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ABSTRACT

Stress is an integral part of daily life that most individuals must manage regularly.
However, long-term stress or high levels of stress can compromise safety and disrupt
normal lifestyles. Early detection of mental stress can help prevent numerous stress-
related health problems. When an individual experiences stress, noticeable changes
occur in several physiological signals, including impedance, thermal, electrical, and
optical signals. By analyzing these signals, stress levels can be effectively
determined. Even with the use of advanced technology, existing research on stress
detection has failed to produce satisfactory accuracy. To address this gap, the
research proposed two ideas. First, instead of using a single physiological signal, the
study used multimodal signals. Electrocardiogram (ECG) and Electroencephalogram
(EEG) signals under no-stress, low-stress, and high-stress conditions were acquired
from the Kaggle site. Second, the Convolutional Neural Network (CNN)
hyperparameters were tuned using a bio-inspired optimization technique called the
Firefly Algorithm (FA). The drawbacks of the FA were identified and further
improved, leading to the development of an Improved Firefly Algorithm (IFA) to
fine-tune the CNN hyperparameters. The multimodal data from Kaggle was
processed to remove noise and then fed into the proposed IFA-CNN, FA-CNN, and a
baseline CNN model to predict the stress levels of individuals. Additionally, the
three models were also tested with ECG and EEG data separately. The outcomes of
all three models, using ECG, EEG, and multimodal data, were compared using
positive metrics (accuracy, recall, precision, F1-score) and negative metrics (False
Negative Rate (FNR), and False Positive Rate (FPR). The experimental results
showed that the proposed IFA-CNN using multimodal data achieved the highest
correct stress-level prediction, with 47 out of 48 samples correctly identified,
yielding an accuracy of 97.92%. The comparison results also highlighted the
advantage of using multimodal data over single-signal data. The proposed approach
is highly beneficial for reliable stress-level prediction in individuals.
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I. INTRODUCTION

In today's world, people's lives are more complex than ever before. A new study reveals that working
professionals aged 25 to 40 are the most affected by stress in their daily lives. Recent research has
demonstrated that stress can slowly but steadily damage brain cells [1]. Any mental health condition often
originates from stress, which can manifest in various ways within the human body. Stress levels are rising
due to factors such as financial difficulties, job losses, unemployment, and work pressures related to
meeting deadlines [2. The stability of the neurological system depends on the brain's ability to respond
effectively to stress. Prolonged stress in professionals leads to irritability and reduced performance. It also
results in several health issues, including sleeplessness, weakened immunity, infections, cervical
impairments, headaches, and other physical ailments [3]. The subtle yet significant impact of stress on
mental health often goes unnoticed. Strategic planning by healthcare organizations, the use of digital tools
for stress prediction, and the growth of entrepreneurship in the medical services sector could collectively
improve the standard of living and unlock greater human potential for all citizens.

The primary signs of stress include changes in core body temperature, neural activity, and ocular
motility. The World Health Organization (WHO) has identified stress as a leading cause of illness
globally [4]. A mental health survey conducted in India by the National Institute of Mental Health and
Neuro Sciences from 2015 to 2016 revealed that the percentage of individuals with mental health issues
increased from 7.5% in 2014 to 10.6% in 2016 [5]. The low- and middle-income patient-to-doctor ratio is
in jeopardy. More than 150 million people in India suffer from various mental illnesses, including
anxiety, depression, and personality disorders. The effects of the COVID-19 pandemic on people's lives
have further exacerbated stress levels. These mental disorders require crucial mental health care;
however, there is a 74% to 90% treatment gap for such services [6].

There are several approaches to recording and collecting human stress levels. Photoplethysmography
(PPG), Phonocardiography (PCG), Respiration Rate (RR), Heart Rate (HR), Galvanic Skin Response
(GSR), ECG, and EEG are some of the physiological signals commonly used in stress detection methods
[7]. According to research, biochemical and biological processes often produce contradictory results due
to hormonal instability.

