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ABSTRACT 

The current study goal is to disperse a solute at the parallel channel boundary 

walls as it undergoes an irreversible first-order chemical reaction. The rheological 

parameter that occurs from suspension in the fluid affects the convection 

coefficient and dispersion coefficient. The interphase mass transfer is the main 

cause of the exchange coefficient, which is unaffected by the solvent fluid 

velocity. The convection and dispersion coefficients are also affected by the wall-

catalyzed process. The transfer of drugs or nutrients in plasma during blood flow 

through porous media can be understood by studying solute dispersion. An 

essential part of circulatory flow is exceed absorption. The results show that wall 

absorption has a significant impact on transport coefficients. 

Nomenclature 
*

fu   component of velocity  

 *p  pressure  

  viscosity of the fluid 

0B
 

applied magnetic field 

0
 

electrical conductivity, 

 t  time,  

D  molecular diffusivity  

k  permeability of the porous medium  
*

pu   Darcy velocity, 

   slip parameter,  
'

0C
 

reference concentration and 

 Ks  reaction rate constant catalyzed by the walls. 

xy   shear stress 

0   plastic dynamic viscosity 

0  
yield stress 

1. Introduction 

In physiological situations where a first-order chemical reaction takes place at the tube wall, 

interphase mass transfer can be used. Transporting oxygen and nutrients to tissue cells and 

extracting metabolic waste products from tissue cells are two examples of such 

circumstances. It also occurs in the pulmonary capillaries, where the blood absorbs oxygen 

and carbon dioxide is expelled. Many studies on the fluid dynamics of biological fluids under 

the influence of magnetic fields have been conducted in the past ten years. The lack of 

biocompatibility of smooth (rough) surfaces in metal-implanted or extracorporeal artificial 

organs results in a variety of blood injury types. It is dangerous since they create stress that 

results in force. Eventually, this force affects the red blood cells, or erythrocytes, causing 
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haemolysis, or the loss of haemoglobin. Several authors focused on dispersion to understand 

the transport of nutrients in blood and different artificial devices (Middleman (1972), 

Lightfoot (1974), Cooney (1976), Jayaraman et al., (1981)). The effective dispersion 

coefficient was examined in relation to the average flow speed, the tube radius, and the 

molecular diffusion coefficient by Taylor (1953, 1954), who investigated the dispersion 

process in Newtonian flow. Sankarasubramanian and Gill (1973) explored the dispersion of a 

non-uniform initial distribution in time-variable isothermal laminar flow in a tube with a first-

order rate process near the tube wall. Through a precise process, they investigated miscible 

dispersion in laminar flow in a tube with interfacial transport caused by an irreversible first-

order reaction at the tube wall. The exchange coefficients are a novel idea, and a generic 

formula demonstrating their time-dependent character is constructed. Finding the average 

concentration distribution in terms of tabular functions is made possible by the exchange 

coefficient, which represents the interphase process. Only the scenario of dispersion in a fully 

established steady flow was included in the analysis.  

Siddheshwar et al. (2000) have studied the problem of plane-Poiseuille flow of a 

power law fluid with interphase mass transfer. Indira et al. (1996) looked on the precise study 

of miscible solute dispersion with interphase mass transfer in a couple stress fluid flow. 

Unsteady convective diffusion with interphase mass transfer in a couple stress fluid 

surrounded by porous beds has been studied by Manjula (2008). Using the generalised 

dispersion model of Sankarasubramanian and Gill (1970), Nirmala P. Ratchagar and Vijaya 

Kumar (2015) examined the impact of couple stress and magnetic field on unstable 

convective diffusion with interphase mass transfer. In the simplest scenario, they take into 

account a first order chemical reaction at the walls during an exact analysis of unsteady 

convection in couple stress fluid flows. Reaction at the walls is of practical interest. The exact 

analysis of miscible solute dispersion with interphase mass transfer in a couple stress poorly 

conducting fluid surround by porous beds was examined by Rudraiah et al. (2016). The 

exchange coefficient, convective coefficient, and dispersion coefficient are highlighted by the 

utilization the generalised dispersion model of Sankarasubramanian and Gill's (1973). The 

porosity parameter and couple stress parameter resulting from suspension in the fluid only 

affect the final two coefficients. The interphase mass transfer is the primary cause of the 

exchange coefficient, which is unaffected by the solvent fluid velocity. The convection and 

dispersion coefficients are also impacted by the interphase mass transfer.  

