

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

PNPLA3 As a Genetic Predictor of Histopathological Severity by Liver Biopsy in Non Alcoholic Fatty Liver Disease

Enas Mahmoud Foda¹, Shereen Abu Bakr Saleh², Moheb Shoraby Eskandaros³, Nashwa Nagy El-Khazragy⁴, Heba Mohamed Abu Bakr⁵, Yasmin Mohamed Massoud⁶, Ghada Abdelrahman Mohamed⁷

 $1 Gastroenterology\ and\ Hepatology\ Unit,\ Department\ of\ Internal\ Medicine,\ Faculty\ of\ Medicine,\ Ain\ Shams\ University,\ Cairo\ 11591,\ Egypt,$

2Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt,

3Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt,

- 4Departments of Clinical Pathology-Hematology and Genetics and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt,
- 5Department of Internal Medicine, El Sahel Teaching Hospital, Cairo 11697, Egypt. ORCID id: 0009-0001-1803-8360.
- 6 Department of tropical medicine, Faculty of medicine, Ain Shams university, Cairo 11591, Egypt; yasminemasoud3@gmail.com
- 7Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt,

KEYWORDS

Nonalcoholic Fatty Liver Disease; Patatin-Like Phospholipase Domain-Containing Protein 3; rs738409; Mean Platelet Volume; Neutrophil to Lymphocyte Ratio.

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is defined by widespread steatosis within hepatocytes. The pathogenesis of NAFLD is not fully recognised. It is NAFLD is driven by genetic, environmental, and metabolic factors. Moreover, earlier studies have showed that some polymorphisms raise the possibility of NAFLD. The association between the risk of NAFLD and the patatin-like phospholipase domain-containing 3 (PNPLA3) gene was the most consistently observed.

Aim: To evaluate the effect of the rs738409 polymorphism of the PNPLA3 gene (encoding I148m) on NAFLD.

Patients and Methods: This study involved 30 participants, comprising 20 cases with NAFLD and 10 healthy individuals who served as a control group. The diagnosis was based on liver biopsies obtained during surgery from patients undergoing bariatric surgery or as part of the pre-donation evaluation process for liver transplantation candidates. The PNPLA3 gene variant (rs738409 C/G) was genotyped in blood cells using the TaqMan assay and quantitative polymerase chain reaction (qPCR). Results: Analysis of the PNPLA3 gene variant (rs738409 C/G) distribution revealed a greater prevalence of the heterozygous rs738409 CG and homozygous rs738409 GG variants among NAFLD cases compared to the control group (p = 0.048). Moreover, NAFLD patients carrying the homozygous GG variant showed a significantly increased incidence of hepatic fibrosis (p = 0.018). Additionally, PNPLA3 gene polymorphism emerged as a significant predictor of both liver steatosis and fibrosis in NAFLD cases (p-value equal 0.033 and p-value less than 0.001, correspondingly).

Conclusion: The PNPLA3 rs738409 polymorphism is strongly related to both the risk and severity of non-alcoholic fatty liver disease.

^{*}Corresponding author: Heba Mohamed Abu Bakr 1, E-mail: bakrhoba@gmail.com

PNPLA3 As a Genetic Predictor of Histopathological Severity by Liver Biopsy in Non Alcoholic Fatty Liver Disease
SEEJPH Volume XXVI. S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Introduction

Non-alcoholic fatty liver disease is characterised by disseminated hepatocyte steatosis, excluding extreme alcohol consumption and other hepatic diseases [1]. It approximately affects 32.4% of the general population [2,3]. NAFLD has a wide spectrum extending from nonalcoholic fatty liver, which doesn't cause significant health risks, to non-alcoholic steatohepatitis (NASH), hepatic cirrhosis, and finally hepatocellular carcinoma (HCC) [4,5]. Further, Non-alcoholic fatty liver disease is implicated in 36% of liver-related mortality, especially with progressive clinical forms of the disease [6].

The pathogenesis of NAFLD isn't fully recognized [7]. Recently, NAFLD is considered as a multifactorial disease driven by genetic, environmental, and metabolic factors [8]. Substantial inter-individual variations exist in the progression and disease severity in NAFLD cases sharing the same environmental and metabolic risk factors [9]. In addition, inter-ethnic variations and familial clustering point to the substantial impact of genetic factors in the pathophysiology of NAFLD [10]. Moreover, earlier studies have detected that some polymorphisms raise the risk of NAFLD [11-13]. Among these, the relationship between NAFLD risk and the patatin-like phospholipase domain-containing 3 gene is the most robustly observed [11]. The PNPLA3 protein is a transmembrane protein composed of 481 amino a`, predominantly expressed in hepatocytes, with additional expression in adipocytes and skin cells [14,15]. It functions as a lipoatrophic protein, having a key role in hepatic fat metabolism through its triacylglycerol lipase and acylglycerol O-acyltransferase activities. The nonsynonymous gene variant (C > G, rs738409), which lea to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), has been recognised as a major genetic risk factor for NAFLD and NASH [16].