Mental stress is a widely recognized concept that is gaining traction in various research fields, such as
neurology, medicine, psychology, and sentiment computing. Consequently, it is vital to investigate stress
through a range of techniques. Physiological signals are particularly effective at revealing stress-related
patterns. However, professionals often struggle to manage and interpret large volumes of data from
diverse sources, such as wearable devices, audio recordings, or facial images [8]. Stress detection
typically relies on personal consultations with psychologists or counselors, which are time-consuming,
costly, and not universally accessible [9]. While specialists remain essential in many cases, Aurtificial
Intelligence (Al) offers a complementary approach that enhances stress detection by enabling real-time,
scalable, cost-effective, and objective monitoring. The adoption of Al can make stress management more
personalized and proactive, leading to better mental health outcomes [10].

In recent times, Deep Learning (DL) algorithms have been increasingly utilized to analyze medical
signals for disease diagnosis [11, 12]. Several studies have proposed DL models for stress detection;
however, challenges such as insufficient data, noise, and inefficient feature extraction due to similarities
in patterns between no-stress and low-stress signals result in suboptimal accuracy. To address these
limitations, multimodal signals are utilized instead of single physiological signals and an optimized CNN
model is proposed to fine-tune the hyperparameters, thereby enhancing the accuracy of stress prediction.
The main contributions of this research are as follows:
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e Multimodal ECG and EEG signals are employed to identify the stress level of individuals.

e The CNN hyperparameters are fine-tuned using the Improved Firefly Algorithm (IFA), which
aids in extracting the most significant features and improving classification accuracy.

e The proposed IFA-CNN model's performance is compared with the FA-CNN and standard
CNN models without optimization using standard evaluation metrics for both positive and
negative outcomes.

e The outcomes of the multimodal signals are also evaluated against single ECG and EEG
signals to highlight the importance of using multimodal signals in stress prediction.

The article is structured as follows: Section | discusses stress and the available stress-measuring

physiological signals. Section Il provides a brief overview of related work on stress prediction and its
limitations. Section Il explains CNN and the optimization techniques employed for hyperparameter
selection. Section 1V presents the data and experimental outcomes of CNN and optimized CNN models
using multimodal and single physiological signals. Section V concludes the research and outlines future
work.

Il. RELATED WORK

Many studies have already been conducted on stress prediction using physiological signals with DL

models. Some of the notable studies are given in Table I. The table helps to identify the data used, the
accuracy attained by the model, along with its advantages and limitations. The literature survey helps to
detect the current limitations and propose a novel model.

TABLE|. RECENT WORK ON STRESS PREDICTION USING DL MODELS
Ref Model Data Used | Accura Advantage Limitation
cy
[13 Discrete Wavelet EEG 98.10% High accuracy High complexity due to
] Transform+ Effective feature parameter tuning
CNN+Bidirectional extraction and Time-consuming
Long Short-Term classification
Memory (BiLSTM) +
Gated Recurrent Unit
(GRU)
[14| 2DCNN+LSTM EEG 97.8% | Faster training with fewer Small datasets limit
] epochs generalizability and
potential for overfitting
[15 Support Vector PPG 95.55% | Non-intrusive and readily Limited to the WESAD
] Machine available sensors in dataset; potential
smartwatches; suitable for | challenges in generalizing
real-time stress detection. to diverse populations
[16 LSTM + CNN EEG 97.8% Effective temporal and The complex model
] spatial feature extraction structure may increase
implementation
complexity.
[17 GRU EEG 95% High accuracy in multi- | Limited to specific gaming
] level stress classification scenarios.
[18 Boosting Neural HR, 94% Wearable, non-invasive Need to improve accuracy
] Network Temperatu devices that do not require further by optimization
re sophisticated medical

equipment.
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[19 CNN + BIiLSTM ECG 86.5% | Achieves real-time stress Accuracy is really low
] detection using just 10s of
ECG data
[20 | CNN + BiLSTM with ECG 86.8% | The effectiveness of RNN | Need to improve accuracy
] | Attention Mechanism with Attention Mechanism
helps in effective feature
extraction
[21 CNN PPG 92.04% | Non-invasive, wearable, Accuracy needs to
] and easy-to-use ear- improve
mounted PPG sensor.
[22 | Hybrid DL (LSTM, Remote | 95.83% | Computational efficiency Signal-to-noise ratio
] GRU, 1D-CNN) PPG and suitability for edge issues, and varying

accuracy across diverse
populations.

devices.

