

Unveiling Neuropsychological Pathways for Targeted Interventions in Specific Reading Disorders SEEJPH Volume XXVII ,2025, ISSN: 2197-5248; Posted: 02-02-2025

Unveiling Neuropsychological Pathways for Targeted Interventions in Specific Reading Disorders

Naseeha Nazeer¹, Dr. Muhammed K.V.², Aswathy D.V.³, Sheeja S.⁴, Keerthi Jacob⁵

¹Junior Research Fellow, School of Pedagogical Sciences, Mahatma Gandhi University, Kottayam, Kerala. India ²Assistant Professor, School of Pedagogical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India ³Assistant Professor, St. Joseph College of Teacher Education for Women, Ernakulam, India ⁴Research Scholar, School of Pedagogical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India ⁵Research Scholar, St. Joseph's Training College, Mannanam, Kottayam, Kerala, India

KEYWORDS

ABSTRACT

Reading disorders give rise to significant challenges to academic achievement and daily communication, affecting millions worldwide. These disorders are upheld by specific neuropsychological deficits that disrupt the intricate processes involved in reading accuracy, fluency, and comprehension. This paper explores the neurological correlates of Specific Reading Disorders, offering a detailed analysis of the brain regions implicated in these deficits. By linking these insights to evidence-based intervention strategies, we propose targeted approaches to manage each aspect of reading difficulties. This neuropsychological perspective not only enhances our understanding of the brain's role in reading but also bridges the gap between neuroscience and education, providing a foundation for developing more effective, individualized interventions. The study emphasizes the importance of integrating scientific knowledge of brain function into educational practices to improve outcomes for individuals with Reading Disorders.

Introduction

Reading is a foundational skill that plays a crucial role in academic achievement and everyday communication (Lyon et al., 2003). However, for individuals with reading disorders, this skill often presents significant challenges, leading to persistent learning difficulties and negatively impacting various aspects of life (Snowling & Hulme, 2012). Reading disorders, are associated with specific neuropsychological deficits that affect different aspects of reading, including accuracy, fluency, and comprehension (DSM 5, 2013). This article will explore the neurological correlates of reading disorders, focusing on deficits in reading accuracy, fluency, and comprehension, and discuss evidence-based strategies for managing these challenges.

Need and Significance of the Study

Reading disorders are a pervasive issue, affecting a significant portion of the population, with longlasting impacts on educational attainment, career opportunities, and quality of life (Lyon et al., 2003). Despite the prevalence of these disorders, traditional intervention strategies often fail to address the underlying neuropsychological causes, leading to limited effectiveness and prolonged struggles for individuals. This study is significant because it addresses the critical need to align intervention strategies with the neuropsychological correlates of reading disorders. By understanding the specific brain regions and cognitive processes involved in reading, educators and clinicians can develop more targeted and effective interventions. This approach not only enhances the precision of current methodologies but also opens up new avenues for personalized education, where interventions are tailored to the unique neuropsychological profiles of individuals. Moreover, this study contributes to the broader field of educational neuroscience by demonstrating how scientific insights into brain function can be translated into practical, classroom-based strategies. It highlights the importance of a multidisciplinary approach, combining expertise from neuroscience, psychology, and education, to tackle the complex challenges of reading disorders. Ultimately, the findings of this study aim to improve educational outcomes, reduce the long-term impact of reading disorders, and promote a more inclusive and effective educational system.

The Neurological Basis of Reading Disorders

Reading is a complex cognitive process that involves the integration of multiple brain areas, each responsible for different components of the reading task (Dehaene, 2009). Understanding the neurological basis of reading disorders involves identifying which brain regions are implicated in different aspects of reading and how deficits in these areas can lead to specific reading difficulties. Reading disorders are associated with specific neuropsychological deficits that affect different aspects of reading, such as Reading accuracy, reading fluency, and comprehension (DSM 5, 2013). Following are the specific neurological correlates of these three critical aspects of reading disorders and the targeted intervention programs designed to develop each skill deficit in detail.

1. Reading Accuracy and Its Neurological Correlates

Reading accuracy refers to the ability to correctly recognize and decode words. This skill is primarily associated with the brain's left hemisphere, particularly in areas involved in phonological processing and orthographic mapping (Pugh et al., 2000).

Phonological Processing: The superior temporal gyrus (STG) and the inferior frontal gyrus (IFG) are critical for phonological processing, which involves the ability to manipulate and recognize the sounds of language. Individuals with dyslexia often show reduced activation in these areas, leading to difficulties in accurately decoding words (Temple et al., 2003).