The exact mechanism and outcomes of PNPLA3-I148M are not yet comprehensively known. Nevertheless, this variant can produce both a loss and gain of function. The loss of function occurs by impairing lipolytic activity which enhance enhancing triglyceride deposition [17]. Additionally, it was suggested that this variant promotes intracellular lipid accumulation through its effects on the excretion of apoB-containing lipoproteins and esterification of very low-density lipoproteins [18]. Moreover, this variant results in impaired triglyceride hydrolysis in hepatocytes [19]. Additionally, PNPLA3 encodes adipo-nutrients located on lipid droplets and the endoplasmic reticulum within hepatocytes, which may represent another mechanism by which the PNPLA3-I148M mutation contributes to increased hepatic triglyceride accumulation [20]. Evidence also indicates increased hepatic triglyceride synthesis by promoting the function of lysophosphatidic acid acyltransferase through the gain of function caused by this variant [21]. Furthermore, this mutation promotes the development of hepatic fibrosis by impairing retinyl-palmitate lipase activity, leading to the upregulation of proinflammatory cytokines, c-Jun N-terminal kinase (JNK), & activator protein-1 (AP-1), as well as increasing matrix metalloproteinase expression [22]. Other studies have confirmed these findings, showing that the PNPLA3-I148M variant contributes to mitochondrial dysfunction by causing cholesterol deposition, which reduces ABCG1 protein expression and inhibits cholesterol efflux, thereby driving the progression of hepatic fibrosis [23]. Hence, we aim to assess the effect of the PNPLA3 (rs738409) gene polymorphism on NAFLD.

Patients and Methods

This study involved 30 participants, 20 NAFLD cases and 10 normal individuals as a control group enrolled from the Internal Medicine and Surgical departments at Ain Shams University Hospitals from December 2021 to February 2023. Participants were diagnosed based on liver biopsies obtained during surgery from bariatric surgery candidates (NAFLD cases) and as part of a pre-donation evaluation for individuals being considered for liver transplantation, serving as the control group.

PNPLA3 As a Genetic Predictor of Histopathological Severity by Liver Biopsy in Non Alcoholic Fatty Liver Disease
SEEJPH Volume XXVI. S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Patients 18 years and older were involved in the research, excluding those with hepatic diseases of other known aetiologies, such as autoimmune hepatitis, viral hepatitis, and Wilson's disease. In addition, those with alcoholic liver disease, medication use known to induce hepatic steatosis or immunosuppression, and a history of malignancy or haematological diseases or current infection were also excluded. All participants underwent the following:

A complete blood count and calculation of the neutrophil to lymphocyte ratio (NLR) and mean platelet volume (MPV) [24],

Genotyping of the PNPLA3 gene variant (rs738409 C/G) has been carried out utilizing the TaqMan assay qPCR in blood cells. DNA was extracted from all participants with the Genomic Whole Blood Extraction Kit (Puregene, USA) with regard to the manufacturer's instructions. The DNA was then dissolved in TE buffer, and its purity and concentration were assessed using spectrophotometry. Real-time PCR has been utilized to find single nucleotide polymorphisms in the PNPLA3 gene (rs738409), and allelic discrimination of the PNPLA3 polymorphisms was analyzed using the TaqMan assay,

Abdominal ultrasonography,

Liver biopsy specimens analysed using the scoring system in Table 1.

Table 1 The clinical research network system for scoring activity and fibrosis in NAFLD [25]

	Hepatic lobular inflammation	Hepatocellular ballooning
0 = < 5%	0 = None	0 = None
1 = 5-33%	1 = < 2	1 = Few ballooned cells
2 = 34-66%	2 = 2-4	2 = Many ballooned cells
3 = > 66%	3 = > 4	

The protocol of the study complies with the ethics principles of the 1975 Declaration of Helsinki and its appendices. It has been authorized by the Clinical Research Ethics Committee of the Faculty of Medicine, Ain Shams University (FMASU MD 284/2018). Written informed agreement has been acquired from all contributors.

