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ABSTRACT

The liver is a vital organ in the human body. The prevalence of liver problems has
surged worldwide at an unprecedented rate as a result of unhealthy lifestyles and
excessive alcohol usage. Chronic liver disease is a leading cause of mortality that
impacts a significant section of the global population. Obesity, undiscovered hepatitis
infection, alcohol misuse, hemoptysis or hematemesis, renal or hepatic failure, jaundice,
hepatic encephalopathy, and various other conditions contribute to this condition.
Therefore, prompt action is necessary to diagnose the ailment before it becomes critical.
The assigned task examines several deep-learning models for gathering data from
exhaled breath samples. The model's performance is evaluated based on various criteria,
including accuracy, specificity, sensitivity, precision, recall, and F1-Score. These
factors are examined using the training dataset to determine the training and testing loss.
The proposed work does a comprehensive experimental examination of these
parameters, exploring their impact on accuracy and loss function.

Additionally, it evaluates the appropriateness of these models. The deep learning models utilized in the
recommended work are BiLSTM, LSTM, GRU, and 1D-CNN. The dataset is divided into 80% for
training and 20% for testing, using 24 liver patient samples and 15 healthy person samples. Of the several
algorithms, the BiLSTM and 1D-CNN had superior performance in predicting liver illness, achieving
accuracies of 0.99 and 0.98, respectively. In addition, these two algorithms demonstrated superior
precision, F1-Score, recall, specificity, and sensitivity. Therefore, these two algorithms are regarded as
the superior methods for early detection of liver disease..

1 INTRODUCTION

Hepatitis, fibrosis, and cirrhosis are just a few of the many disorders that can impact the body's
principal organ, the liver, which controls metabolism and protein absorption [1]. About 2 million people
die every year from liver disease, making it one of the leading causes of death worldwide [2]. Limiting the

incidence of liver

disease and related fatalities requires practical prevention efforts, such as limiting

alcohol intake, promoting healthy lifestyles, and vaccination against viral hepatitis [3]. Liver function tests
and imaging approaches are also used for liver diagnosis. However, the blood test requires conventional
labs and imaging techniques, which have other intrinsic challenges connected to contrast, such as more
expensive equipment, operator experience, and other problems [4].
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By detecting specific proteins and liver enzymes in a blood sample, a liver function test is the initial
diagnostic tool for a range of liver illnesses. Fetor hepaticus, the classic musty breath scent, was once one
of the most essential clinical symptoms doctors looked for when diagnosing liver insufficiency [5]. The
expelled breath already contained thousands of volatile organic compounds. Exhaled breath contains
nitrogen, oxygen, carbon dioxide, and hundreds of volatile organic and inorganic chemicals. These
volatile organic compounds might originate from either internal or external sources. The content or profile
of volatile organic compounds (VOCs) is regulated by many metabolic causes [6, 7]. Since the levels of
VOCs in the breath of healthy individuals and patients with specific diseases differ, these VOCs can be
used as biomarkers for certain disorders [8]. Using breath biomarkers has many benefits, one of which is
that it is an easy, painless, and repeatable process. Using breath biomarkers to diagnose and monitor
several diseases, such as COVID-19, cancer, diabetes, and infectious diseases, has demonstrated
encouraging results [9, 10]. Breath provides more rational advantages than blood test procedures and has
an unlimited supply. Better patient outcomes, lower healthcare expenditures, and more advanced medical
research are all possible outcomes of deep learning's revolutionary potential in the healthcare industry
[11]. The purpose of its application in predictive analytics is to enhance the precision of medical
diagnoses, new drug development, and the identification of risk factors for the beginning or progression of
illness [12]. Breath biomarkers, when used with either a single VOC or a panel of VOCs, can reliably
detect liver illness, according to previous studies [13]. Patients preferred the breath test because it was less
invasive and took less time than conventional blood testing without sacrificing accuracy. Liver disease
changes numerous metabolic pathways, which impacts innumerable VOCs, as the liver is in charge of
metabolism. Many different types of VOCs have connections to these pathways [14].