Orthographic Mapping: The left occipitotemporal region, particularly the visual word form area (VWFA), is crucial for recognizing written words and mapping them onto their phonological representations. Deficits in this area can result in poor word recognition and difficulties in developing automaticity in reading (McCandliss, Cohen, & Dehaene, 2003).

Intervention Strategies for developing Reading accuracy:

i.Phonological Awareness Training: This strategy focuses on improving the individual's ability to recognize and manipulate the sounds of language. For example, phoneme segmentation and blending exercises can help strengthen the neural pathways associated with phonological processing in the STG and IFG (Wagner et al., 1999). Programs like "Phoneme Grapheme Mapping" allow learners to practice connecting sounds with their corresponding letters, reinforcing the neural connections needed for accurate word recognition (Ehri et al., 2001).

Detailed Strategy:

- a) Phoneme Segmentation and Blending: A teacher can begin by introducing a word like "cat" and breaking it down into its individual phonemes: /k/ /æ/ /t/. The students would be asked to repeat each sound and then blend them together to form the word. This exercise is repeated with different words, gradually increasing in complexity. For instance, starting with simple CVC (consonant-vowel-consonant) words like "bat," "sit," and then moving on to more complex words like "crash" or "stamp." b) Phoneme Grapheme Mapping: The "Phoneme Grapheme Mapping" technique involves having students write down a word like "ship" while simultaneously saying the sounds /ʃ/ /ɪ/ /p/. Students are given a template where they place a letter or group of letters (graphemes) in a corresponding box for each phoneme in the word. This practice helps solidify the connection between the sounds and their written forms, aiding in accurate decoding and word recognition.
- **ii.Multi-Sensory Instruction:** Multi-sensory approaches, such as the Orton-Gillingham method, engage multiple senses (visual, auditory, and kinesthetic) to reinforce the connection between letters and sounds (Birsh, 2011). This approach can help activate the VWFA and improve orthographic mapping by providing multiple pathways for word recognition. For instance, using sandpaper letters to trace while simultaneously saying the sound can create stronger neural associations.

Detailed Strategy

a) Orton-Gillingham Approach: This is a highly structured, multi-sensory method where students learn to read by engaging their visual, auditory, and kinesthetic senses. For example, when teaching the sound of the letter "b," a teacher might have a student trace the letter "b" in sand while

simultaneously saying the sound /b/. The student might also engage in a tactile activity, like forming the letter "b" using clay or playdough, reinforcing the sound-letter association. This repetitive, multisensory approach builds strong neural connections in the brain areas involved in reading accuracy. b) Air Writing: As a kinesthetic activity, students can "air write" letters or words while saying the corresponding sounds. For example, the teacher might say, "Write the letter 'm' in the air with your finger and say /m/ as you do it." This physical movement combined with auditory reinforcement strengthens the neural pathways responsible for accurate word recognition.

2. Reading Fluency and Its Neurological Correlates

Reading fluency involves the ability to read text accurately, quickly, and with proper expression. This skill requires the coordination of multiple cognitive processes and the smooth integration of visual and auditory information. The primary brain regions involved in reading fluency include the left occipitotemporal cortex, the posterior superior temporal sulcus (pSTS), and the cerebellum (Wolf & Katzir-Cohen, 2001).

Occipitotemporal Cortex: This region, particularly the VWFA, is involved in the rapid recognition of words, which is essential for fluent reading. Individuals with dyslexia often exhibit hypoactivation in this area, leading to slower reading speeds (Shaywitz et al., 2002).

Posterior Superior Temporal Sulcus (pSTS): The pSTS plays a role in integrating auditory and visual information, which is necessary for reading fluency (Blau et al., 2010). Deficits in this area can result in difficulties in synchronizing visual word recognition with auditory language processing.

Cerebellum: The cerebellum contributes to the automaticity and timing of reading processes. Impairments in cerebellar function can lead to disruptions in the smooth, coordinated movements required for fluent reading (Nicolson, Fawcett, & Dean, 2001).

