displays the deep learning methods' outcomes in model accuracy and loss. It denotes the mean 

precision of various trained datasets. Multiple data sets were trained to predict liver disease with an 

increase. The models are trained using 80% and 20% of the data sets, and the overall accuracy is 

calculated using the trained data sets. The BiLSTM model demonstrates superior performance, with an 

impressive average accuracy rate of 99%. 

Table 2 shows how accurate, specific, sensitive, precise, recall, and F1-score those suggested 

algorithms are. The accuracy, specificity, sensitivity, precision, recall, and F1-score were all 0.98, 0.99, 

and 1; for BiLSTM, precision was 1 when no disease was found and 0.92 when a disease was found. 
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Recall was 0.99 and 1, and the F1 score was 1 and 0.96. Based on the LSTM, the accuracy is 0.98, the 

precision is 0.98, and the sensitivity is 0.94. The F1-score is between 0.99 and 0.89, the precision is 

between 1 and 0.84, and the recall is between 0.99 and 0.95. The GRU has a 0.97 accuracy rate, a 0.99 

precision rate, and a 0.96 sensitivity rate. There is a difference between 1 and 0.90 in precision, 0.99 and 

0.97 in memory, and 0.99 and 0.93 in F1. The 1D-CNN has an F1-Score of 0.98, an accuracy of 0.98, a 

specificity of 0.98, a sensitivity of 0.97, a precision of 0.97 and 0.98, a recall of 0.98 for both disease 

prediction and disease not prediction, and an accuracy of 0.98. The algorithms' results showed that the 

BiLSTM and 1D-CNN algorithms worked well enough based on different statistical performance 

measures. 

 

 

 
  Table 2 Statistical performance measurements 

 
 

5. DISCUSSION 

 

Multiple algorithms are evaluated for comparative comparison, including LSTM, GRU, BiLSTM, and 

1D-CNN. The results are derived from six primary characteristics: accuracy, specificity, and sensitivity, as 

depicted in Figure 8. Additionally, precision, recall, and F1-score are illustrated in Figure 9. A graph is 

created to compare the specified methods. The Y-axis represents the parametric values, while the X-axis 

represents the corresponding comparison factors. All models have a uniform number of epochs, precisely 

20. The batch size for the BiLSTM model is 64, whereas for all other algorithms, it is 32. Among the 

algorithms mentioned above, BiLSTM achieves the best level of accuracy. This approach achieves 

exceptional accuracy, with a precision of 0.99 and an F1-Score of 1 for non-infected individuals. It also 

demonstrates a high F1-Score of 0.96 for infected individuals while maintaining a low testing loss of 

0.012. This strategy is recommended for situations that require a satisfactory level of precision while 

minimizing any potential loss. 

Regarding the second algorithm, 1D-CNN, the entire set of test samples was executed and yielded an 

accuracy of approximately 0.98. However, the testing loss function is 0.028. The subsequent experimental 

study was conducted on the LSTM model, yielding accuracy levels of 0.98 and an F1-Score of 

approximately 0.99 for the absence of disease and 0.89 for the presence of disease. The testing loss was 

measured at 0.066. The subsequent model utilized for the study was the GRU, which achieved an accuracy 

of 0.97 and an F1-Score of 0.99 for individuals without any disease and 0.93 for individuals with a 

disease. 

To begin with, the combination of BiLSTM and 1D-CNN is highly effective for detecting liver 

diseases in patients. BiLSTM is the recommended choice in terms of accuracy. A comparative analysis is 

conducted on the algorithms, and the findings are shown in a chart that provides a comprehensive 

understanding of model accuracy, loss function, and F1-Score. The researcher selects an algorithm that 

best suits the user's requirements based on these metrics. Figure 8-9 illustrates the performance 

comparison of deep learning models for detecting liver illness. 
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This comparative model utilizes six parameters to assess the efficacy of each deep learning model 

based on the recorded values for each parameter. BiLSTM and 1D-CNN algorithms significantly advance 

metric accuracy, supporting their potential for scientific and research applications. Hence, the BiLSTM 

and 1D-CNN algorithms are regarded as the most effective methods for early-stage liver disease 

prediction. 

 

6. CONCLUSION 

 

This study report presented many prediction algorithms for early-stage detection and diagnosis of liver 

disease. The dataset displayed the input parameters followed by the corresponding training models. The 

accuracy of predicting liver illness was enhanced by assessing the algorithms using a comprehensive 

collection of attributes and a well-trained dataset. These findings reveal new characteristics that classifiers 

can use, especially in the early stages of diagnosing liver disease. LSTM, GRU, BiLSTM, and 1D-CNN 

models are implemented to forecast liver illness. The results indicated that the BiLSTM and 1D-CNN 

models made precise predictions for patients with liver illness. While other algorithms showed satisfactory 

results under specific parameters, BiLSTM and 1D-CNN consistently outperformed them in every phase. 

Therefore, these algorithms are the optimal and most encouraging methods for predicting liver disease. 

This study aims to offer the medical field, data scientists, and research community a straightforward deep-

learning model that can be utilized for the early detection of liver illness. The current dataset is 

satisfactory, but future efforts should focus on collecting more breath samples. 

Additionally, further work is required to develop more precise models that can yield improved 

outcomes. In the future, it is possible to create a system for implementing and executing the models 

suggested by the current remarkable progress. Subsequently, the model will be implemented on mobile 

applications, specifically Android and IOS. 
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