GC-MS, IMS, and GC-FID are the procedures most often used when testing breath. These procedures
necessitate a qualified operator and are time-consuming and costly. An easy, quick, and inexpensive way
to get improved accuracy, sensitivity, and specificity results is to use an electronic nose (E-Nose) for
breath analysis. Although e-noses are accessible, they can be pricey and complicated to operate. That is
why we need to developmore straightforward and more cost-effective systems.

This study aims to assess the precision of various deep learning algorithms in predicting liver
disorders, namely LSTM, GRU, Bi-LSTM, and 1D-CNN. It will be achieved by analyzing a self-
generated dataset of exhaled breath using an loT-based analyzer device. The performance of these
algorithms will be compared to determine their effectiveness. The primary contributions of the proposed
work include conducting experimental analysis on different deep learning models, performing a
comparative study of the models based on observations with various parameters, evaluating the strengths
and weaknesses of each model through testing, and suggesting the suitability of these models in specific
application areas based on the experimental analysis and evaluations.

The work is structured as follows: section 2 outlines the methodology, section 3 introduces the
suggested model architecture, sections 4 and 5 showcase the results of several deep learning algorithms,
and lastly, the paper concludes in section 5. Table 1 gives an overview of the recent studies on diagnosing
liver disease using the exhaled breath analysis method.

2. METHODOLOGY

The flow chart for the comparative study of different deep learning algorithms for disease
identification and classification includes several essential components and processes. The system is
specifically designed to assist in developing, training, and evaluating deep learning models using highly
relevant medical datasets. Here is a breakdown of each component of the proposed system. Here is the
flow chart of this study, as depicted in Figure 1.
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2.1. Data Set

The dataset is obtained and converted into CSV format, containing the following columns: TGS-2600,
TGS-2602, TGS-822, MQ-7, MQ-9, gender, and disease. A value of zero shows the absence of disease,
while a value of one indicates the presence of disease.

The dataset comprises 24 liver patient samples, of which 15 are healthy. To train a resilient model,
ensure the data is thorough, encompassing a diverse set of values for each characteristic. Figure 2 displays
the dataset that has been sampled.

2.2 Data Preprocessing

The gathered data is subjected to preprocessing to guarantee uniformity, purity, and compatibility with
deep learning methods. It involves addressing the issue of missing values. Eliminating data points that
deviate significantly from the average and standardizing attributes to maintain consistency across datasets.
In addition, data augmentation techniques can be used to enhance the diversity and size of datasets, hence
improving the resilience of the trained models.

2.3 Dataset Training

The dataset is partitioned into 80% for training and 20% for testing. The models are trained on
preprocessed datasets utilizing a subset of the data expressly set aside for training. During training, the
models progressively acquire knowledge from the input data, modifying their parameters to reduce the
discrepancy between the predicted and actual illness classifications. Validation sets are employed to assess
the performance of a model and mitigate the risk of overfitting. Early stopping methods can be used to
cease training when the validation performance starts to deteriorate, thus preventing the model from
diverging.