Statistical analysis

Statistical analysis has been conducated, utilizing the Chi-square test, student t- test, Person's correlation coefficient, regression coefficient, and Analysis of variance [ANOVA] test by SPSS V25. Data have been presented as mean \pm standard deviation, median and range, or percentage and number. P-value not more than 0.05 has been regarded significant.

Results

The present research was performed on 30 participants. They were categorized into two groups following histopathology. The NAFLD group comprised of 20 patients, and the control group comprised of 10 healthy participants. Table 2 lists the clinical data of the study participants. NAFLD cases had higher BMI and MPV compared to the control group (p-value less than 0.001 and p = 0.012, Table 2). Additionally, Table 2 highlights the differences in ultrasound and liver biopsy findings between the examined groups (p-value not more than 0.05). A statistically insignificant association has been detected between the NLR and MPV, liver enzymes, lipid panel, body mass index (BMI), the occurrence of fatty liver on ultrasound, or liver steatosis and fibrosis in liver biopsy (p-value not less than 0.05, Supp. Table 1). A significant association existed between the BMI and the existence of fatty liver on ultrasound and steatosis and fibrosis in liver biopsy (p-value equal 0.04, 0.022, and 0.035, respectively, Supp. table 2).

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Table 2 Study participant characteristics

Variable		NAFLD (n=20)	Control (n=10)	P value	
Sex	Male	12 (60%)	5 (50%)	0.602	
Sex	Female	8 (40%)	5 (50%)	0.002	
		Mean ± SD	Mean ± SD		
Age (years)		28.75±5.26	28.50±6.55	0.911	
Body mass index		33.50±5.30	22.90±2.18	< 0.001	
Total leucocytes count (x103)/μΙ	L	6.77±2.23	6.51±1.95	0.753	
Hemoglobin (g/dL)		13.51±1.33	13.83±1.91	0.596	
Platelets count (x103)/µL		269.45±80.81	267±48.78	0.931	
Aspartate aminotransferase (U/m	nL)	21 (10.6 – 63.0)	15 (13.0 – 28.0)	0.42	
Alanine aminotransferase (U/mL		21 (8 – 90)	15 (9.0 – 33.0)	0.28	
Serum albumin (mg/dL)	•	4.49±0.45	4.41±0.42	0.641	
Total bilirubin (mg/mL)		0.62 (0.3 – 1.6)	0.5 (0.37 – 1.09)	0.603	
Direct bilirubin (mg/mL)		0.2 (0.1 – 0.4)	0.2 (0.1 – 0.4)	0.81	
International normalized ratio		1.0 (0.9 – 1.2)	1.0 (0.8 – 1.04)	0.14	
Blood urea nitrogen (mg/mL)		14.50±4.75	14.70±4.21	0.911	
Creatinine (mg/mL)		0.89±0.14	0.78±0.13	0.050	
Total cholesterol (mg/mL)		196.50 ±37.68	174.60±22.32	0.103	
High density lipoprotein (mg/mL	L)	38.90±9.06	45.10±9.04	0.088	
Triglycerides (mg/mL)		160.05±66.38	112.60±52.41	0.059	
LDL-Cholesterol (mg/mL)		111.35±20.64	106.30±21.56	0.539	
Fasting blood glucose (mg/mL)		82.95±10.68	86.20±8.32	0.408	
2 hours PP blood glucose (mg/m	L)	100.35±15.70	107.60±16.72	0.253	
HbA1C		5.39±0.39	5.45±0.37	0.693	
Mean platelet volume (fL)		10.39±1.10	9.14±1.39	0.012	
Neutrophil to lymphocyte ratio		1.47±0.28	1.49±0.38	0.863	
1 7 1	Grade 0	3 (15%)	10 (100%)		
	Grade I	12 (60)	0	0.001	
Fatty liver in ultrasound	Grade II	4 (20%)	0	<0.001	
	Grade III	1 (5%)	0		
TT	Grade I	18 (90%)	0		
Hepatic steatosis	Grade II	2 (10%)	0	-	
	No	3 (15%)	9 (90%)		
T 1 1 ' C	Mild	12 (60%)	1 (10%)	0.002	
Lobular inflammation	Moderate	1 (5%)	0	0.002	
	Severe	4 (20%)	0		
	No	3 (15%)	10 (100%)		
Hepatocyte ballooning	Mild	7 (35%)	0	< 0.001	
	Severe	10 (50%)	0		
II. a. die Cileacie	No	3 (15%)	10 (100%)	.0.001	
Hepatic fibrosis	Yes	17 (85%)	0	<0.001	

