SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Plyometric Exercise as a Therapeutic Strategy for Improving Strength and Postural Control in Stroke Patients: A Narrative Review

Ahmed K. Abd Elsabour¹, Hoda M. Zakaria², Ebtesam M. Fahmy³, Sahar M Adel Elhakk^{4,5}, Azza Sayed Abdelrehim Khalil⁶, Mohamed Salah El-Sayed^{7,8}, Shreen I. Taha¹

- ¹ Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Beni-Suef University, Egypt.
- ² Department of Physical Therapy for Neurology and Neurosurgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt.
- ³ Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt.
- ⁴ Professor of Basic Science Department. Faculty of Physical Therapy, GALALA University. Suez Egypt.
- ⁵ Professor of Basic Science Department. Faculty of Physical Therapy, Cairo University. Giza. Egypt
- ⁶ Department of Rehabilitation Sciences Collage of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Saudi-Arabia-Riyadh
- ⁷ Assistant Professor, Physiotherapy Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Jordan.
- ⁸ Lecturer, Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, Egypt
- *Corresponding author: Ahmed K. Abd Elsabour, E-mail: ahmedkamel@pt.bsu.edu.eg

KEYWORDS

ABSTRACT

Plyometric exercise, Stroke rehabilitation, Postural control, Muscle strength, Neuromuscular adaptation. Stroke is a leading cause of disability worldwide, often resulting in muscle weakness and impaired postural control that hinder functional independence. Traditional rehabilitation strategies have shown limited effectiveness in fully restoring motor function. Plyometric exercise, characterized by rapid, explosive movements, has emerged as a promising intervention to enhance neuromuscular coordination, strength, and postural stability in stroke patients. This narrative review explores the theoretical framework, biomechanical principles, and neurophysiological adaptations associated with plyometric training in stroke rehabilitation. Evidence suggests that plyometric exercises can improve muscle strength, dynamic balance, and functional mobility by leveraging the stretch-shortening cycle and neuromuscular plasticity. While preliminary studies indicate positive outcomes, concerns regarding safety and feasibility remain, necessitating individualized training protocols and further high-quality clinical trials. Integrating plyometric training into post-stroke rehabilitation programs may offer an innovative approach to optimizing recovery and enhancing patients' quality of life.

1. Introduction

Stroke is the second leading cause of death worldwide and those who survive often have disabilities which prevent them from conducting daily activities1. Recovering from a stroke requires learning how to use the body and brain in new ways, leading to long recovery time frames and reducing quality of life. Investigating innovative therapeutic approaches capable of safely and effectively allowing accelerated progress in recovery outcomes is, therefore, of paramount importance in post-stroke care2. A key strategy for achieving this is the development of an evidence base to support the efficacy of novel therapies in the clinical environment. Understanding the evidence underpinning recent advances in clinical practice and their possible clinical ramifications may better inform patients and ensure maximal clinical utility3. A rapid accumulation of new evidence addressing novel therapeutic strategies would often overcome the rate of comprehension by patients, researchers, clinical scientists, and healthcare providers4.

Rapid narrative reviews provide a timely synthesis of up-to-date evidence addressing a focused question or issue. A comprehensive and systematic search of the literature was conducted. The findings were synthesized using a meta-analysis to facilitate the identification of key themes across retrieved records5. The ensuing critical review highlights the general scope and significance of accumulating evidence on the clinical ramifications of novel approaches. Understanding the state of the art in post-stroke clinical research arising in these emerging

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

areas may better inform clinical practice2. A gulf often exists between the evidence and routine clinical practice; a brief account of the key findings was written with this audience specifically in mind to introduce the salient issues arising from the abundance of literature garnered so as to stimulate further consideration of innovative therapeutic avenues that are evidence-based and can be translated into improved care for patients6.

2. Understanding Stroke: Causes and Consequences

Stroke, known as a cerebrovascular accident (CVA), is usually not identified clearly and may be thought to be merely a worsening of conditions. The diagnosis of the cause of stroke is also a challenge. Aside from the symptoms experienced at the time of the stroke, symptoms that may only be felt as the disease progresses are also a serious problem7. A stroke is the result of damaged blood flow to the brain due to artery blockage, resulting in a reduction of oxygen supply to the brain. A condition that causes temporary damage and returns to normal after treatment is referred to as a transient ischemic attack (TIA)8. Stroke may cause various serious health problems based on its duration and how deep the disruption of blood flow in the brain happens. For example, a severe condition can cause hemiplegia in patients. All conditions in the form of defects or damage to the anatomy of the human body resulting from a fast stroke can interfere with daily activities9. Postural control is a complex function that allows the body to control its position in space and helps maintain stability and orientation. Postural control is maintained by the interaction of different systems, including the visual system, vestibular system, and proprioceptive system 10. In a healthy body, the peripheral system will provide information about the body's position and the activity of the muscles during the movement of the body against the force of gravity. The central nervous system will process it quickly and send information to the muscles with a force of the same size but different direction to keep the homeostatic state when the body gets an impulse from the reaction of the landing. However, the central nervous system, which governs working ability and communication, undergoes stroke11.