Table 1 Summary of the related work

Reference Methods/Technology Used Dataset Accuracy Sample Collection Biomarkers
15 Selective lon Flow Tube Mass | 61 85% Mylar Bag, 8H fast Acetone, Benzene, Carbon
Spectrometry  (SIFT-MS),  Kruskal- Disulfide, Isoprene,
Wallis Test, Pearson’s chi-square tests, Pentane and Ethane
Multivariable logistic regression
16 GC-MS, ANOVA, Multivariable logistic | 30- NAFLD with or | 98% Tedlar Bag, Overnight | Isoprene, Acetophenone,
regression without cirrhosis, 15- fasting Terpinene
Healthy
17 Thermal Desorption GC-MS, Shapiro- | 32-Cirrhotic,12-Cirrhotic | 78% ReCIVA Breath Sampler, | Limonene
wilk test, Mann Whitney U test, Least | Patients with HCC, 40- No dietary restrictions
square regression Healthy
18 E-nose, PLS-DA 39-NCCLD, 65-Liver | 81.3% Pneumopip, Fasting 12 | VOCs
Cirrhosis
19 TD-GC-FAIMS, 1D-CNN, Wilcoxon | 35-Liver Cirrhosis, 90% ReCIVA Breath Sampler, | VOCs
Rank, Kruskal-Wallis Rank 11-Healthy Fasted at least 4H
20 GC-tof-MS, Mann-Whitney U-test, Chi- | 87- Chronic Liver | 81% Tedlar Bag, 3-methyl butanal, Octane,
Square test, PLS-DA Disease(CLD), 34- No dietary restrictions Propanoic acid, Terpene,
Compensated Dimethyl Disulfide
Cirrhosis(CIR), 31-
Healthy
21 Mann-Whitney U test, Kruskal-Wallis | 30-Liver, 33-Healthy 84-94% Perkin Elmer, No dietary | Acetone, Alkane, Toluene,
test, RF,Naive Bayes restrictions Isopropyl Alcohol, Ethyl
Acetate, Furan
22 GC-MS, Hierarchical Clustering, Mann- | 46-Cirrhosis, 95% ReCIVA Breath Sampler, | Pentene, Limonene,
Whitney U-test 42-Control No dietary restrictions Benzene, Terpepe
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2.4 Deep Learning Classification Model

Deep learning, a branch of machine learning, transforms decision-making by emulating the neural
networks seen in the human brain. The system employs an artificial neural network (ANN) of
interconnected neurons that manipulate and convert incoming data over multiple layers. In contrast to
traditional programming, deep learning acquires knowledge independently by analyzing extensive
datasets, revealing intricate patterns and connections. Convolutional neural networks (CNNSs) are highly
proficient at

Recognizing images, whereas recurrent neural networks (RNNs) are specialized in processing
sequential data. The success of deep learning in several fields is attributed to its capability to learn
hierarchical data representations. It has led to breakthroughs in artificial intelligence and has opened up
new possibilities for innovation, especially with the rise in processing power and data availability[27].

2.4.1. Long Short-Term Memory (LSTM)

LSTM networks, a specific variant of RNNs, perform exceptionally in processing sequential data that
contains extensive dependencies across vast distances. In contrast to conventional RNNs, LSTM
networks address the issue of disappearing gradients by including a memory cell, which allows them to
preserve information for longer durations. LSTMs, equipped with three gates that control the flow of
information, can choose to retain, modify, or reject data. This makes them particularly well-suited for
natural language processing (NLP) tasks and time seriesforecasting. Their capacity to comprehend
complex patterns in sequential data, particularly in medical contexts involving temporal relationships,
highlights their importance. In addition, LSTM models can be improved by incorporating attention
mechanisms, which can enhance their ability to comprehend intricate sequential material in several
areas[27].

i =0 (W, [hyx]+b) )
fi ZG(Wf [ht—l’)(t]+bf) @
0 =0 (W[h ;. %]+b,) 3
Where it = represents the input gate, ft = forget gate, ot = represents the output gate, c = represents a
sigmoid functionwy = weight for the respective gate (x) neurons, ht.1 = output of the previous LSTM block

(at timestamp t-1), x = input at the current timestamp, bx = biases for the respective gates (x). The
equation for the cell state, candidate cell state, and the final output are as follows.

C: =tanh (W, [h_,x ]+h,) )
Co=f*C+ip* ét )
h =o, *tanh(Ct) (6)

Where Ct = Cell state (memory) at timestamp (t)

—_—

C; = Represents candidate for cell state at timestamp (t).
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2.4.2. Gated Recurrent Unit (GRU)

GRU, a type of RNN, tackles issues such as the vanishing gradient problem and difficulties in
capturing long-term relationships in sequential data. GRU, a simplified version of the LSTM network,
merges the forget and input gates into a single update gate. This consolidation reduces computing
complexity while maintaining the ability to propagate information over time. GRUs are highly effective at
acquiring knowledge from sequential data, making them well-suited for natural language processing and
medical data analysis applications. GRU is well-suited for applications with limited computational
resources or severe latency requirements due to quicker training timeframes and lower parameters than
LSTMs. Despite these advantages, GRU performs competitively in modeling temporal dependencies and
capturing complicated patterns[23].