Supplementary table 1 The correlation of Neutrophil to lymphocyte ratio and the laboratory results, presence of fatty liver on the ultrasound, and findings of liver biopsy among NAFLD patients

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

	Neutrophil to lymphocyte ratio	
	r	P value
Age	0.100	0.674
Aspartate aminotransferase	-0.153	0.519
Alanine aminotransferase	-0.026	0.914
Total leucocytes count	0.038	0.874
Total Cholesterol	0.081	0.735
Low density lipoprotein	0.274	0.243
Triglycerides	0.027	0.911
Body mass index	0.083	0.728
Fatty liver in ultrasound	0.123	0.605
Hepatic steatosis	0.209	0.377
Hepatic fibrosis	0.109	0.648
Mean platelet volume	0.051	0.832

Supplementary table 2 Correlation between Body mass index and existence of fatty liver on the ultrasound and grade of steatosis and fibrosis in liver biopsy

	Body mass index	
	r	P value
Fatty liver in ultrasound	0.619	0.04
Hepatic steatosis	0.508	0.022
Hepatic fibrosis	0.474	0.035

The distribution of PNPLA3 gene variant (rs738409 C/G) revealed a greater prevalence of the heterozygous rs738409 CG & homozygous rs738409 GG variants in NAFLD cases than the control group (p-value equal 0.048, Table 3). Table 4 presents the grades of hepatic steatosis, hepatic fibrosis, and hepatocyte ballooning in NAFLD cases based on PNPLA3 gene variant status. NAFLD patients with the homozygous GG variant exhibited a higher incidence of hepatic fibrosis (p-value equal 0.018). However, no significant variation was found regarding hepatocyte ballooning and hepatic steatosis (p-value not less than 0.05), although those with the homozygous rs738409 GG variant had grade II steatosis with a higher prevalence of hepatocytes ballooning. Further, no significant variations occurred in the NLR, ALT, AST, total cholesterol, LDL cholesterol, and triglyceride values in NAFLD cases according to the PNPLA3 gene rs738409C/G variant status ($p \ge 0.05$, Supp. table 3), while MPV was significantly various between the groups (p-value equal 0.023, Supp. table 3).

Table 3 Distribution of the PNPLA3 polymorphism among NAFLD and control groups

PNPLA3 polymorphism	Total participants (n=30)	NAFLD (n=20)	Control (n=10)	P value
	n (%)	n (%)	n (%)	
Homozygous CC	10 (33.3%)	4 (20%)	6 (60%)	
Heterozygous CG	9 (30%)	7 (35%)	2 (20%)	0.048
Homozygous GG	11 (36.7%)	9 (45%)	2 (20%)	

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Table 4 The hepatic steatosis, hepatocellular ballooning, and hepatic fibrosis in NAFLD cases according to the PNPLA3 polymorphism

Variable		Homozygous CC	Heterozygous CG	Homozygous GG	P value	
Hanatia ataataais	Grade I	4 (100%)	7 (100%)	7 (77.78%)	0.155	
Hepatic steatosis	Grade II	0	0	2 (22.22%)	0.155	
	No	0	3 (42.86%)	0		
Hepatocyte ballooning	Mild	1 (25%)	2 (28.57%)	4 (44.44%)	0.126	
	Severe	3 (75%)	2 (28.57%)	5 (55.56%)		
Hepatic fibrosis	No	4 (100%)	3 (42.86%)	0	0.019	
	Yes	0	4 (57.14%)	9 (100%)	0.018	

Supplementary table 3 Laboratory variables in NAFLD patients according to the PNPLA3 polymorphism

Variable	Homozygous CC	Heterozygous CG	Homozygous GG	P value	
v arrable	Mean ± SD	Mean ± SD	Mean ± SD	- P value	
Neutrophil to lymphocyte ratio	1.39±0.10	1.38±0.29	1.56±0.32	0.409	
Mean platelet volume	11.51±0.513	9.71±0.93	10.42±1.04	0.023	
Aspartate aminotransferase (IU/mL)	17.75±5.25	19.42±3.99	19.44±4.39	0.795	
Alanine aminotransferase (IU/mL)	14±3.16	29.14±5.07	27±11.48	0.413	
Cholesterol (mg/dL)	193.75±17.01	188.14±27.13	204.22±50.80	0.712	
LDL- cholesterol (mg/dL)	119.25±25.60	109±22.88	109.66±18.27	0.715	
Triglycerides (mg/dL)	172.50±61.84	130.42±50.08	177.55±77.19	0.358	

P for One Way ANOVA test

Table 5 shows that hepatic steatosis correlated positively with PNPLA3 gene polymorphism and BMI (p = 0.033 and p < 0.001, correspondingly). Additionally, they were predictors for hepatic steatosis (p = 0.033 and p < 0.001, correspondingly, Supp. table 4). Table 6 shows that hepatic fibrosis correlated positively with PNPLA3 gene polymorphism, BMI, and total cholesterol (p < 0.001, p < 0.001, and p = 0.049, correspondingly). However, PNPLA3 gene polymorphism was the only predictor for hepatic fibrosis (p < 0.001, Supp. table 5).