Intervention Strategies for enhancing Reading Fluency:

- **i. Guided Repeated Reading:** This strategy involves the repeated reading of a passage until a desired level of fluency is achieved. It helps to reinforce the neural connections in the occipitotemporal cortex, improving the automaticity of word recognition (Therrien, 2004). For example, students might read a passage aloud multiple times under the guidance of a teacher, who provides immediate feedback on accuracy and expression. Detailed Strategy:
- a) Fluency Practice with Leveled Readers: A teacher selects a leveled reader (a book at an appropriate reading level for the student) and has the student read the passage aloud multiple times. After each reading, the teacher provides feedback on any misread words, discusses the expression, and praises the accurate reading. For instance, if a student struggles with the word "through," the teacher might stop and have the student sound out the word, explain its meaning, and then incorporate it into a sentence. This process is repeated until the student reads the passage fluently and confidently.
- **ii. Timed Reading Exercises:** Timed reading exercises can be used to improve the speed and automaticity of reading. By practicing reading under time constraints, students can strengthen the neural circuits in the VWFA and pSTS involved in rapid word recognition and integration (National Reading Panel, 2000). An example would be using a stopwatch to time how quickly a student can read a list of sight words, gradually increasing the speed over time. Detailed Strategy:
- a) Sight Word Drills: A teacher can create flashcards with high-frequency sight words like "the," "and," or "because." The student is timed while reading through these cards, with the goal of increasing speed and accuracy with each round. For example, if the student reads 20 sight words in 30 seconds, the next goal might be to read 25 words in the same amount of time. Over time, this exercise helps build speed and automaticity, which are critical for fluent reading.
- **b**) Speed Drills with Paragraphs: Students are given a short paragraph to read within a set time limit, perhaps one minute. After the first read-through, the teacher notes the number of words read correctly per minute (WPM). The student then practices reading the paragraph several times, each time aiming

to read more words correctly within the minute. The teacher tracks progress and provides encouragement, reinforcing improvements in fluency.

- c) Echo Reading: The teacher reads a passage aloud with proper expression and pacing, and the student then repeats it, mimicking the teacher's tone, speed, and inflection. This method, known as echo reading, helps students develop a sense of rhythm and pace in reading, crucial components of fluency.
- **iii. Cerebellar Training:** Activities that enhance cerebellar function, such as balance exercises and rhythm-based tasks, can indirectly support reading fluency. Programs that incorporate movement, such as "Interactive Metronome," have shown promise in improving timing and coordination, which are crucial for fluency (Taub et al., 2007). For instance, students might engage in clapping to a metronome beat while reading, helping to improve the timing of their reading processes. Detailed Strategy:
- a) Interactive Metronome Training: This training involves having students perform tasks to a steady metronome beat. For example, students might clap their hands or tap their foot to the beat while simultaneously reading a passage aloud. The rhythm helps with timing and coordination, which are important for smooth, fluent reading. As students improve, the metronome's tempo can be increased, challenging them to maintain fluency at faster speeds.
- **b**) Balance and Coordination Exercises: Incorporating exercises that improve balance, such as standing on one foot or walking on a balance beam, can be paired with reading aloud. For instance, a student might stand on a balance board while reading a passage, challenging the cerebellum to coordinate physical balance and reading fluency simultaneously. Over time, this can improve overall coordination and fluency in reading.

3. Reading Comprehension and Its Neurological Correlates

Reading comprehension involves understanding and interpreting the meaning of text. This skill is supported by higher-order cognitive processes, including working memory, inferencing, and integration of information across sentences and paragraphs (Perfetti, Landi, & Oakhill, 2005). The brain regions involved in reading comprehension include the left angular gyrus, the dorsolateral prefrontal cortex (DLPFC), and the anterior temporal lobe.

Left Angular Gyrus: This area is involved in the integration of semantic information and the generation of inferences. Deficits in this region can lead to difficulties in understanding the relationships between different parts of a text and in making logical connections (Seghier, 2013).

Dorsolateral Prefrontal Cortex (DLPFC): The DLPFC is critical for working memory and executive function, both of which are necessary for holding and manipulating information while reading (Swanson & Siegel, 2001). Impairments in this area can result in difficulties with complex text comprehension, particularly when it involves multiple steps or the integration of different pieces of information.

Anterior Temporal Lobe: This region is associated with the processing of semantic information and the understanding of complex language structures (Noppeney & Price, 2004). Deficits in the anterior temporal lobe can lead to difficulties in understanding nuanced language, metaphors, and abstract concepts.