=0 (W, [h,x]) Y]
Zt :O-(Wz[ht—l’xt]) (8)
h=(@-2Z)*h  +Z *h ©)

Where 6 = represents the sigmoid activation function, X¢= present input, Hi.1= = previous hidden state, Rt
= Reset gate, Z: = Update gate, W, W,= Weights for the rest and update gate, Hi= present hidden state

output of the present cell, A= New Cell state.
2.4.3. Bidirectional Long-Short-term Memory (BiLSTM)

BiLSTM networks improve upon typical LSTM architectures by capturing preceding and subsequent
context in sequential data. BiLSTM, unlike normal LSTM, employs two distinct LSTM layers that process
the input sequence in both the forward and reverse orientations. BiLSTMs enhance their capacity to grasp
long-range dependencies and subtle patterns by integrating the outputs from both layers, thus thoroughly
comprehending the input. The Bidirectional technique employed by BiLSTM is particularly well-suited
for tasks such as NLP and time series forecasting, where the inclusion of context from both directions is
essential. BILSTMs outperform unidirectional LSTMs in understanding sequential data with intricate
temporal dynamics and dependencies[26].

i, =o(Wx +U;h_, +b)) (10)
f, =a(fot +Ufht_1+bf) (11)
o =o(Wx +Uh_ +b,) (12)

C=fL0C, (13)
h,=0,0 tanh(c,) (14)

The variables x;, o, and ¢t represent the input sample at time t, the sigmoid activation function, and the
memory unit, respectively. The abbreviations (b, br, bo) and (wi, wr, Wo) represent each gate's bias and
weight matrices, respectively. The symbol O represents the multiplication operation between the

elements. Initially, the he1, ci.1, and xt transmit the input data to the LSTM unit. The forward layer (h/)
and the backward layer (h?) of the BILSTM model produces the following output:

h =ah' + (15)
yt:G(ht) (16)

Where o and ¢ are the numerical factors respecting the equality a+o=1.
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2.4.4. One-Dimensional Convolutional Neural Networks (1D-CNN)

1D-CNN is designed to handle sequential data such as time series or text sequences. Contrary to
conventional CNNs, these operate on one-dimensional input, extracting local patterns by sliding filters
along the sequence. 1D-CNNs capture meaningful patterns at different levels of abstraction by utilizing
convolutional processes and activation functions to learn hierarchical representations. Their expertise lies
in speech recognition, NLP, and biological signal processing, where analyzing local patterns is paramount.
1D-CNNs are commonly employed in practical scenarios that require sequential data processing due to
their effectiveness and ability to handle large-scale datasets[24].

n-1 p
y;=b+> > x, j-kw, k (17)
c=0k=-p
oa P, oo
— = —W 18
aXci kZp ayi+k o o
oa Voa
a— = Za— Xc,jfk (19)
Wc,k j: yj
oa_oa -
3, 0

2.5 EVALUATION METRICS

Four distinct metrics are considered to assess the efficacy of the deep learning model: Accuracy,
Precision, Recall, and F1-Score. The ratio of correct predictions to the total number of forecasts. The
accuracy metric measures the ratio of accurate predictions to the total number of projections. Accuracy is
the measure used to evaluate classification effectiveness [25,26].

Accuracy (ACC) = (TP+TN)/ (TP+FP+FN+TN) (21)

Precision refers to the measure of accurate forecasts that determine the quality of predictions. The positive
predictions can be determined using the following formula.
Precision(P)=TP /(TP +FP) (22)
The recall refers to the proportion of actual examples successfully retrieved from the total number of
examples available.
Recall(R)=TP/(TP+FN) (23)
The F1 score is a suitable metric to leverage the occurrence. Analogously, the F1 score can be used to
observe the relationship between precision and recall, and the issue of jagged class propagation persists.
F1-Score=2*(P*R)/(P+R) (24)
More precisely, when o = 1, the formula for the F1-Score becomes less complex. These formulas allow us

to calculate accuracy, precision, recall, and the F1-Score, commonly used metrics for evaluating
classification performance[25].
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2.6 Compare Performance

The algorithms BiLSTM, LSTM, GRU, and 1D-CNN were utilized, and their performance was compared
to determine the most satisfying one.

