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ABSTRACT 

Stress is an integral part of daily life that most individuals must manage regularly. 

However, long-term stress or high levels of stress can compromise safety and disrupt 

normal lifestyles. Early detection of mental stress can help prevent numerous stress-

related health problems. When an individual experiences stress, noticeable changes 

occur in several physiological signals, including impedance, thermal, electrical, and 

optical signals. By analyzing these signals, stress levels can be effectively 

determined. Even with the use of advanced technology, existing research on stress 

detection has failed to produce satisfactory accuracy. To address this gap, the 

research proposed two ideas. First, instead of using a single physiological signal, the 

study used multimodal signals. Electrocardiogram (ECG) and Electroencephalogram 

(EEG) signals under no-stress, low-stress, and high-stress conditions were acquired 

from the Kaggle site. Second, the Convolutional Neural Network (CNN) 

hyperparameters were tuned using a bio-inspired optimization technique called the 

Firefly Algorithm (FA). The drawbacks of the FA were identified and further 

improved, leading to the development of an Improved Firefly Algorithm (IFA) to 

fine-tune the CNN hyperparameters. The multimodal data from Kaggle was 

processed to remove noise and then fed into the proposed IFA-CNN, FA-CNN, and a 

baseline CNN model to predict the stress levels of individuals. Additionally, the 

three models were also tested with ECG and EEG data separately. The outcomes of 

all three models, using ECG, EEG, and multimodal data, were compared using 

positive metrics (accuracy, recall, precision, F1-score) and negative metrics (False 

Negative Rate (FNR), and False Positive Rate (FPR). The experimental results 

showed that the proposed IFA-CNN using multimodal data achieved the highest 

correct stress-level prediction, with 47 out of 48 samples correctly identified, 

yielding an accuracy of 97.92%. The comparison results also highlighted the 

advantage of using multimodal data over single-signal data. The proposed approach 

is highly beneficial for reliable stress-level prediction in individuals. 
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I. INTRODUCTION 

In today's world, people's lives are more complex than ever before. A new study reveals that working 

professionals aged 25 to 40 are the most affected by stress in their daily lives. Recent research has 

demonstrated that stress can slowly but steadily damage brain cells [1]. Any mental health condition often 

originates from stress, which can manifest in various ways within the human body. Stress levels are rising 

due to factors such as financial difficulties, job losses, unemployment, and work pressures related to 

meeting deadlines [2. The stability of the neurological system depends on the brain's ability to respond 

effectively to stress. Prolonged stress in professionals leads to irritability and reduced performance. It also 

results in several health issues, including sleeplessness, weakened immunity, infections, cervical 

impairments, headaches, and other physical ailments [3]. The subtle yet significant impact of stress on 

mental health often goes unnoticed. Strategic planning by healthcare organizations, the use of digital tools 

for stress prediction, and the growth of entrepreneurship in the medical services sector could collectively 

improve the standard of living and unlock greater human potential for all citizens. 

 

The primary signs of stress include changes in core body temperature, neural activity, and ocular 

motility. The World Health Organization (WHO) has identified stress as a leading cause of illness 

globally [4]. A mental health survey conducted in India by the National Institute of Mental Health and 

Neuro Sciences from 2015 to 2016 revealed that the percentage of individuals with mental health issues 

increased from 7.5% in 2014 to 10.6% in 2016 [5]. The low- and middle-income patient-to-doctor ratio is 

in jeopardy. More than 150 million people in India suffer from various mental illnesses, including 

anxiety, depression, and personality disorders. The effects of the COVID-19 pandemic on people's lives 

have further exacerbated stress levels. These mental disorders require crucial mental health care; 

however, there is a 74% to 90% treatment gap for such services [6]. 

 

There are several approaches to recording and collecting human stress levels. Photoplethysmography 

(PPG), Phonocardiography (PCG), Respiration Rate (RR), Heart Rate (HR), Galvanic Skin Response 

(GSR), ECG, and EEG are some of the physiological signals commonly used in stress detection methods 

[7]. According to research, biochemical and biological processes often produce contradictory results due 

to hormonal instability. 

 

Mental stress is a widely recognized concept that is gaining traction in various research fields, such as 

neurology, medicine, psychology, and sentiment computing. Consequently, it is vital to investigate stress 

through a range of techniques. Physiological signals are particularly effective at revealing stress-related 

patterns. However, professionals often struggle to manage and interpret large volumes of data from 

diverse sources, such as wearable devices, audio recordings, or facial images [8]. Stress detection 

typically relies on personal consultations with psychologists or counselors, which are time-consuming, 

costly, and not universally accessible [9]. While specialists remain essential in many cases, Artificial 

Intelligence (AI) offers a complementary approach that enhances stress detection by enabling real-time, 

scalable, cost-effective, and objective monitoring. The adoption of AI can make stress management more 

personalized and proactive, leading to better mental health outcomes [10]. 