3. Importance of Strength and Postural Control in Stroke Rehabilitation

Stroke can range in severity from minor to severe, often resulting in residual deficits, such as hemiparesis, that affect movement execution and coordination. After a stroke, many people exhibit decreased muscle strength and postural control disorders that lead to difficulties in maintaining balance12. However, the methods traditionally applied in rehabilitation settings, such as physical therapy and occupational therapy, may have limited impact on the recovery of normal strength and postural control13.

Many studies have suggested that intervention plans able to modulate the afferent inputs of patients, through the execution of complex motor exercises, may ameliorate muscle strength and postural control. As an alternative, in recent years, plyometric training has been proposed as a method to improve such activity capacities 14. In overground walking, leg muscles in both healthy subjects and people with gait disabilities have been shown to be activated in a stretch-shortening cycle. Moreover, postactivation potentiation in lower-limb pole vaulting suggests that plyometric training may induce long-lasting activity improvements. Thus, modulating the type, frequency, and intensity of plyometric exercise may represent an alternative and adjunctive strategy to ameliorate muscle strength and postural control 15.

4. Plyometric Exercise: Definition and Principles

Plyometric exercise is characterized by rapid, explosive movements that are designed to increase muscle power through enhancement of coordination between the nervous system and muscles. An important

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

biomechanical principle of plyometric exercise is the energy storage and release 16. During the eccentric phase the muscle is quickly stretched, causing its elastic components to store energy. This energy is then utilized during the concentric phase to assist in achieving maximal muscle shortening velocity. In this way, plyometric exercises enhance both biomechanical and neurological components in the exercise movement, leading to an increase in power of the involved muscle groups 17. These neuro-muscular adaptations are thought to occur due to changes in the sensitivity of the muscle spindle, allowing for a greater release of acetylcholine and thereby enhancing the myotatic-stretch reflex. A more complicated theory suggests that these neurological adaptations benefit from an increase in the number of active motor units, the rate at which motor units are discharged, and the recruitment pattern of fast-twitch motor units 18. On a biochemical level, the increase in power of the involved muscle-group is due to the excitation-contraction coupling mechanism. This enhancement leads to an increase in the amount of Ca2+ available in the contractile process, as well as an increase in the density of Ca2+ adenosine triphosphate along the sarcoplasmic reticulum, facilitating the temporary storage of the ion19. Biochemically, the kinematic motion of a plyometric exercise can either be performed via a dynamic or a ballistic type of movement. Plyometric exercises, as a form of power and coordination training, can take many forms and can be conducted in diverse ways, including box jumps, bouncing a medicine ball, skipping, and plyometric push-ups20. Safety and proper technique must always be considered when using plyometric exercises, especially with at-risk populations. This suggests the importance of individualization of plyometric exercises for patients with different needs21.

5. Theoretical Framework for Plyometric Exercise in Stroke Rehabilitation

After a stroke, patients frequently have spasticity, which generates reduced levels of force, increased neural complexity, loss of stretch reflex modulation, and changes in musculotendinous architecture22. The deficit in force and power output appearing in chronic stroke patients limits their capacity to perform motor tasks such as transfers, manipulation of objects, gait, standing up from and staying seated in a chair, picking items up from the floor, putting objects in high places, or any other daily living activities that demand a functional level of muscular strength23. After a stroke, the difficulty in isolating and activating the affected joint and its related musculature often makes it impossible to perform a specific exercise. Plyometric exercise is a kind of exercise commonly used in sports training, intending to provide an increased mechanical stimulus by using a rapid muscle stretch followed by a forceful muscle contraction24. Accordingly, plyometric exercises can be a fruitful approach to avoiding passive muscle contraction by directly stimulating the stretch reflex loop. The ability to control the volitional effort exerted on the healthy limb joint and muscles and the intensity of the plyometric exercise offers a clear gradient of difficulty to the neural control system that might generate a resetting of stretch reflex threshold and modulation through neural plasticity. Besides, plyometric exercise can increase the neural complexity of the task, making the stroke patient participate actively in the tasks25.