I1l. PROPOSED METHODOLOGY

The bio-inspired optimization algorithm is used for hyperparameter tuning of the CNN model.
Hyperparameters of a CNN are crucial for improving classification accuracy and enhancing model
generalizability. It is essential to select hyperparameters appropriately. Instead of using backpropagation
for adjusting hyperparameter values, the IFA technique is employed. This approach produces better
results compared to traditional methods. The architecture of the proposed IFA-CNN is shown in Figure 1.
The CNN consists of convolution, pooling, and flattening layers for feature extraction from the
multimodal signals, followed by fully connected layers and an output layer for classification. Based on
the loss function in the output layer, the hyperparameters are tuned using the IFA technique. The tuning
process continues until satisfactory results are achieved or the maximum number of epochs is reached.
This technique has the advantage of better exploration and exploitation during the search for the optimal
solution, making it a robust method for hyperparameter optimization. The detailed architecture and
workings of CNN, FA, and IFA are explained in this section.
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Fig. 1.Proposed Improved Firefly Algorithm for Optimization of CNN Hyperparameter Tuning.
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A. CNN Architecture

The essential structure of a CNN consists of four layers: the Convolutional Layer (CL), the Pooling
Layers (PL), the Activation Function (AF), and the Fully Connected Layer (FCL) [23]. In general, the
signal is pre-processed before entering the network through the input layer. This is followed by a
sequence of alternating CL and PL layers, and the process concludes with classification by the FCL.
CNNs differ from Multi-Layer Perceptrons (MLPs) in that they include distinct CL and PL layers. When
working with larger datasets, CNNs excel in both network performance and scalability [24].

Convolutional Layer

Multiple CLs can extract various input features from CNNs of a given depth [25]. The bottom CL
retrieves common properties such as patterns, lines, and boundaries, while the top layer retrieves more
abstract features. The CL consists of multiple convolution kernels with learnable parameters [26]. Kernels
are typically denoted as matrices with learnable weights, commonly in dimensions of 7 X 7, 5 X
5,0r3 x 3, with equal length and breadth of odd numbers. The feature maps are usually fed into the
CL. Input feature maps are often denoted as D x B x C (depth, breadth, and channels), while kernels
are represented as K X K x C. This indicates that the number of kernels must match the number of
input channels. Figure 3 illustrates the convolution process using input feature maps (5 x 5 X 3)and a
kernel (3 x 3 x 3). The data flow in the CL can be described in Equation (1):

feature_surfacey,: = f(Xi_s M; * W; + B) [1]

Where M; represents the feature surface of the input feature maps, W; represents the kernel's weight
matrix, M is the bias matrix, f(-) represents the nonlinear activation function (AF), and
feature_surface_out represents the output surface. The cross-correlation function between the feature
maps and the kernel requires specific calculations within the CL. The dimension of the output feature
map is given in Equation (2) and is influenced by the size of the 2-D input matrix (i), stride (s), kernel
size (k), and the padding (p).

0= [i+2p—k] 11 [2]

N

The kernel begins in the upper-left corner of the input matrix and progresses from top to bottom and
left to right. The input is a three-dimensional feature map matrix with length and width values of three. It
is important to note that gradient backpropagation is used to adjust the kernel's weight parameters [27].
When the kernel examines the same set of input feature maps, the parameters remain constant. Each pixel
region applies a similar kernel sliding technique, allowing the kernel to share parameters. This approach
simplifies and streamlines the process, enabling it to run on large datasets while minimizing the number
of training parameters and reducing the risk of overfitting.

Pooling Layer

The PL is often placed following the CL. The primary reasons for adopting the PL include the
following: performing downsampling and reducing dimensionality on the input signal to minimize the
connections in the CL [28], thereby lowering the computational cost of the model; ensuring that the input
signal is translation, scale, and rotation invariant; and increasing the output feature map's tolerance for
single-neuron distortions and inaccuracies. Average and maximum pooling are the most frequently
employed techniques. These methods can significantly reduce overfitting in CNNs [29]. During the
downsampling process, the general correlation between the input and output matrix dimensions in the
pooling procedure is given in Equation (3):

o=[2+1] [3]

S

5245|Page



. Optimization of Convolutional Neural Network for Accurate Stress Detection Using Multimodal
SEEJPH Physiological Signals
SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Activation Function

The AF creates a functional relationship between input and output, which leads to a nonlinear system
inside the neural network [30]. A proper nonlinear AF may significantly improve network efficiency.
There are several AFs available. Saturating nonlinearities include the sigmoid and tanh equations.
When the input is extremely large or extremely small, the sigmoid function approaches 0 or 1, while the
tanh function reaches -1 or 1. To address the challenges highlighted by saturating nonlinearities, non-
saturating nonlinearities such as ReLU were developed and given in Equation (4). The former functions
require substantially longer to train with gradient descent than the latter.