3. PROPOSED MODEL ARCHITECTURE

Figure 3 displays the layered architecture model consisting of BiLSTM, LSTM, and GRU. The input

layer comprises the unprocessed sensor data in the BiLSTM, LSTM, and GRU models. The dropout layer
is a regularization approach employed to mitigate overfitting by randomly deactivating a portion of input
units to zero during the training process. By implementing dropout, the neural network enhances its
resilience and ability to generalize to unfamiliar input, enhancing its performance on real-world tasks. The
dense layer receives the concatenated output from the layers and converts it into the appropriate output
shape. It is commonly employed for classification or regression tasks. The ultimate layer in the network
generates the ultimate predictions or classifications relying on the processed sequential input.
The Bi-LSTM layer incorporates input and output gates that regulate the movement of input and output
data within the LSTM cell. The input gate is responsible for selecting and integrating new information
into the cell state, while the output gate controls the flow of information to the subsequent layer. The
forget gate determines whether information should be excluded from the cell state, assisting the model in
disregarding unimportant input. The cell state in a recurrent neural network retains important information
over multiple time steps and is modified by gates that consider both current inputs and previous states.
Bidirectional processing involves processing each sequence in both the forward and backward directions.
The outputs from both directions are then concatenated, allowing for capturing context from past and
future data. Within the BiLSTM model, dropout can be implemented on the input and recurrent
connections to the LSTM units, reducing interdependencies among neurons. The dropout rates vary
between 0.2 and 0.5, indicating the number of units removed during training. The dense layer establishes
connections between each neuron and every neuron in the preceding layer, facilitating a thorough
integration of the data acquired by the BiLSTM. An activation function, such as ReLU, sigmoid, or
softmax, introduces non-linearity and maps the output to the desired range.

LSTM layers employ three gates, namely the input gate, the forget gate, and the output gate, to control
the flow of information. These gates ensure that relevant information is retained while irrelevant
information is rejected. The memory cell state facilitates the transmission of the information at different
time intervals, allowing the network to sustain long-term connections. At each time step, the hidden state
and the input are combined to generate an output that can be utilized for subsequent processing or
predictions. The sigmoid and hyperbolic tangent functions are used in the gates and memory cells to
control and modify the flow of information efficiently. The dropout rate parameter in dropout layers
determines the proportion of input units that are randomly dropped during training. This parameter usually
ranges from 0.1 to 0.5, with larger values indicating a more aggressive dropout strategy. The dense layer
comprises several neurons (units) that are entirely coupled to the output of the LSTM layer. Every
individual neuron within the thick layer performs a calculation where it multiplies the output of the LSTM
layer by a set of weights and then applies an activation function such as softmax for classification or linear
activation for regression.

The GRU layer integrates the forget and input gates into a unified update gate, resulting in decreased
computational complexity compared to LSTM. The update gate regulates the quantity of previous
information to preserve. The reset gate determines the extent to which previous information should be
disregarded. The memory content is refreshed by employing candidate activation and the reset gate,
effectively managing long-term dependencies. Dropout is implemented on the inputs, recurrent
connections, or both, using a predetermined dropout rate P (e.g., 0.2), indicating the likelihood of a unit
being assigned a zero value. By omitting units during training, the network’s sensitivity to the individual
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weights of neurons is reduced, which enhances its ability to handle many situations and make
generalizations. Dropout is exclusively implemented during the training phase and not during the testing
phase, guaranteeing that the model's performance is not negatively impacted. In a dense layer, each neuron
receives input from every neuron in the preceding layer, allowing it to grasp intricate linkages and
interactions within the data. The weight matrices and bias vectors are acquired during training to optimize
the model's performance on the specified task. Figure 4 (a)-(d) displays the model summary of BiLSTM,
LSTM, GRU, and 1D-CNN.