 Table 5 Correlations between hepatic steatosis and other studied parameters

	Hepatic steatosi	
	r	P value
Neutrophil to lymphocyte ratio	0.209	0.377
Mean platelet volume	0.168	0.479
Total cholesterol	0.436	0.055
LDL-Cholesterol	0.246	0.295
Body mass index	0.863	< 0.001
PNPLA3 gene polymorphism	0.391	0.033

Supplementary table 4 Predictors of hepatic steatosis

PNPLA3 As a Genetic Predictor of Histopathological Severity by Liver Biopsy in Non Alcoholic Fatty Liver Disease

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

	Unstandardized		Standardized	t	P value
	Coefficie	Coefficients			
	В	Std. Error	Beta		
Neutrophil to lymphocyte ratio	2.438	5.176	0.064	0.471	0.646
Mean platelet volume	-0.324	1.338	-0.033	-0.242	0.813
Total cholesterol	-0.095	0.053	-0.331	-1.779	0.101
LDL-Cholesterol	0.113	0.080	0.216	1.422	0.180
Body mass index	2.076	0.377	1.019	5.511	< 0.001
Fatty liver in ultrasound	-0.097	3.688	-0.005	-0.026	0.980
PNPLA3 gene polymorphism	5.318	2.365	0.391	2.249	0.033

Table 6 Correlations between hepatic fibrosis and other studied parameters

	Hepatic fibrosis	
	r	P value
Neutrophil to lymphocyte ratio	0.094	0.623
Mean platelet volume	0.127	0.503
Total cholesterol	0.363	0.049
LDL-Cholesterol	0.067	0.724
Body mass index	0.642	< 0.001
PNPLA3 gene polymorphism	0.689	< 0.001

Supplementary table 5 Predictors of hepatic fibrosis

	Unstandardized Coefficients		Standardized Coefficients	t	P value
	B Std. Error		Beta		
Neutrophil to lymphocyte ratio	0.239	0.194	0.149	1.231	0.971
Mean platelet volume	-0.046	0.051	-0.121	-0.899	0.566
Total cholesterol	-0.002	0.003	-0.086	-0.483	0.635
LDL-Cholesterol	0.000	0.004	-0.015	-0.098	0.586
Body mass index	0.040	0.013	0.543	3.205	0.367
PNPLA3 gene polymorphism	0.310	0.078	0.522	3.983	< 0.001

Discussion

The 1st genome-wide association study (GWAS) regarding NAFLD found that the allele of PNPLA3 rs738409 is significantly correlated with hepatic steatosis and inflammation [26]. This finding gave new insight into the pathogenesis of NAFLD. Since then, knowledge regarding the genetic constituents of NAFLD has substantially increased. Several studies have reported that this variant leads to the progress of NAFLD by increasing triglyceride production and deposition in hepatocytes, increasing the risk of hepatic hepatocyte ballooning, steatosis, and lobular inflammation [27,28]. Furthermore, PNPLA3 rs738409 polymorphism is strongly linked to NASH, cirrhosis, HCC, and death [29-31]. The impact of this polymorphism is observed even in individuals with lean NAFLD [32].

The current investigation observed a greater occurrence of the heterozygous rs738409 CG and homozygous rs738409 GG PNPLA3 gene variants in the NAFLD group compared to the control group. Moreover, NAFLD patients with the heterozygous rs738409 CG & homozygous rs738409 GG variants had a greater incidence of hepatic fibrosis than those with the homozygous rs738409 CC variant. Additionally, the PNPLA3 rs738409 polymorphism was identified as a significant predictor of both hepatic steatosis and fibrosis. The results align with a meta-analysis consisted of 16

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

investigations that examined 2,124 patients and detected that the homozygous PNPLA3 rs738409 GG had a 73% higher hepatic fat content in comparison to the homozygous rs738409 CC polymorphism. In addition, rs738409 GG had a greater risk of developing fibrosis in contrast to homozygous CC [16].