ReLU(x) = max(0,x) [4]

Fully Connected (FC) Layer

The FCL is typically placed after the CL and PL, with its neurons fully connected between layers. It
combines and classifies the extracted features obtained from the CL and PL. The neurons in the output
layer are equal to the number of categories, which helps to categorize the signal's category. In simple
terms, the FCL functions as a classifier in CNNs. Before implementing the FCL's loss calculation, the
CNN output is normalized using softmax regression. When training a complex network with numerous
parameters on a small database, the FCL often employs dropouts and L2 regularization. The primary
objective of these techniques is to prevent the model from overfitting [31]. A typical CNN model
combines ReLLU with dropout to achieve reliable classification results.

Loss Function

Along with the various layers of the CNN structure described in the preceding section, the
classification is performed in the output layer, which is typically the final layer of the FCL. Several loss
functions influence the efficiency of the CNN design and are utilized for various tasks. For multi-class
stress classification, Cross-Entropy [32] has been utilized as the CNN model's loss function. Equation (5)
provides the formula:

" 1

Loss(y,y") = — < Xil1 Xé=1Yiclog(Pic) [5]

Where N denotes the samples, C represents the classes, y; . represents the binary value (0 or 1) that

specifies whether class c is the correct label for the i-th data, and p; . represents the predicted probability
of the i-th data belonging to class c.

B. Hyperparameter Optimization

To achieve excellent outcomes in CNN, the hyperparameter values must be selected properly. Instead
of using traditional parameter tuning, bio-inspired algorithms facilitate better classification results
through enhanced exploration and exploitation [33]. The hyperparameter optimization problem associated
with the CNN technique for stress classification can be described in Equation (6-15):

Optimization problem:

x* =arg max ¢(x), [6]
Subject to constraints:

x; € {16,32,64,128,256} [7]
x, € {3,5,7,9,11} [8]
2<x3<6 [9]
1<x,<5 [10]
xs € {16,32,64,128,256} [11]
0.1 < x4 < 0.5 [12]
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1x107° <x, <1%1072 [13]
Xq € {16,32,64,128,256) [14]
10 < x4 < 100 [15]

The target function, ¢ () , measures the CNN model's performance, which is typically the classification
accuracy of the input data x = [xq, X5, X3, X4, X5, X¢, X7, Xg]; Where x; represents the number of filters, x,
represents the kernel size, x5 represents the pooling size, x, represents the number of dense layers, xs
represents the number of neurons in dense layers, x represents the dropout rate, x, represents the
learning rate, xg represents the batch size, and x4 represents the epochs. This combinatorial problem,
involving sets of integer and real number variables, is solved by optimizing the hyperparameters using the
FA and IFA.

Firefly Algorithm
Xin-She Yang introduced the FA for optimization [34]. In this method, fireflies represent solutions.

Based on Light Intensity (LI), fireflies are attracted to each other, and the solutions are directed towards
the brighter ones. The FA is based on three basic principles [35]:

e A firefly is unisex and can be attracted to another firefly.

e The brightness influences the attractiveness of fireflies; as the distance between them

decreases, their attractiveness increases, making them appear brighter.
e The brightness of fireflies indicates their fitness function.