The conv1D layer employs a collection of filters (or kernels) that traverse the input sequence to extract
localized patterns. Every filter is implemented over the time dimension of the incoming data. The kernel
size determines the extent of the filter by indicating the number of time steps it spans. It affects the extent
of the receptive field for the convolutional process. Strides determine the magnitude of the step taken by
the filter as it traverses the input sequence. It regulates the amount of displacement that occurs in the filter
following each convolutional operation. An activation function, such as ReLU, Sigmoid, or tanh, is
usually applied after each convolutional operation to create non-linearity. It allows the network to learn
more intricate patterns. Padding is a technique that adds zeros to the input sequence at the boundaries. It
can be applied in two ways: the same padding, which maintains the output length, and valid padding,
which reduces the output length.

The Maxpooling 1D layer decreases the dimensionality of the input sequence by selecting the highest
value within a defined window. This process aids in downsampling the data and decreasing computing
complexity. The algorithm moves a window of a predetermined size along the input sequence and returns
the highest value within each window. The extent to which the input sequence is shortened is governed by
the pool size and the stride. The dropout layer functions by selectively excluding specific nodes from the
network during each training iteration, thereby compelling the model to acquire more resilient features.
The dropout rate is a hyperparameter that specifies the fraction of neurons to be dropped, usually ranging
from 0.2 to 0.5.

The primary function of a dense layer in a 1D CNN is to carry out sophisticated reasoning and
decision-making processes using the characteristics that the convolutional and pooling layers have
recovered. The dense layer establishes connections between each neuron and every neuron in the
preceding layer, allowing the integration of acquired data to form more intricate representations. The
activation function used in dense layers includes ReLU and softmax. The softmax function is particularly
beneficial for classification applications as it outputs probabilities. The dense layer combines and modifies
the characteristics to get the ultimate result, such as class scores in classification problems or predictions
in regression assignments.

4. RESULTS

Multiple deep-learning methods are evaluated using breath analysis data from individuals with liver
conditions. The confused matrix for LSTM, Bi-LSTM, GRU, and 1D-CNN is depicted in Figure 6(a)-
6(d).

The loss function steadily reduces as the number of training epochs increases. The efficiency of the
training and testing algorithms gradually improves with an increase in the number of epochs. Figure 7(a) -
7(d) displays the deep learning methods' outcomes in model accuracy and loss. It denotes the mean
precision of various trained datasets. Multiple data sets were trained to predict liver disease with an
increase. The models are trained using 80% and 20% of the data sets, and the overall accuracy is
calculated using the trained data sets. The BILSTM model demonstrates superior performance, with an
impressive average accuracy rate of 99%.

Table 2 shows how accurate, specific, sensitive, precise, recall, and F1-score those suggested
algorithms are. The accuracy, specificity, sensitivity, precision, recall, and F1-score were all 0.98, 0.99,
and 1; for BiLSTM, precision was 1 when no disease was found and 0.92 when a disease was found.
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Recall was 0.99 and 1, and the F1 score was 1 and 0.96. Based on the LSTM, the accuracy is 0.98, the
precision is 0.98, and the sensitivity is 0.94. The F1-score is between 0.99 and 0.89, the precision is
between 1 and 0.84, and the recall is between 0.99 and 0.95. The GRU has a 0.97 accuracy rate, a 0.99
precision rate, and a 0.96 sensitivity rate. There is a difference between 1 and 0.90 in precision, 0.99 and
0.97 in memory, and 0.99 and 0.93 in F1. The 1D-CNN has an F1-Score of 0.98, an accuracy of 0.98, a
specificity of 0.98, a sensitivity of 0.97, a precision of 0.97 and 0.98, a recall of 0.98 for both disease
prediction and disease not prediction, and an accuracy of 0.98. The algorithms' results showed that the
BiLSTM and 1D-CNN algorithms worked well enough based on different statistical performance
measures.