In agreement with the current study, a case—control research including the genomic data of 2,950 NAFLD patients and 12,907 healthy controls detected that the incidence of the phospholipase domain-containing 3 rs738409 GG allele was higher in NAFLD cases in comparison with the control group. Furthermore, the PNPLA3 rs738409 GG and GC variants had a greater percentage of NAFLD patients compared to the PNPLA3 rs738409 CC variant (19.9% vs 16%). In addition, the PNPLA3 rs738409 GG allele was an independent risk factor for NAFLD [33].

In agreement with the current results, a GWAS by Anstee et al. stated that the PNPLA3 rs738409 variant is a risk factor for full pathological spectrum of NAFLD [28]. Another study found that the BMI, serum triglyceride, and AST concentration were risk factors for NAFLD [34]. In addition, a meta-analysis consisting of 20 investigations recorded a significant correlation between NAFLD susceptibility and PNPLA3 rs738409 polymorphism [20]. Nevertheless, in contrast to our outcomes, Li et al. [35] detected no correlation between hepatic steatosis and PNPLA3 rs738409 gene polymorphism.

Many studies have confirmed a strong relationship between metabolic syndrome and the grade of fibrosis and steatosis in NAFLD [36,37]. In agreement with earlier studies [33,34,38], NAFLD patients had higher BMI values than those of the control group. Moreover, a strong association has been observed between the BMI and hepatic steatosis and fibrosis in liver biopsy.

Substantial evidence suggests that the stimulation of the immune system with proinflammatory mediators secreted by visceral adipose tissue is a crucial element of disease severity and progression. In addition, intrahepatic lipids are implicated to induce oxidative stress, triggering portal and lobular inflammation, characterising the severe histological forms of the disease [39]. Furthermore, growing evidence suggests that the NLR is a useful marker for assessing the severity of NAFLD [40]. In contrast to our findings, Lesmana et al. [38] stated that cases with moderate to severe steatosis exhibited a higher NLR compared to those with mild steatosis. Additionally, Yilmaz et al. [41] noted that cases with NASH had a greater NLR compared to controls. However, in agreement with the present results, a large cohort study found that the NLR is not related to fibrosis and inflammation in NAFLD [42].

In agreement with an earlier study [43], NAFLD patients had a greater MPV than the control group. However, MPV wasn't statistically different between the NAFLD group and controls, nor was a predictive factor for NAFLD in another study [34].

A major strength of the present research is the evaluation of hepatic disease with biopsy-proven NAFLD, which is the golden standard for evaluating the liver disease severity. However, the present research is restricted by the small sample size. From the current results, PNPLA3 genotyping may improve risk stratification and prognostication and allow prioritisation of intensive interventions in NAFLD patients [44]. Additionally, with this knowledge, it has become possible to apply its effects on NAFLD into clinical applications, such as innovative drugs, and discover potential targets to treat the disease [45,46]. In this context, antisense oligonucleotides-mediated silencing of PNPLA3 gene was investigated in a mice model. Notably, there was a decline in the NAFLD activity score, hepatic inflammation, steatosis, and fibrosis grade [47].

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Conclusions

The PNPLA3 rs738409 polymorphism is strongly related to to both the susceptibility & severity of non-alcoholic fatty liver disease.