Solutions are produced randomly between the upper and lower boundaries and given in Equation (16):
x;; = lb; + rand. (ub; — Ib;), rand € 0,1 [16]

Where, x; ; represents the solution, ub; and b; represent the upper and lower bounds, respectively.
The Euclidean distance, calculated using Equation (17), determines how close two solutions are to each
other:

rj = |lx - x| = \/Zﬁzl(xi,k — X 1) [17]

Where, 7; ; represents the distance between the solutions of i and j, and d represents the dimension of
the problem. The LI is computed using the Equation (18):

I(r) = —2 [18]

1+yr2

The LI is represented by I,, whereas the LI at distance r is represented by I(r), where y represents the
light absorption coefficient. The attractiveness level of two solutions is computed using Equation (19):

B(r) = L2 [19]

1+yr2

The attractiveness at zero distance is represented by S,, while 8 represents the attractiveness itself.
The solutions move to a new position in the search space using the Equation (20):

xfH =yt ﬁor‘VriZ,j(xj — x;) + a(rand — 0.5) [20]

Where, xf** represents the new position, x; denotes the current position, and the movement
progresses toward the brighter solution x;. The control parameter a is obtained from the Gaussian
distribution.
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Improved Firefly Algorithm
The FA's exploration and exploitation balance is primarily determined by the parameter a, which
changes dynamically during each algorithm run using Equation (21) [36]:

a(t) = (1 - (1= (107#/9)Vmax)) x a(t — 1) [21]

Where, t,,,4, represents the maximum iterations performed in a single run. This indicates that the value
of a is higher at the start of a run (providing greater exploration) and decreases throughout the search
process (leading to greater exploitation power).

Although the FA has relatively steady and effective exploitation, as determined by simulation
outcomes on standard unconstrained benchmarks, the intensification-diversification trade-off can be
improved by integrating additional steps into the FA technique. In certain cases, the FA technique
exhibits premature convergence, which occurs when the entire population converges on the current
optimal solutions [37]. To address this, the exploration capability of the FA is enhanced by introducing a
population randomization technique. The FA (E® — FA) incorporates two approaches to improve
exploitation and exploration.

The first strategy improves the exploitation capability of the standard FA by introducing a new
randomization parameter, p, into the algorithm. This parameter determines whether the solution is
updated using Equation (20) or dispersed around the current optimal solution based on a normal
distribution.

xi*t=xl; + N(xt ), 0f) [22]

Where, xf** represents the updated solutlon, x*’j j represents the current optimal solution, and N(-)
represents the normal distribution with the mean being the current optimal solution and variance o2 at
iteration t. The variance influences the step size and decreases with the iterations. The distribution of the
current optimal solution is computed using Equation (23):

N(xf;xlj0f) = —=e et 2o [23]

By using Equation (23), the updated solutions move nearer to the optimal solution, making it easier to
reach the global optimum more quickly.

As the technique approaches its maximum iteration, the step size (o) decreases and approaches zero
(o, = 0). Equation (24) is used to adjust the step size at each iteration t.

O¢r1 = 09 — 0ot /tmax [24]

Where, t denotes the current iteration, g, denotes the initial step size, and t,,,, denotes the maximum
iteration.

The second strategy, which improves exploration, involves sorting the solutions after each iteration
based on their FF value. The weakest solutions are replaced with new random solutions generated by
Equation (16). This method introduces new, random solutions to prevent the algorithm from becoming
stuck in suboptimal regions, especially if it converges in the incorrect part of the search space.
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IV. RESULT AND DISCUSSION
The outcomes of the

A. Data Collection

The multimodal ECG and EEG data were collected from the Kaggle site [38] for stress detection. The
Human Research Ethics Committee of Prince of Songkla University, Thailand, approved the study on
July 22, 2020. Participants were selected from August 2020 to May 2021. This study comprised 40
healthy university students, 21 of whom were female (aged 18 to 25). All participants had no history of
neurological or heart disease, and none were taking medications that could impact the autonomic nervous
system. The Thai version of the Perceived Stress Scale was employed to assess underlying tension in the
month leading up to the trial day, with each subject's stress classified into three levels. To manage the
impact of circadian rhythms on physical activity, all trials were held in a quiet laboratory environment in
noon (2-4 p.m.).

The ECG was recorded using a bipolar limb lead attached to an ECG amplifier (AD Instruments, New
Zealand). The signals were filtered from 0.3 to 200 Hz and captured at a sampling rate of 1000 Hz. EEG
electrodes were fitted to a helmet with 8 electrodes: Fpl, Fp2, P3, P4, F3, F4, T3, and T4. Monopolar
recordings were performed between the reference and active electrodes, with a sampling rate of 200 Hz,
and the filter was configured as low-pass with a 200 Hz cut-off frequency.