Intervention Strategies for emerging reading comprehension:

i. Explicit Comprehension Strategy Instruction: Teaching students specific strategies for understanding text, such as summarization, questioning, and making inferences, can help compensate for deficits in the angular gyrus and DLPFC (Gersten et al., 2001). For example, using a "think-aloud" approach, where students verbalize their thought processes while reading, can help them become more aware of how to approach complex texts (Pressley, 2002). Detailed Strategy:

- a) Think-Alouds: The teacher models how to think aloud while reading a complex text. For instance, while reading a paragraph about ecosystems, the teacher might pause and say, "Hmm, I see that this sentence is talking about predators and prey. I'm going to think about what I already know about how animals hunt and see how it connects to this new information." The student then practices this strategy, verbalizing their thoughts and making connections as they read. This helps develop inferencing skills and the ability to integrate new information with prior knowledge.
- b) Reciprocal Teaching: This involves students taking turns being the "teacher" during group reading sessions. Each student leads the group in using comprehension strategies like summarizing, questioning, clarifying, and predicting. For instance, after reading a paragraph, one student might summarize it, another might ask a question about it, and a third might clarify any confusing points. This collaborative approach reinforces comprehension strategies and encourages deeper engagement with the text.
- **ii. Working Memory Training:** Exercises that target working memory can improve the ability to hold and manipulate information during reading, supporting the functions of the DLPFC (Gathercole & Alloway, 2008). For instance, students might practice recalling and summarizing paragraphs after reading them, gradually increasing the complexity of the texts as their skills improve. Detailed Strategy:
- a) Reading and Recall Exercises: A teacher might give students a short story or passage to read and then immediately ask them to recall as many details as possible. Initially, the texts might be short and simple, with questions focused on recalling straightforward facts (e.g., "What color was the cat?"). As students improve, the texts become longer and more complex, and questions might require recalling sequences of events or inferring details from context.
- b) Chunking and Summarization: Students are taught to break down large chunks of text into smaller, more manageable parts and summarize each part before moving on. For instance, after reading a paragraph, a student might be asked to summarize it in one sentence. This strategy supports the DLPFC's role in managing and manipulating information, leading to improved comprehension of longer, more complex texts.
- **iii. Semantic Mapping:** Creating visual representations of the relationships between concepts in a text can help students with deficits in the anterior temporal lobe understand and retain information. Techniques such as concept mapping or using graphic organizers can help students see the connections between ideas and improve their comprehension (Novak & Cañas, 2008). Detailed Strategy:
- a) Concept Mapping: When studying a topic like "The Water Cycle," the teacher helps students create a concept map. They start with the central concept (e.g., "Water Cycle") in the middle and branch out to related concepts like "Evaporation," "Condensation," and "Precipitation." Students add details and examples to each branch, visually organizing the relationships between different parts of the topic. This visual aid helps students see connections and improves their ability to understand and remember the material.
- b) Graphic Organizers: Tools like Venn diagrams, story maps, or cause-and-effect charts can be used to organize information from a text. For example, after reading a story, students might use a story map to outline the main characters, setting, problem, and resolution. This helps them understand the structure of the narrative and reinforces comprehension by organizing the information visually.

Conclusion

The growing body of research on the neuropsychological correlates of reading disorders highlights the importance of bridging the gap between neuroscience and education (Goswami, 2008). By understanding how specific brain regions contribute to different aspects of reading, educators and clinicians can develop more targeted and effective interventions. This approach not only addresses the immediate challenges faced by individuals with reading disorders but also contributes to a more comprehensive understanding of the cognitive processes involved in reading (Gabrieli, 2009). Understanding the neurological correlates of reading disorders provides valuable insights into the

brain's role in supporting reading and the specific deficits that can lead to reading difficulties. By linking specific reading skills to their underlying neural mechanisms, educators, clinicians, and researchers can develop more targeted and effective interventions for individuals with reading disorders. Future research should continue to explore the dynamic interplay between cognitive processes and brain function in reading, with the goal of improving outcomes for all learners. Bridging the gap between neuroscience and education is essential for translating these insights into practical strategies that can be implemented in educational settings, ultimately supporting the success of individuals with reading disorders across their lifespan.