 

In recent times, Deep Learning (DL) algorithms have been increasingly utilized to analyze medical 

signals for disease diagnosis [11, 12]. Several studies have proposed DL models for stress detection; 

however, challenges such as insufficient data, noise, and inefficient feature extraction due to similarities 

in patterns between no-stress and low-stress signals result in suboptimal accuracy. To address these 

limitations, multimodal signals are utilized instead of single physiological signals and an optimized CNN 

model is proposed to fine-tune the hyperparameters, thereby enhancing the accuracy of stress prediction. 

The main contributions of this research are as follows: 
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 Multimodal ECG and EEG signals are employed to identify the stress level of individuals. 

 The CNN hyperparameters are fine-tuned using the Improved Firefly Algorithm (IFA), which 

aids in extracting the most significant features and improving classification accuracy. 

 The proposed IFA-CNN model's performance is compared with the FA-CNN and standard 

CNN models without optimization using standard evaluation metrics for both positive and 

negative outcomes. 

 The outcomes of the multimodal signals are also evaluated against single ECG and EEG 

signals to highlight the importance of using multimodal signals in stress prediction. 

 

The article is structured as follows: Section I discusses stress and the available stress-measuring 

physiological signals. Section II provides a brief overview of related work on stress prediction and its 

limitations. Section III explains CNN and the optimization techniques employed for hyperparameter 

selection. Section IV presents the data and experimental outcomes of CNN and optimized CNN models 

using multimodal and single physiological signals. Section V concludes the research and outlines future 

work. 

 

II. RELATED WORK 

Many studies have already been conducted on stress prediction using physiological signals with DL 

models. Some of the notable studies are given in Table I. The table helps to identify the data used, the 

accuracy attained by the model, along with its advantages and limitations. The literature survey helps to 

detect the current limitations and propose a novel model. 

 

TABLE I.  RECENT WORK ON STRESS PREDICTION USING DL MODELS 

Ref Model Data Used Accura

cy 

Advantage Limitation 

[13

] 

Discrete Wavelet 

Transform+ 

CNN+Bidirectional 

Long Short-Term 

Memory (BiLSTM) + 

Gated Recurrent Unit 

(GRU) 

EEG 98.10% High accuracy 

Effective feature 

extraction and 

classification 

High complexity due to 

parameter tuning 

Time-consuming 

[14

] 

2D CNN + LSTM EEG 97.8% Faster training with fewer 

epochs 

Small datasets limit 

generalizability and 

potential for overfitting 

[15

] 

Support Vector 

Machine  

PPG  95.55%

  

Non-intrusive and readily 

available sensors in 

smartwatches; suitable for 

real-time stress detection. 

Limited to the WESAD 

dataset; potential 

challenges in generalizing 

to diverse populations 

[16

] 

LSTM + CNN EEG  97.8% Effective temporal and 

spatial feature extraction 

The complex model 

structure may increase 

implementation 

complexity. 

[17

] 

GRU  EEG 95% High accuracy in multi-

level stress classification 

Limited to specific gaming 

scenarios. 

[18

] 

Boosting Neural 

Network  

HR, 

Temperatu

re 

94% Wearable, non-invasive 

devices that do not require 

sophisticated medical 

equipment. 

Need to improve accuracy 

further by optimization  
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[19

] 

CNN + BiLSTM ECG 86.5%  Achieves real-time stress 

detection using just 10s of 

ECG data 

Accuracy is really low 

[20

] 

CNN + BiLSTM with 

Attention Mechanism 

ECG 86.8%  The effectiveness of RNN 

with Attention Mechanism 

helps in effective feature 

extraction 

Need to improve accuracy  

[21

] 

CNN PPG 92.04% Non-invasive, wearable, 

and easy-to-use ear-

mounted PPG sensor.  

Accuracy needs to 

improve 

[22

] 

Hybrid DL (LSTM, 

GRU, 1D-CNN) 

Remote 

PPG  

95.83%  Computational efficiency 

and suitability for edge 

devices.  

Signal-to-noise ratio 

issues, and varying 

accuracy across diverse 

populations.  

 

III. PROPOSED METHODOLOGY 

The bio-inspired optimization algorithm is used for hyperparameter tuning of the CNN model. 

Hyperparameters of a CNN are crucial for improving classification accuracy and enhancing model 

generalizability. It is essential to select hyperparameters appropriately. Instead of using backpropagation 

for adjusting hyperparameter values, the IFA technique is employed. This approach produces better 

results compared to traditional methods. The architecture of the proposed IFA-CNN is shown in Figure 1. 