Stress was induced in this study using a mathematical challenge that is routinely utilized to cause brain
activation and physiological responses (blood pressure, cortisol levels, and HR). The experimental
procedure involved six steps: Step 1 was habituation, Step 2 was the eyes-open period, which is the non-
stress scenario or baseline, Step 3 was the mathematical stress challenge 1, which is the low-stress
scenario, Step 4 was a break, Step 5 was the mathematical stress challenge 2, which is the high-stress
scenario, and Step 6 was recovery, which allowed subjects to rest for 5 minutes.

The physiological signals of EEG and ECG were collected from Kaggle and pre-processed to remove
noise. Noise is introduced in both signals due to various reasons. To eliminate the noise, a band-pass filter
was utilized, which helps cut off frequencies above the high-pass and below the low-pass cutoff range.
This improves the results of stress detection. The EEG and ECG samples in the dataset consist of 40 no-
stress samples, 40 low-stress samples, and 40 high-stress samples. However, for deep learning, the dataset
was insufficient. Data augmentation was performed to duplicate the existing samples, resulting in 160
samples in each category. The augmented dataset was split into three parts: 336 samples for training, 96
for validation, and 48 for testing.

After pre-processing, the training and validation samples of both ECG and EEG signals were fed into
the normal CNN and the optimized FA-CNN and IFA-CNN models for training and validation to detect
the stress state of individuals. For CNN, hyperparameters were randomly fixed using the trial-and-error
method. For FA-CNN and IFA-CNN, the hyperparameters were chosen using optimization techniques.
After training and validation, the models were tested with 48 samples.

The confusion matrix for each model using multimodal data is shown in Table 1. The IFA-CNN
correctly predicted 46 samples and misclassified 2 samples. The FA-CNN correctly predicted 44 samples
and misclassified 4 samples, while the CNN correctly identified 10 samples and misclassified 8. Based on
the confusion matrix, performance metrics were calculated. Table 1 also shows the accuracy of each
model using multimodal data. The IFA-CNN achieved the highest accuracy of 0.9792.

In addition to accuracy, other important metrics (Precision, Recall, F1, TNR, FNR, and FPR) were

calculated to validate the efficiency of the IFA-CNN model, as shown in Table Il. Similarly, the metrics
for FA-CNN and CNN for each stress category are tabulated in Tables I1l and IV. Analysis of Tables Il to
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IV reveals that IFA-CNN achieved the highest Precision, Recall, and F1 scores of 0.9804, 0.9792, and
0.9791, respectively, and the lowest FNR and FPR values of 0.0208 and 0.0104.

TABLE Il. CONFUSION MATRIX AND ACCURACY OF CNN MODELS USING MULTIMODAL DATA

Model Accuracy Label No Low High
Stress Stress Stress
IFA-CNN 0.9792 | No Stress 15 0 1
Low 0 16 0

Stress
High 0 0 16

Stress
FA-CNN 0.9167 | No Stress 14 2 0
Low 0 15 0

Stress
High 1 1 15

Stress
CNN 0.8333 | No Stress 13 1 0
Low 2 13 3

Stress
High 1 1 14

Stress

TABLE I1l. PERFORMANCE ANALYSIS OF IFA-CNN oN STRESS DETECTION USING MULTIMODAL DATA
Class Precision Recall F1 FNR FPR
No Stress 1.0000 0.9375 0.9677 0.0625 0.0000
Low Stress 1.0000 1.0000 1.0000 0.0000 0.0000
High Stress 0.9412 1.0000 0.9697 0.0000 0.0313

Macro 0.9804 0.9792 0.9791 0.0208 0.0104
Micro 0.9792 0.9792 0.9792 0.0208 0.0104
TABLE IV. PERFORMANCE ANALYSIS OF FA-CNN ON STRESS DETECTION USING MULTIMODAL DATA

Class Precision  Recall F1 FNR FPR

No Stress 0.9333 0.8750 0.9032 0.1250 0.0313

Low Stress 0.8333 1.0000 0.9091 0.0000 0.0909

High Stress 1.0000 0.8824 0.9375 0.1176 0.0000

Macro 0.9222 0.9191 0.9166 0.0809 0.0407

Micro 0.9167 0.9167 0.9167 0.0833 0.0417

TABLE V. PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING MULTIMODAL DATA