Table 2 Statistical performance measurements

Precision | Recall | Fl-score
010 1[0l

Model | Accuracy | Specifiify | Sensitivity

BISTM| 099 | 0% L] 109209 1)1 [0%
LSIM | 098 | 0% | 0% |1 /08409 05|09 08
GRU | 097 | 0%9 | 0% |1 /0% 099 097(0%|0%
DONN| 0% | 0% | 097 |097]09 (0% 0%|09%)0%
5. DISCUSSION

Multiple algorithms are evaluated for comparative comparison, including LSTM, GRU, BiLSTM, and
1D-CNN. The results are derived from six primary characteristics: accuracy, specificity, and sensitivity, as
depicted in Figure 8. Additionally, precision, recall, and F1-score are illustrated in Figure 9. A graph is
created to compare the specified methods. The Y-axis represents the parametric values, while the X-axis
represents the corresponding comparison factors. All models have a uniform number of epochs, precisely
20. The batch size for the BILSTM model is 64, whereas for all other algorithms, it is 32. Among the
algorithms mentioned above, BILSTM achieves the best level of accuracy. This approach achieves
exceptional accuracy, with a precision of 0.99 and an F1-Score of 1 for non-infected individuals. It also
demonstrates a high F1-Score of 0.96 for infected individuals while maintaining a low testing loss of
0.012. This strategy is recommended for situations that require a satisfactory level of precision while
minimizing any potential loss.

Regarding the second algorithm, 1D-CNN, the entire set of test samples was executed and yielded an
accuracy of approximately 0.98. However, the testing loss function is 0.028. The subsequent experimental
study was conducted on the LSTM model, yielding accuracy levels of 0.98 and an F1-Score of
approximately 0.99 for the absence of disease and 0.89 for the presence of disease. The testing loss was
measured at 0.066. The subsequent model utilized for the study was the GRU, which achieved an accuracy
of 0.97 and an F1-Score of 0.99 for individuals without any disease and 0.93 for individuals with a
disease.

To begin with, the combination of BiLSTM and 1D-CNN is highly effective for detecting liver
diseases in patients. BiLSTM is the recommended choice in terms of accuracy. A comparative analysis is
conducted on the algorithms, and the findings are shown in a chart that provides a comprehensive
understanding of model accuracy, loss function, and F1-Score. The researcher selects an algorithm that
best suits the user's requirements based on these metrics. Figure 8-9 illustrates the performance
comparison of deep learning models for detecting liver illness.
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This comparative model utilizes six parameters to assess the efficacy of each deep learning model
based on the recorded values for each parameter. BiLSTM and 1D-CNN algorithms significantly advance
metric accuracy, supporting their potential for scientific and research applications. Hence, the BiLSTM
and 1D-CNN algorithms are regarded as the most effective methods for early-stage liver disease
prediction.

6. CONCLUSION

This study report presented many prediction algorithms for early-stage detection and diagnosis of liver
disease. The dataset displayed the input parameters followed by the corresponding training models. The
accuracy of predicting liver illness was enhanced by assessing the algorithms using a comprehensive
collection of attributes and a well-trained dataset. These findings reveal new characteristics that classifiers
can use, especially in the early stages of diagnosing liver disease. LSTM, GRU, BIiLSTM, and 1D-CNN
models are implemented to forecast liver illness. The results indicated that the BiLSTM and 1D-CNN
models made precise predictions for patients with liver illness. While other algorithms showed satisfactory
results under specific parameters, BiLSTM and 1D-CNN consistently outperformed them in every phase.
Therefore, these algorithms are the optimal and most encouraging methods for predicting liver disease.
This study aims to offer the medical field, data scientists, and research community a straightforward deep-
learning model that can be utilized for the early detection of liver illness. The current dataset is
satisfactory, but future efforts should focus on collecting more breath samples.

Additionally, further work is required to develop more precise models that can yield improved
outcomes. In the future, it is possible to create a system for implementing and executing the models
suggested by the current remarkable progress. Subsequently, the model will be implemented on mobile
applications, specifically Android and 10S.
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