Siti Nurul Aifa Mohd Zainul Abidin (2024) explored the Herschel-Bulkley (H-B) 

fluid model, a non-Newtonian mathematical model of blood flow in a catheterised stenosed 

artery. Additionally, the wall absorption effect is taken into account in this inquiry. The 

convective-diffusion equation that describes the dispersion process determines the solute 

movement. Three effective transport coefficients exchange, convection, and diffusion are 

obtained by solving the transport equation using an accurate technique known as the 

Generalised Dispersion Model (GDM). The goal of this work has been to examine the flow 

properties of a Bingham plastic fluid through a porous material when both an electric and 

magnetic field are present. In order to emphasise the dispersion coefficient and mean 

concentration, the generalised dispersion model of Sankarasubramanian and Gill (1970) has 

been applied. Convection coefficient and dispersion coefficient are affected by the 

rheological parameter , magnetic field, electric number and porous parameter arising due to 

suspension in the fluid. The exchange coefficient arises mainly due to the interphase mass 

transfer, and it is independent of the solvent fluid velocity. The convection and dispersion 

coefficients are also affected by the interphase mass transfer. Finally the outcome of non-

dimensional parameter is deliberated by graphs. 

2. Mathematical Formulation 

The constitutive equation for blood, expressed as Bingham fluid, is as follows, according to 

Misra  and Adhikary (2017) 
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In the channel, equations (1) and (2) depict the two stages of blood flow. The flat velocity 

profile in the central core region creates the plug flow region. Shear stress in this plug flow 

zone is less than yield stress τ0.  

 
Figure 1: Physical problem 

The governing equations and associated boundary conditions are derived under the following 

presumptions: 

An electric field and a uniform magnetic field B0 are supplied to the blood flow in the y-

direction. In a channel enclosed by porous beds, the solute diffuses over the porous medium 

in a fully formed flow. For concentration C, which depends on coordinates x’ and y and time 

(t), a slug is added. The mass balance equation concerning the solute concentration C with 

heterogeneous chemical reaction. Under the aforementioned presumption, the following 

governing equations apply to the incompressible flow of a non-Newtonian fluid in cartesian 

coordinates: 
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The concentration C satisfying the convective diffusion equation gives 
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Boundary conditions for velocity and concentration are 
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The symmetric conditions, 
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As the amount of solute in the system is finite, 
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Beavers and Joseph's (1967) slip condition at the lower and upper permeable surfaces is 

represented by equations (10) and (11).  

Introducing the non-dimensional quantities 
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In non-dimensional form, equations (3) to (9) are 
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we define the axial coordinate moving with the average velocity of flow as '' tuxx −=  which 

is in dimensionless form −= 'XX ,. 

Then equation (13) becomes 
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The dimensionless form of the initial and boundary conditions (10) to (16)
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porous parameter, sK is the reaction rate constant catalyzed by the walls.
 3. Method of solution 

By solving equation (17) and satisfying the boundary conditions (21) to (24). The blood 

velocity is obtained as  
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where A1, A2, and s1 are constants given in Appendix 1. 

The axial velocity components that have been normalised are 
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The generalised dispersion model of Gill and Sankarasubramanian (1970), which is expressed 

as a series expansion in the form of 

)31(...),(),(),(),,(
2

2

21 +



+




+=

X
f

X
fXX mm

m







 
where, m is the dimensionless cross sectional average concentration, given by 
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Integrating equation (19) with respect to   in (0,1) and using the equation (31) and (32), we 
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where the dispersion coefficient, )(kK  Substituting the Equation (34) in (33) we obtain 
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Equation (35) can be truncated after the term involving 2K without causing serious error, 

because 
,43 , KK , etc. become negligibly small compared to .2K  

The resulting model for the mean concentration is 
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Substituting (31) in (19) and using the generalized dispersion model of Gill and 

Sankarasubramanian(1973) in the resulting equation, we get the equation for kf from the 

differential equations of the form
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Since m is chosen to satisfy the initial and boundary conditions on  from equations (25) to 
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Also, from equation (32) we have
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)42(002

0

2

0 Kf
ff
−




=






 

For i = 0 in (30) we have 

)43()( 00

1

0

0
0 Kf

f
K −












=




 
These two equations (42) and (43) must be solved simultaneously, with an initial condition 

for using (32) that requires entering that equation to obtain 
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The solution of the reaction diffusion equation (42) with these conditions are formulated as 
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From(47), it follows that 
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MATHEMATICA 12.0 is used to obtain the first ten roots of the transcendental equation 

(53), which are listed in Table 1. In the expansions of and, these 10 roots ensure the series 

will converge. With that, we obtain from (48) in the form  
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Here )(0 K  is independent of velocity distribution. 