Class Precision Recall F1 FNR FPR
No Stress 0.8125 0.9286 0.8667 0.0714  0.0882
Low Stress 0.8667 0.7222 0.7879  0.2778  0.0667
High Stress 0.8235 0.8750 0.8485 0.1250 0.0938
Macro 0.8342 0.8419 0.8343 0.1581  0.0829
Micro 0.8333 0.8333  0.8333 0.1667  0.0833

To analyze the advantages of using multimodal signals for stress detection, the same steps were
repeated with ECG and EEG signals alone. This means that the CNN, FA-CNN, and IFA-CNN models
were trained, validated, and tested with ECG and EEG signals separately for stress level prediction. The
accuracy and confusion matrices of the models (CNN, FA-CNN, IFA-CNN) are provided in Table V. The
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IFA-CNN achieved the highest number of correctly identified stress level samples (43) using ECG
signals alone, followed by FA-CNN (41) and CNN (40). Based on the confusion matrix, accuracy and
other metrics were calculated. The accuracy achieved by IFA-CNN, FA-CNN, and CNN was 0.8958,
0.8542, and 0.8333, respectively. The other metrics for each category of stress level prediction by IFA-
CNN, FA-CNN, and CNN are presented in Tables VI and VII. When using ECG signals alone, FA-CNN
achieved better precision (0.8969), recall (0.9020), and F1 (0.8969) compared to the other models. The
Precision, Recall, and F1 scores for FA-CNN were 0.8556, 0.8600, and 0.8552, respectively, while for
CNN, they were 0.8120, 0.8132, and 0.812.

TABLE VI. CONFUSION MATRIX AND ACCURACY OF CNN MoDELS UsSING ECG DATA

Model Accuracy Label No Stress | Low Stress | High Stress
IFA-CNN 0.8958 No Stress 14 0 0
Low Stress 1 14 2
High Stress 1 1 15
FA-CNN 0.8542 No Stress 12 1 0
Low Stress 2 15 1
High Stress 1 2 14
CNN 0.8333 No Stress 13 2 1
Low Stress 2 13 1
High Stress 1 1 14

TABLE VII. PERFORMANCE ANALYSIS OF IFA-CNN oON STRESS DETECTION USING ECG DATA

Class Precision  Recall F1 FNR FPR
No Stress 0.8750 1.0000 0.9333 0.0000 0.0588
Low Stress 0.9333 0.8235 0.8750 0.1765 0.0323
High Stress 0.8824 0.8824 0.8824 0.1176 0.0645
Macro 0.8969 0.9020 0.8969 0.0980 0.0519
Micro 0.8958 0.8958 0.8958 0.1042 0.0521

TABLE VIII.  PERFORMANCE ANALYSIS OF FA-CNN ON STRESS DETECTION USING ECG DATA

Class Precision  Recall F1 FNR FPR
No Stress 0.8000 0.9231 0.8571  0.0769 0.0857
Low Stress 0.8333 0.8333 0.8333  0.1667 0.1000
High Stress 0.9333 0.8235 0.8750 0.1765 0.0323
Macro 0.8556 0.8600 0.8552  0.1400 0.0727
Micro 0.8542 0.8542 0.8542 0.1458 0.0729

TABLE IX. PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING ECG DATA

Class Precision Recall F1 FNR FPR
No Stress 0.8000 0.8000 0.8000  0.2000  0.0909
Low Stress 0.8235 0.8750 0.8485 0.1250 0.0938
High Stress 0.8125 0.7647  0.7879  0.2353  0.0968
Macro 0.8120 0.8132 0.8121 0.1868  0.0938
Micro 0.8125 0.8125 0.8125 0.1875 0.0938
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The analysis of stress level prediction using EEG signals alone was also conducted. The outcome of
the confusion matrix and accuracy is given in Table IX. In this scenario, the correct prediction of stress
level samples by IFA-CNN, FA-CNN, and CNN was 41, 39, and 37, respectively. The misclassifications
were 7 for IFA-CNN, 9 for FA-CNN, and 11 for CNN. The accuracy of IFA-CNN, FA-CNN, and CNN
was 0.8542, 0.8125, and 0.7708, respectively. The remaining metrics for IFA-CNN, FA-CNN, and CNN
using EEG signals are provided in Tables X to XII.