References

- [1] Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(8):739-752. doi:10.1016/S2468-1253(20)30077-7
- [2] Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851-861. doi:10.1016/S2468-1253(22)00165-0
- [3] Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol. 2018;69(4):896-904. doi: 10.1016/j.jhep.2018.05.036
- [4] Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017: The Growing Impact of NAFLD. Hepatology. 2020;72(5):1605-1616. doi:10.1002/hep.31173
- [5] Yip TC, Vilar-Gomez E, Petta S, et al. Geographical similarity and differences in the burden and genetic predisposition of NAFLD. Hepatology. 2023;77(4):1404-1427. doi:10.1002/hep.32774
- [6] Alvarez CS, Graubard BI, Thistle JE, Petrick JL, McGlynn KA. Attributable Fractions of Nonalcoholic Fatty Liver Disease for Mortality in the United States: Results from the Third National Health and Nutrition Examination Survey With 27 Years of Follow-up. Hepatology. 2020;72(2):430-440. doi:10.1002/hep.31040
- [7] Ganji SH, Kashyap ML, Kamanna VS. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism. 2015;64(9):982-990. doi: 10.1016/j.metabol.2015.05.002
- [8] Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999-2014.e1. doi: 10.1053/i.gastro.2019.11.312
- [9] Calzadilla Bertot L, Adams LA. The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(5):774. Published 2016 May 20. doi:10.3390/ijms17050774
- [10] Rich NE, Oji S, Mufti AR, et al. Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol. 2018;16(2):198-210.e2. doi: 10.1016/j.cgh.2017.09.041
- [11] Balcar L, Semmler G, Oberkofler H, et al. PNPLA3 is the dominant SNP linked to liver disease severity at time of first referral to a tertiary center. Dig Liver Dis. 2022;54(1):84-90. doi: 10.1016/j.dld.2021.06.015
- [12] Gao F, Zheng KI, Chen SD, et al. Individualized Polygenic Risk Score Identifies NASH in the Eastern Asia Region: A Derivation and Validation Study. Clin Transl Gastroenterol. 2021;12(3): e00321. Published 2021 Mar 10. doi:10.14309/ctg.0000000000000321
- [13] Huh Y, Cho YJ, Nam GE. Recent Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr. 2022;31(1):17-27. doi:10.7570/jomes22021
- [14] Basu Ray S. PNPLA3-I148M: a problem of plenty in non-alcoholic fatty liver disease. Adipocyte. 2019 Dec;8(1):201-208. doi: 10.1080/21623945.2019.1607423. PMID: 31062641; PMCID: PMC6768214.
- [15] Cherubini A, Casirati E, Tomasi M, Valenti L. PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opin Ther Targets. 2021;25(12):1033-1043. doi:10.1080/14728222.2021.2018418
- [16] Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53(6):1883-1894. doi:10.1002/hep.24283
- [17] He S, McPhaul C, Li JZ, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010;285(9):6706-6715. doi:10.1074/jbc.M109.064501
- [18] Pirazzi C, Adiels M, Burza MA, et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J Hepatol. 2012;57(6):1276-1282. doi: 10.1016/j.jhep.2012.07.030

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

- [19] Luukkonen PK, Nick A, Hölttä-Vuori M, et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight. 2019;4(16): e127902. Published 2019 Aug 22. doi: 10.1172/jci.insight.127902
- [20] Zhao Y, Zhao W, Ma J, Toshiyoshi M, Zhao Y. Patatin-like phospholipase domain-containing 3 gene (PNPLA3) polymorphic (rs738409) single nucleotide polymorphisms and susceptibility to nonalcoholic fatty liver disease: A meta-analysis of twenty studies. Medicine (Baltimore). 2023;102(10):e33110. doi:10.1097/MD.0000000000033110
- [21] Green CJ, Johnson D, Amin HD, et al. Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line. Am J Physiol Endocrinol Metab. 2015;309(6): E511-E522. doi:10.1152/ajpendo.00594.2014
- [22] Bruschi FV, Claudel T, Tardelli M, et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology. 2017;65(6):1875-1890. doi:10.1002/hep.29041
- [23] Gou Y, Wang L, Zhao J, et al. PNPLA3-I148M Variant Promotes the Progression of Liver Fibrosis by Inducing Mitochondrial Dysfunction. Int J Mol Sci. 2023;24(11):9681. Published 2023 Jun 2. doi:10.3390/ijms24119681
- [24] Abdel-Razik A, Mousa N, Shabana W, et al. A novel model using mean platelet volume and neutrophil to lymphocyte ratio as a marker of nonalcoholic steatohepatitis in NAFLD patients: multicentric study. Eur J Gastroenterol Hepatol. 2016;28(1): e1-e9. doi:10.1097/MEG.0000000000000486
- [25] Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-21. doi: 10.1002/hep.20701.
- [26] Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-1465. doi:10.1038/ng.257
- [27] Mullins VA, Bresette W, Johnstone L, Hallmark B, Chilton FH. Genomics in Personalized Nutrition: Can You "Eat for Your Genes"? Nutrients. 2020;12(10):3118. Published 2020 Oct 13. doi:10.3390/nu12103118
- [28] Anstee QM, Darlay R, Cockell S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol 2023; 78(5):1085-1086. doi: 10.1016/j.jhep.2020.04.003
- [29] Dhar D, Loomba R. Emerging Metabolic and Transcriptomic Signature of PNPLA3-Associated NASH. Hepatology. 2021;73(4):1248-1250. doi:10.1002/hep.31735
- [30] Kim HS, Xiao X, Byun J, et al. Synergistic Associations of PNPLA3 I148M Variant, Alcohol Intake, and Obesity with Risk of Cirrhosis, Hepatocellular Carcinoma, and Mortality. JAMA Netw Open. 2022;5(10):e2234221. Published 2022 Oct 3. doi:10.1001/jamanetworkopen.2022.34221
- [31] Xia M, Ma S, Huang Q, et al. NAFLD-related gene polymorphisms and all-cause and cause-specific mortality in an Asian population: the Shanghai Changfeng Study. Aliment Pharmacol Ther. 2022;55(6):705-721. doi:10.1111/apt.16772
- [32] Vilarinho S, Ajmera V, Zheng M, Loomba R. Emerging Role of Genomic Analysis in Clinical Evaluation of Lean Individuals With NAFLD. Hepatology. 2021;74(4):2241-2250. doi:10.1002/hep.32047
- [33] Oh S, Lee J, Chun S, et al. Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study. Nutrients. 2022;15(1):152. Published 2022 Dec 28. doi:10.3390/nu15010152
- [34] Tuzer C, Sertbas Y, Duman E, et al. The role of mean platelet volume in nonalcoholic fatty liver disease without cardiovascular comorbidities, obesity and diabetes mellitus. Eur J Gastroenterol Hepatol. 2021;33(9):1222-1228. doi:10.1097/MEG.0000000000002189
- [35] Li X, Zhao Q, Wu K, Fan D. I148M variant of PNPLA3 confer increased risk for nonalcoholic fatty liver disease not only in European population, but also in Chinese population. Hepatology. 2011;54(6):2275. doi:10.1002/hep.24567
- [36] Shi FY, Gao WF, Tao EX, Liu HQ, Wang SZ. Metabolic syndrome is a risk factor for nonalcoholic fatty liver disease: evidence from a confirmatory factor analysis and structural equation modeling. Eur Rev Med Pharmacol Sci. 2016;20(20):4313-4321.
- [37] Mikolasevic I, Orlic L, Franjic N, Hauser G, Stimac D, Milic S. Transient elastography (FibroScan(®)) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease Where do we stand? World J Gastroenterol. 2016;22(32):7236-7251. doi:10.3748/wjg. v22.i32.7236
- [38] Lesmana CRA, Kencana Y, Rinaldi I, et al. Diagnostic Value of Neutrophil to Lymphocyte Ratio in Non-Alcoholic Fatty Liver Disease Evaluated Using Transient Elastography (TE) with Controlled Attenuated Parameter (CAP). Diabetes Metab Syndr Obes. 2022; 15:15-22. Published 2022 Jan 5. doi:10.2147/DMSO.S330526
- [39] Parthasarathy G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Commun. 2020;4(4):478-492. Published 2020 Jan 14. doi:10.1002/hep4.1479