As ,→ we get the asymptotic solution for 0K from (56) as 

)57()( 2

00 −=K  

where 0 is the first root of the equation (53). Physically, this represents first order chemical 

reaction coefficient to obtain )(0 K . We get )(1 K , from (35) (with i = 1 ) knowing 

),(0 f  and ),(1 f  . Likewise, ),....(),( 32  KK , 

require the knowledge of ,1010 ,,, ffKK and 2f . Equation (55) in the limit ,→  reduces 

to )58()(),( 0

0

0
0 




 Cos

Sin
f =  

Then we find 2211 , KandfKf . For asymptotically long times, i.e., ,→ equation (35) 

and (37) give sfandsK ki ''  as 
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The sf k '  must satisfy the conditions (32) and this permits the eigen function expansion in 

the form of 

)61(,..23,1),(),(
9

0

, == 
=

kCosBf j

j

kjk   
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Substituting (61) in (60) and multiplying the resulting equation by )cos(  j and integrating 

with respect to  from 0 to 1, gives 
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Multiplying by )(  jCos and integrating with respect to  , we get 

)62()2,1(),(
2

1'
11 9

0

,

1
9

0

1,

9

0

2,22

0

2, =



























+−−

−
= 

=

−

−

=

−

=

− kljIB
Sin

BUB
Pe

B
j

ikj

j

j

j

kj

j

kj

j

kj






 

Where 

)63(),()()('),(

1

0

jlIdCosCosUljI lj ==  

)64(910,0 0,1, tojforBB jj ===−
 

The first expansion coefficient kB ,0 in equation (61) using conditions (38) to (41) can be 

expressed in terms of kjB , (j = 1 to 9) as, (Using the boundary condition )0),( 0

1

0

== kk df   
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Further, from (57) and (61) we find that 
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Using (63), (64) and (66) in the resultant equation after substituting i = 1 in (59), we obtain 
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Using (62), (63) and (66) in the the outcome equation after substituting i = 2 in (59), we 

obtain  
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The mean concentration distribution as a function of and the parameters Pe, and is found 

using the asymptotic coefficients in (32).This distribution is an approximate representation 

for short and moderate times and is valid for a long duration.  

By calculating the cross-sectional average from (25) the initial condition for solving (34) may 

be obtained. According to Sankar Rao (1995), the solution of (34) with asymptotic 

coefficients may be expressed as follows: Long-term evaluations of the coefficients have an 

impact that is independent of the initial concentration distribution.  

 
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where 0),(,0),( =



= 




X

m
m  

4. Results and Discussion 

The effects of magnetic field, electric field, and heterogeneous chemical reactions on 

the dispersion of a solute in a Bingham fluid (blood) as it flows through a porous medium in a 

rectangular channel enclosed by porous beds are examined. The channel walls act as catalysts 

for the reaction. Figures 2 to 16 show the graphic representation of the most dominant 

dispersion coefficient, convection coefficient, and mean concentration for fixed values using 

MATHEMATICA 12.0. These values are calculated for different values of Hartmann 
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number(M=1,1.1,1.2,1.3), porous parameter )120,100,60,10( = , rheological parameter 

)3.0,2.0,1.0,0( =c , reaction rate parameter )10,1,10( 22−=  and electric number(We=5, 15,25,35) for 

fixed values ,1.0,019.0 == XX s
10.0,100 == Pe .  

Equation (57), which is used to numerically assess the expression for the absorption 

coefficient )(0 − K , is displayed in Figure 2. Although it is unaffected by the Hartmann 

number, porous parameter, rheological parameter, it is clear that the increases as the wall 

reaction parameter   grows. Molecular diffusion can provide the reaction at the wall more 

quickly if the absorption parameter takes huge values. Therefore, compared to tubular flow, 

there is greater solute absorption at the annulus wall. 

 
Figure 2: Variation of 0K− versus   

 
Figure 3: Impact of M on 1K−  

The variance of the convection and dispersion coefficients diminishes as the range of 

the wall reaction parameter   grows as seen in Figures 3 to 10. This phenomenon is attributed 

to the synergistic effect of magnetic field strength and wall reaction parameter, enhancing the 

decline in convection and dispersion coefficients (Singh, J., and Kumar, V. (2020)).  Figures 

3 to 6 display the convection coefficient expression for different values of the Hartmann 

number, electric number, rheological parameter, and porous parameter with wall response 

parameter. These expressions are numerically analysed using equation (67). It is observed 

that the convection coefficient decreases with increases in the Hartmann number, electric 

number, rheological parameter, and porous parameter. The increase in Hartmann number, 

electric number, rheological parameter, and porous parameter enhances the convection 

coefficient in blood flow due to the augmented Lorentz force, electrical body force, and 

porous medium resistance, which intensify the flow velocity and mixing, thereby increasing 

dispersion(Tripathi and Kumar(2020)) 

Equation (68) is used to numerically assess the expression for the dispersion 

coefficient, which is displayed in Figures 7 to 11 for varying Hartmann number, electric 

number, rheological parameter, and porous parameter values with wall reaction parameter 
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values. As c  grows in the flow of a Bingham fluid, the area of the plug flow zone also 

increases, which should naturally tend to raise the dispersion coefficient in Figure 10. 