The CNN consists of convolution, pooling, and flattening layers for feature extraction from the 

multimodal signals, followed by fully connected layers and an output layer for classification. Based on 

the loss function in the output layer, the hyperparameters are tuned using the IFA technique. The tuning 

process continues until satisfactory results are achieved or the maximum number of epochs is reached. 

This technique has the advantage of better exploration and exploitation during the search for the optimal 

solution, making it a robust method for hyperparameter optimization. The detailed architecture and 

workings of CNN, FA, and IFA are explained in this section. 

 

Fig. 1. Proposed Improved Firefly Algorithm for Optimization of CNN Hyperparameter Tuning. 
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A. CNN Architecture 

The essential structure of a CNN consists of four layers: the Convolutional Layer (CL), the Pooling 

Layers (PL), the Activation Function (AF), and the Fully Connected Layer (FCL) [23]. In general, the 

signal is pre-processed before entering the network through the input layer. This is followed by a 

sequence of alternating CL and PL layers, and the process concludes with classification by the FCL. 

CNNs differ from Multi-Layer Perceptrons (MLPs) in that they include distinct CL and PL layers. When 

working with larger datasets, CNNs excel in both network performance and scalability [24]. 

 

Convolutional Layer 

Multiple CLs can extract various input features from CNNs of a given depth [25]. The bottom CL 

retrieves common properties such as patterns, lines, and boundaries, while the top layer retrieves more 

abstract features. The CL consists of multiple convolution kernels with learnable parameters [26]. Kernels 

are typically denoted as matrices with learnable weights, commonly in dimensions of 7 ×  7, 5 ×
 5, or 3 ×  3, with equal length and breadth of odd numbers. The feature maps are usually fed into the 

CL. Input feature maps are often denoted as 𝐷 ×  𝐵 ×  𝐶 (depth, breadth, and channels), while kernels 

are represented as 𝐾 ×  𝐾 ×  𝐶. This indicates that the number of kernels must match the number of 

input channels. Figure 3 illustrates the convolution process using input feature maps (5 ×  5 ×  3) and a 

kernel (3 ×  3 ×  3). The data flow in the CL can be described in Equation (1): 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑜𝑢𝑡 = 𝑓(∑ 𝑀𝑖
3
𝑖=3 ∗ 𝑊𝑖 + 𝐵)    [1] 

Where 𝑀𝑖 represents the feature surface of the input feature maps, 𝑊𝑖 represents the kernel's weight 

matrix, 𝑀  is the bias matrix, 𝑓(·)  represents the nonlinear activation function (AF), and 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑜𝑢𝑡 represents the output surface. The cross-correlation function between the feature 

maps and the kernel requires specific calculations within the CL. The dimension of the output feature 

map is given in Equation (2) and is influenced by the size of the 2-D input matrix (𝑖), stride (𝑠), kernel 

size (𝑘), and the padding (𝑝). 

𝑜 = [
𝑖+2𝑝−𝑘

𝑠
] + 1        [2] 

The kernel begins in the upper-left corner of the input matrix and progresses from top to bottom and 

left to right. The input is a three-dimensional feature map matrix with length and width values of three. It 

is important to note that gradient backpropagation is used to adjust the kernel's weight parameters [27]. 

When the kernel examines the same set of input feature maps, the parameters remain constant. Each pixel 

region applies a similar kernel sliding technique, allowing the kernel to share parameters. This approach 

simplifies and streamlines the process, enabling it to run on large datasets while minimizing the number 

of training parameters and reducing the risk of overfitting. 

 

Pooling Layer 

The PL is often placed following the CL. The primary reasons for adopting the PL include the 

following: performing downsampling and reducing dimensionality on the input signal to minimize the 

connections in the CL [28], thereby lowering the computational cost of the model; ensuring that the input 

signal is translation, scale, and rotation invariant; and increasing the output feature map's tolerance for 

single-neuron distortions and inaccuracies. Average and maximum pooling are the most frequently 

employed techniques. These methods can significantly reduce overfitting in CNNs [29]. During the 

downsampling process, the general correlation between the input and output matrix dimensions in the 

pooling procedure is given in Equation (3): 

𝑜 = [
(𝑖−𝑘)

𝑠
+ 1]        [3] 
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Activation Function 

The AF creates a functional relationship between input and output, which leads to a nonlinear system 

inside the neural network [30]. A proper nonlinear AF may significantly improve network efficiency. 

There are several AFs available. Saturating nonlinearities include the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  and 𝑡𝑎𝑛ℎ  equations. 