- [40] WenYi J, Ting Q, PiaoPiao Y, JinMing W. Association Between Neutrophil-to-Lymphocyte Ratio with Inflammatory Activity and Fibrosis in Non-alcoholic Fatty Liver Disease. Turk J Gastroenterol. 2022;33(1):53-61. doi:10.5152/tjg.2022.20715
- [41] Yilmaz H, Yalcin KS, Namuslu M, et al. Neutrophil-Lymphocyte Ratio (NLR) Could Be Better Predictor than C-reactive Protein (CRP) for Liver Fibrosis in Non-alcoholic Steatohepatitis (NASH). Ann Clin Lab Sci. 2015;45(3):278-286.
- [42] Kara M, Dogru T, Genc H, et al. Neutrophil-to-lymphocyte ratio is not a predictor of liver histology in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27(10):1144-1148. doi:10.1097/MEG.00000000000000005
- [43] Karaoğullarından Ü, Üsküdar O, Odabaş E, et al. Is mean platelet volume a simple marker of non-alcoholic fatty liver disease? Indian J Gastroenterol. 2023;42(2):219-225. doi:10.1007/s12664-022-01330-8
- [44] Chen VL, Oliveri A, Miller MJ, et al. PNPLA3 Genotype and Diabetes Identify Patients with Nonalcoholic Fatty Liver Disease at High Risk of Incident Cirrhosis. Gastroenterology. 2023;164(6):966-977.e17. doi: 10.1053/j.gastro.2023.01.040
- [45] Pirola CJ, Sookoian S. Personalized medicine in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2022;28(4):935-938. doi:10.3350/cmh.2022.0175
- [46] Sookoian S, Pirola CJ. Genetics in non-alcoholic fatty liver disease: The role of risk alleles through the lens of immune response. Clin Mol Hepatol. 2023;29(Suppl): S184-S195. doi:10.3350/cmh.2022.0318
- [47] Lindén D, Ahnmark A, Pingitore P, et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019; 22:49-61. doi: 10.1016/j.molmet.2019.01.013