References

- 1. Birsh, J. R. (2011). *Multisensory teaching of basic language skills*. Brookes Publishing. https://eric.ed.gov/?id=ED529098
- 2. Blau, V., Reithler, J., van Atteveldt, N., Seitz, J., Gerretsen, P., Goebel, R., & Blomert, L. (2010). Deviant processing of letters and speech sounds as proximate cause of reading failure: a functional magnetic resonance imaging study of dyslexic children. *Brain : a journal of neurology*, *133*(Pt 3), 868–879. https://doi.org/10.1093/brain/awp308
- 3. Dehaene, S. (2009). Reading in the brain: *The science and evolution of a human invention*. Viking. ISBN 0670021105
- 4. American Psychiatric Association. (2013). DSM-5 classification. American Psychiatric Publishing
- 5. Ehri, L. C., Nunes, S. R., Stahl, S. A., & Willows, D. M. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel's meta-analysis. *Review of Educational Research*, 71(3), 393–447. https://doi.org/10.3102/00346543071003393
- 6. Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. *Science*, 325(5938), 280–283. https://doi.org/10.1126/science.1171999
- 7. Gathercole, S. E., & Alloway, T. P. (2008). *Working memory and learning: A practical guide for teachers*. SAGE Publications. https://www.researchgate.net/publication/254392644_
- 8. Gersten, R., Fuchs, L. S., Williams, J. P., & Baker, S. (2001). Teaching reading comprehension strategies to students with learning disabilities: A review of research. *Review of Educational Research*, 71(2), 279–320. https://doi.org/10.3102/00346543071002279
- 9. Goswami, U. (2008). Reading, complexity and the brain. *Literacy*, 42(2), 67-74. https://doi.org/10.1111/j.1741-4369.2008.00484.x
- 10. Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. *Annals of Dyslexia*, 53, 1–14. https://doi.org/10.1007/s11881-003-0001-9
- 11. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. *Trends in Cognitive Sciences*, 7(7), 293–299. https://doi.org/10.1016/S1364-6613(03)00134-7
- 12. National Reading Panel. (2000). *Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction*.

 National Institute of Child Health and Human Development. https://www.nichd.nih.gov/sites/default/files/publications/pubs/nrp/Documents/report
- 13. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Dyslexia, development and the cerebellum. *Trends in Neurosciences*, 24(9), 515–516. https://doi.org/10.1016/S0166 2236(00)01896-8
- 14. Noppeney, U., & Price, C. J. (2004). An fMRI study of syntactic adaptation. *Journal of Cognitive Neuroscience*, 16(4), 702–713. https://doi.org/10.1162/089892904323057322
- 15. Novak, J. D., & Canas, A. J. (2008). The theory underlying concept maps and how to construct them. *Florida Institute for Human and Machine Cognition*. https://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf
- Perfetti, C., Landi, N., & Oakhill, J. (2005). The acquisition of reading comprehension skill. In M. J. Snowling & C. Hulme (Eds.), *The science of reading: A handbook*, (pp. 227 247). Blackwell Publishing. https://doi.org/10.1002/9780470757642.ch13

- 17. Pressley, T., Allington R.L., Pressley, M.(2003). *Reading instruction that works: The case for balanced teaching*. Guilford Press. ISBN 9781462551842
- 18. Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., ... & Shaywitz, S. E. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). *Mental Retardation and Developmental Disabilities Research Reviews*, 6(3), 207-213. https://doi.org/10.1002/1098-2779
- 19. Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. *The Neuroscientist*, 19(1), 43–61. https://doi.org/10.1177/1073858412440596
- 20. Shaywitz, S. E. (1998). Dyslexia. *The New England Journal of Medicine*, 338(5), 307-312. https://doi.org/10.1056/NEJM199801293380507
- 21. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., ... & Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. *Biological Psychiatry*, 52(2), 101-110. https://doi.org/10.1016/S0006-3223(02)01365-3
- 22. Snowling, M. J., & Hulme, C. (2012). Interventions for children's language and literacy difficulties. *International Journal of Language & Communication Disorders*, 47(1), 27-34. https://doi.org/10.1111/j.1460-6984.2011.00081.x
- 23. Swanson, H. L., & Siegel, L. (2001). Learning disabilities as a working memory deficit. *Issues in Education*, 7(1), 1-48. https://doi.org/10.1521/SCIE.7.1.1.19860
- 24. Taub, G. E., McGrew, K. S., & Keith, T. Z. (2007). Improvements in interval time tracking and effects on reading achievement. *Psychology in the Schools*, 44(8), 849-863. https://doi.org/10.1002/pits.20277
- 25. Temple, E., Poldrack, R. A., Salidis, J., Deutsch, G. K., Tallal, P., Merzenich, M. M., & Gabrieli, J. D. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. *Neuroreport*, *12*(2), 299–307. https://doi.org/10.1097/00001756-200102120-00024
- 26. Therrien, W. J. (2004). Fluency and comprehension gains as a result of repeated reading: A meta-analysis. *Remedial and Special Education*, 25(4), 252-261. https://doi.org/10.1177/07419325040250040801
- 27. Wagner, R. K., Torgesen, J. K., Rashotte, C. A., & Pearson, N. A. (1999). *Comprehensive test of phonological processing: CTOPP*. Austin, TX: Pro-ed.
- 28. Wolf, M., & Katzir-Cohen, T. (2001). Reading fluency and its intervention. *Scientific Studies of Reading*, 5(3), 211-239. https://doi.org/10.1207/S1532799XSSR0503_2