6. Evidence Supporting the Efficacy of Plyometric Exercise in Stroke Rehabilitation

Plyometric exercise or plyometrics was popularized by an American track and field coach, Fred Wilt, and his associates, following the performance of Soviet athletes at the Olympic games in Mexico in 196826. This type of exercise is focused on developing the ability to quickly and efficiently recruit and apply maximal force as a result of the stretch-shortening cycle of muscle fibers. Over the years, studies among normal individuals, athletes, and those with illness have shown positive effects of plyometric exercises, including among elderly individuals27. In the field of stroke rehabilitation, the use of plyometric exercises is not well established. However, in certain cases, this form of exercise can be used as an alternative option for improving strength and

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

balance14. Stroke survivors often display muscle weakness and vertical ground reaction force asymmetry. While plyometric exercises have been specifically designed to generate high force in return for promoting muscle strength, it is hypothesized that such exercises may also enhance postural control28.

Plyometric exercises include squats and standing jumps, double-leg and single-leg jumps, and drop landings29. Validated the improvement in postural stability after a 12-week plyometric training program, though a slight increase in sway velocity was observed. Most studies that showed negative outcomes on balance could be related to the type of surface used, and measures being applied are not sensitive enough to detect changes 15. Due to safety and feasibility issues, lower limb plyometric exercises were typically applied seated. There are cases of features being applied while standing. However, there were concerns with the high risk of falls associated with standing plyometric training30. In Sanders, a seated plyometric training exercise, utilizing a step board was performed. Despite being seated, it was suggested that seated plyometric training effectively targeted lower limb and trunk stability. There are currently no established guidelines or recommendations for plyometric exercises in stroke patients 30. Due to the limited number of studies reviewed, conclusions are not extensive. It is suggested that a well-designed clinical trial, representative of a patient post stroke, with a multidisciplinary approach in terms of intervention, measuring outcomes, and controlling confounders, needs to be developed31.

Conclusion:

Plyometric exercise presents a promising therapeutic approach for improving muscle strength and postural control in stroke rehabilitation. By leveraging neuromuscular adaptations and the stretch-shortening cycle, it enhances functional mobility and balance. While preliminary evidence supports its effectiveness, concerns regarding safety and individualized training protocols must be addressed. Further high-quality clinical trials are needed to establish standardized guidelines and optimize its integration into rehabilitation programs.

References

- [1] Akinyemi RO, Ovbiagele B, Adeniji OA, Sarfo FS, Abd-Allah F, Adoukonou T, Ogah OS, Naidoo P, Damasceno A, Walker RW, Ogunniyi A. Stroke in Africa: profile, progress, prospects and priorities. Nature Reviews Neurology. 2021 Oct;17(10):634-56.
- [2] Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative approaches in acute ischemic stroke: from symptom recognition to future innovations. Biomedicines. 2023 Sep 23;11(10):2617.
- [3] McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, Brietzke E, Dodd S, Gorwood P, Ho R, Iosifescu DV. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. American Journal of Psychiatry. 2021 May 1;178(5):383-99.
- [4] Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers. 2024 Jul 7;16(13):2478.
- [5] Mohamed Shaffril HA, Samsuddin SF, Abu Samah A. The ABC of systematic literature review: the basic methodological guidance for beginners. Quality & Quantity. 2021.
- [6] AlKetbi H, Hegazy F, Alnaqbi A, Shousha T. Evidence-based practice by physiotherapists in UAE:

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Investigating behavior, attitudes, awareness, knowledge and barriers. PloS one. 2021.