TABLE X. CONFUSION MATRIX AND ACCURACY OF CNN MOoDELS USING EEG DATA

Model Accuracy Label No Stress | Low Stress | High Stress
IFA-CNN 0.8542 No Stress 14 1 2
Low Stress 0 14 1
High Stress 1 2 13
FA-CNN 0.8125 No Stress 12 1 2
Low Stress 1 14 1
High Stress 2 2 13
CNN 0.7708 No Stress 11 1 2
Low Stress 1 13 2
High Stress 2 3 13

TABLE XI. PERFORMANCE ANALYSIS OF IFA- CNN ON STRESS DETECTION USING EEG DATA

Class Precision Recall F1 FNR FPR
No Stress 0.9333 0.8235 0.8750 0.1765  0.0323
Low Stress 0.8235 0.9333 0.8750 0.0667  0.0909
High Stress 0.8125 0.8125 0.8125 0.1875  0.0938
Macro 0.8565 0.8565 0.8542 0.1435 0.0723
Micro 0.8542 0.8542 0.8542 0.1458 0.0729

TABLE XII. PERFORMANCE ANALYSIS OF FA-CNN oN STRESS DETECTION USING ECG DATA

Class Precision Recall F1 FNR FPR
No Stress 0.8125 0.8125 0.8125 0.1875 0.0938
Low Stress 0.8125 0.8125 0.8125 0.1875 0.0938
High Stress 0.8750 0.8750 0.8750 0.1250  0.0625
Macro 0.8333 0.8333 0.8333 0.1667 0.0833
Micro 0.8333 0.8333 0.8333 0.1667 0.0833

TABLE XIlIl.  PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING EEG DATA
Class Precision Recall F1 FNR FPR
No Stress 0.7857 0.7857 0.7857 0.2143  0.0882
Low Stress 0.7647 0.8125 0.7879 0.1875 0.1250
High Stress 0.7647 0.7222 0.7429 0.2778  0.1333
Macro 0.7717 0.7735 0.7722 0.2265 0.1155
Micro 0.7708 0.7708 0.7708 0.2292 0.1146

Finally, to determine which model and signal type provide better stress level prediction, the accuracy
of different CNN variants using single and multimodal signals was compared. The comparison chart is
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presented in Figure 3. The figure clearly shows that IFA-CNN achieves better accuracy than FA-CNN
and CNN models. By comparing the accuracy across all IFA-CNN models, the multimodal signal
achieved the highest accuracy of 0.9792.

Accuracy Comparison of CNN and Optimized CNN using Single and
Multimodal Signal
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Fig. 2.Accuracy comparison of different CNN variants with single and multimodal physiological signals
for stress prediction.

V. CONCLUSION

The research focuses on designing a highly accurate stress-level prediction framework. To achieve
this, multimodal ECG and EEG data from Kaggle were acquired and processed. The processing
techniques included noise removal and augmentation. The processed signals were then fed into three
models: a CNN model without optimization, an optimized CNN using the Firefly Algorithm (FA-CNN),
and an Improved Firefly Algorithm (IFA-CNN) for feature extraction and stress-level classification.
Three experiments were conducted. In the first experiment, multimodal data were given to the DL models
for stress prediction. In the second and third experiments, ECG and EEG signals were used separately.
Standard positive and negative metrics were employed to analyze the performance of the models. For
multimodal data, the IFA-CNN achieved the highest accuracy of 0.9792, while the FA-CNN and CNN
yielded accuracies of 0.9167 and 0.8333, respectively. Similarly, for ECG and EEG data, the IFA-CNN
outperformed the other models, achieving accuracies of 0.8958 and 0.8542, respectively. The results infer
two key points: first, multimodal signals improve stress prediction accuracy, and second, the IFA-CNN
performs better than the FA-CNN and the CNN without optimization techniques. The proposed model's
outcomes for stress-level prediction demonstrate a promising future for medical applications.

The limitations of the research include the exclusive use of Kaggle data, which raises concerns about
the model's generalizability. To address this, future work will involve testing the model on other standard
datasets or real-time data. Additionally, the current analysis focuses only on accuracy, which is
insufficient for real-time deployment. To determine the model's suitability for real-time applications,
future research will evaluate other parameters, such as complexity and processing time. These aspects
will be incorporated into future studies.
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