Nevertheless, the velocity gradient in the shear flow zone 
c   changes as c increases. 

Additionally, the exact value of 
2

2 )( −− PeK   depends on two conflicting effects: an 

increase in 
2

2 )( −− PeK   owing to a shift in the velocity gradient in the shear flow zone and 

a increase in 
2

2 )( −− PeK   due to an increase in the plug flow region. The former impact 

outweighs the latter for all   due to the two-dimensional structure of the flow in a channel, 

and we see a monotonic drop in 
2

2 )( −− PeK    as c  increases. When ,0=c (68) gives 

Annapurna and Gupta(1979). Plotting the dispersion coefficient versus reaction rate 

parameter values is shown in Figures 7 to 9. It is found that when the Hartmann number, 

electric number and porous parameter decreases, the dispersion coefficient rises. As a result, 

the laminar flow is maintained. 

 
Figure 4: Impact of We on 1K−  

 
Figure 5: Impact of c on 1K−  
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Figure 6: Impact of  on 1K−  

 

Figure 7: Impact of M on
2

2 )( −− PeK   

 

Figure 8: Impact of We on
2

2 )( −− PeK    
Figures 11 to 13 depict the mean concentration

m with time
 
for different values of 

Hartmann number, reaction rate parameter and porous parameter. Figure 11 and 12 shows 

that decrease in m with increasing the value of Hartmann number and reaction rate 

parameter. This phenomenon occurs due to the enhanced Lorentz force, which reduces the 

flow velocity and increases the residence time of the solute, leading to increased reaction and 

reduced mean concentration. Figure 13 show the plots of time dependent mean concentration 

versus for different values of porous parameter. It is observed that the mean concentration 

increases with increasing porous parameter, but it is reverse while increasing time. Figures 14 

to 16 depict the mean concentration
m with X

 
for different values of Hartmann number, 

rheological parameter and porous parameter. 
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Figure 9: Impact of   on
2

2 )( −− PeK   

 

 Figure 10: Impact of c  on
2

2 )( −− PeK   

Figure 14 shows that increase in peak of m with increasing the value of Hartmann 

number. This can lead to a more uniform distribution of solutes, resulting in a higher peak 

mean concentration.  From Figure 15 it is evident that decrease in m with increasing the 

value of rheological parameter. When the breadth of the channel or rheological parameters 

(like viscosity) increase, the peak of mean concentration in blood flow decreases. A wider 

channel allows for more dispersion of the solute, leading to a more uniform distribution and a 

lower peak concentration. Similarly, increased viscosity slows blood flow and reduces 

mixing, causing the solute to spread more evenly, which also results in a decrease in the peak 

concentration.Figure 16 show the plots of time dependent mean concentration versus X for 

different values of porous parameter. It is observed that the mean concentration decreases 

with increasing porous parameter but it reverse after reaching peak of mean concentration.  

The aforementioned conclusions make it easier to understand a number of 

physiological processes, such as the transport of nutrients and drugs through the human 

circulatory system. Blood oxygenators and other artificial blood equipment may additionally 

be utilised this. Blood flow in the human circulatory system is known to be influenced by 

elements such as the branching and curvature pulsatile flow, the elastic characteristics of the 

arterial wall, and other factors. Besides the effects of these problems, the non-Newtonian 

nature of blood is a crucial factor in the movement of any passive species in the blood stream 

(Ramana and Sarojamma, 2012). 
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5.Conclusion 

The dispersion coefficient drops when the wall catalyses the reaction. It is possible to 

draw some general mathematical conclusions from this study in addition to the biomechanical 

applications mentioned. The solute dispersion in a non-Newtonian fluid with interphase mass 

transfer is taken into account in this generalised model, which reduces to that of no wall 

response as interfacial transport decreases to zero )0( = . In this study, the diffusion 

coefficient, the classical convective coefficient, and the exchange coefficient which is mostly 

influenced by the wall response were the three primary dispersion coefficients.  

We study the effect of interfacial mass transfer on exchange coefficient, convective 

coefficient and dispersion coefficient. Wide range of parametric study has been done to 

understand the underlying physics and draws the following conclusions: Increase in the value 

of the wall reaction parameter, increases the exchange coefficient but it is unaffected by the 

remaining parameter such as magnetic field, electric number, rheological parameter, and 

porous parameter. The effects of couple field, electric number, rheological parameter, and 

porous parameter with interphase mass transfer must be taken into account in any 

investigation involving the control of haemolysis.  

 
Figure 11: Impact of M on m  

 
Figure 12: Impact of   on m  
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Figure 13: Impact of   on m  

 
Figure 14: Impact of M on m  

 
Figure 15: Impact of c on m  
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Figure 16: Impact of  on m  

Table 1 Equation roots for  =nn tan   
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