- [7] Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL, Kelli HM, Ferdinand KC, Echols MR, Weintraub H, Bostrom J. Ten things to know about ten cardiovascular disease risk factors. American journal of preventive cardiology. 2021 Mar 1; 5:100149.
- [8] Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 2022.
- [9] Zhang Q, Fu Y, Lu Y, Zhang Y, Huang Q, Yang Y, Zhang K, Li M. Impact of virtual reality-based therapies on cognition and mental health of stroke patients: systematic review and meta-analysis. Journal of medical Internet research. 2021 Nov 17;23(11): e31007.
- [10]Merabet GH, Essaaidi M, Haddou MB, Qolomany B, Qadir J, Anan M, Al-Fuqaha A, Abid MR, Benhaddou D. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews. 2021 Jul 1;144:110969.
- [11]Pervin Z, Stephen JM. Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic AIMS neuroscience. 2021.
- [12] Hyun SJ, Lee J, Lee BH. The effects of sit-to-stand training combined with real-time visual feedback on strength, balance, gait ability, and quality of life in patients with stroke: A randomized controlled trial. International Journal of Environmental Research and Public Health. 2021 Nov 21;18(22):12229.
- [13] Glattke KE, Tummala SV, Chhabra A. Anterior cruciate ligament reconstruction recovery and rehabilitation: a systematic review. JBJS. 2022.
- [14] Abd Elsabour AK, Zakaria HM, Fahmy EM, Khalil AS, Alwhaibi RM, Ragab WM, Taha SI. Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients. Medicina. 2025 Jan 26;61(2):223.
- [15] Elnaggar RK, Alghadier M, Abdrabo MS, Abonour AA. Effect of a structured aqua-plyometric exercise program on postural control and functional ability in children with hemiparetic cerebral palsy: A two-arm randomized controlled trial. NeuroRehabilitation. 2022 Jan 1;51(2):247-58.
- [16] Aksović N, Bjelica B, Milanović F, Jovanović N, Zelenović M. Plyometric training effects on explosive power, sprint and direction change speed in basketball: A review. Turkish Journal of Kinesiology. 2021;7(2):73-9.
- [17] Almeida MB, Leandro CG, Queiroz DD, José-da-Silva M, Pessoa dos Prazeres TM, Pereira GM, das-Neves GS, Carneiro RC, Figueredo-Alves AD, Nakamura FY, Henrique RD. Plyometric training increases gross motor coordination and associated components of physical fitness in children. European journal of sport science. 2021 Sep 2;21(9):1263-72.
- [18]Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. European journal of translational myology. 2022 Mar 3;32(1).
- [19]Kansakar U, Varzideh F, Jankauskas SS, Gambardella J, Trimarco B, Santulli G. Advances in the understanding of excitation-contraction coupling: the pulsing quest for drugs against heart failure and arrhythmias. European Heart Journal-Cardiovascular Pharmacotherapy. 2021 Nov;7(6):e91-3.

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

- [20] Wang X, Lv C, Qin X, Ji S et al. Effectiveness of plyometric training vs. complex training on the explosive power of lower limbs: A Systematic review. Frontiers in physiology. 2023.
- [21]Ramirez-Campillo R, Gentil P, Negra Y, Grgic J, Girard O. Effects of plyometric jump training on repeated sprint ability in athletes: a systematic review and meta-analysis. Sports Medicine. 2021 Oct;51(10):2165-79.
- [22]Zeng H, Chen J, Guo Y, Tan S. Prevalence and risk factors for spasticity after stroke: a systematic review and meta-analysis. Frontiers in neurology. 2021.
- [23] Hsu HY, Kuo LC, Lin YC, Su FC, Yang TH, Lin CW. Effects of a virtual reality–based mirror therapy program on improving sensorimotor function of hands in chronic stroke patients: a randomized controlled trial. Neurorehabilitation and Neural Repair. 2022 Jun;36(6):335-45.
- [24]Ramírez-delaCruz M, Bravo-Sánchez A, Esteban-García P, Jiménez F, Abián-Vicén J. Effects of plyometric training on lower body muscle architecture, tendon structure, stiffness and physical performance: a systematic review and meta-analysis. Sports medicine-open. 2022 Dec;8(1):40.
- [25] Wilke J, Behringer M. Is "delayed onset muscle soreness" a false friend? The potential implication of the fascial connective tissue in post-exercise discomfort. International journal of molecular sciences. 2021.
- [26] Uppal AK. Scientific principles of sports training. 2021.
- [27]Ramachandran AK, Singh U, Ramirez-Campillo R, Clemente FM, Afonso J, Granacher U. Effects of plyometric jump training on balance performance in healthy participants: a systematic review with meta-analysis. Frontiers in Physiology. 2021 Oct 20; 12:730945.
- [28] Cabrejas C, Morales J, Solana-Tramunt M, Nieto-Guisado A, Badiola-Zabala A, Campos-Rius J. Does 8 Weeks of Integrated Functional Core and Plyometric Training Improve Postural Control Performance in Young Rhythmic Gymnasts? Motor control. 2022 Jul 23;26(4):568-90.
- [29] Vetrovsky T, Steffl M, Stastny P, J. Tufano J. The Efficacy and Safety of Lower-Limb Plyometric Training in Older Adults: A Systematic Review. 2018.
- [30]Deng N, Soh KG, Zaremohzzabieh Z, Abdullah B, Salleh KM, Huang D. Effects of combined upper and lower limb plyometric training interventions on physical fitness in athletes: a systematic review with meta-analysis. International Journal of Environmental Research and Public Health. 2022 Dec 28;20(1):482.
- [31]Karamyan VT. Clinically applicable experimental design and considerations for stroke recovery preclinical studies. Neural Repair: Methods and Protocols. 2023.