When the input is extremely large or extremely small, the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function approaches 0 or 1, while the 

𝑡𝑎𝑛ℎ function reaches -1 or 1. To address the challenges highlighted by saturating nonlinearities, non-

saturating nonlinearities such as ReLU were developed and given in Equation (4). The former functions 

require substantially longer to train with gradient descent than the latter. 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)       [4] 

Fully Connected (FC) Layer 

The FCL is typically placed after the CL and PL, with its neurons fully connected between layers. It 

combines and classifies the extracted features obtained from the CL and PL. The neurons in the output 

layer are equal to the number of categories, which helps to categorize the signal's category. In simple 

terms, the FCL functions as a classifier in CNNs. Before implementing the FCL's loss calculation, the 

CNN output is normalized using softmax regression. When training a complex network with numerous 

parameters on a small database, the FCL often employs dropouts and L2 regularization. The primary 

objective of these techniques is to prevent the model from overfitting [31]. A typical CNN model 

combines ReLU with dropout to achieve reliable classification results. 

 

Loss Function 

Along with the various layers of the CNN structure described in the preceding section, the 

classification is performed in the output layer, which is typically the final layer of the FCL. Several loss 

functions influence the efficiency of the CNN design and are utilized for various tasks. For multi-class 

stress classification, Cross-Entropy [32] has been utilized as the CNN model's loss function. Equation (5) 

provides the formula: 

𝐿𝑜𝑠𝑠(𝑦, 𝑦∗) = −
1

N
∑ ∑ 𝑦𝑖,𝑐log (𝑝𝑖,𝑐)𝐶

𝑐=1
𝑁
𝑖=1     [5] 

Where 𝑁 denotes the samples, 𝐶 represents the classes, 𝑦𝑖,𝑐 represents the binary value (0 or 1) that 

specifies whether class 𝑐 is the correct label for the 𝑖-th data, and 𝑝𝑖,𝑐 represents the predicted probability 

of the 𝑖-th data belonging to class 𝑐.   

 

B. Hyperparameter Optimization 

To achieve excellent outcomes in CNN, the hyperparameter values must be selected properly. Instead 

of using traditional parameter tuning, bio-inspired algorithms facilitate better classification results 

through enhanced exploration and exploitation [33]. The hyperparameter optimization problem associated 

with the CNN technique for stress classification can be described in Equation (6-15): 

Optimization problem: 

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝜙(𝑥)𝑥       [6] 

Subject to constraints: 

𝑥1 ∈ {16,32,64,128,256}         [7] 

𝑥2 ∈ {3,5,7,9,11}          [8] 

2 < 𝑥3 < 6              [9] 

1 < 𝑥4 < 5        [10] 

𝑥5 ∈ {16,32,64,128,256}       [11] 

0.1 < 𝑥6 < 0.5        [12] 
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1 ∗ 10−5 < 𝑥7 < 1 ∗ 10−2      [13] 

𝑥8 ∈ {16,32,64,128,256}      [14] 

10 ≤ 𝑥9 ≤ 100        [15] 

The target function, 𝜑() , measures the CNN model's performance, which is typically the classification 

accuracy of the input data 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]; where 𝑥1 represents the number of filters, 𝑥2 

represents the kernel size, 𝑥3 represents the pooling size, 𝑥4 represents the number of dense layers, 𝑥5 

represents the number of neurons in dense layers, 𝑥6  represents the dropout rate, 𝑥7  represents the 

learning rate, 𝑥8  represents the batch size, and 𝑥9  represents the epochs. This combinatorial problem, 

involving sets of integer and real number variables, is solved by optimizing the hyperparameters using the 

FA and IFA. 

 

Firefly Algorithm 
Xin-She Yang introduced the FA for optimization [34]. In this method, fireflies represent solutions. 

Based on Light Intensity (LI), fireflies are attracted to each other, and the solutions are directed towards 

the brighter ones. The FA is based on three basic principles [35]: 

 A firefly is unisex and can be attracted to another firefly. 

 The brightness influences the attractiveness of fireflies; as the distance between them 

decreases, their attractiveness increases, making them appear brighter. 

 The brightness of fireflies indicates their fitness function. 

 

Solutions are produced randomly between the upper and lower boundaries and given in Equation (16): 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑟𝑎𝑛𝑑 ∈ 0,1    [16] 

Where, 𝑥𝑖,𝑗 represents the solution, 𝑢𝑏𝑗  and 𝑙𝑏𝑗 represent the upper and lower bounds, respectively. 

The Euclidean distance, calculated using Equation (17), determines how close two solutions are to each 

other:   

𝑟𝑖,𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)𝑑
𝑘=1      [17] 

Where, 𝑟𝑖,𝑗  represents the distance between the solutions of 𝑖 and 𝑗, and 𝑑 represents the dimension of 

the problem. The LI is computed using the Equation (18):   

𝐼(𝑟) =
𝐼0

1+𝛾𝑟2        [18] 

The LI is represented by 𝐼0, whereas the LI at distance 𝑟 is represented by 𝐼(𝑟), where 𝛾 represents the 

light absorption coefficient. The attractiveness level of two solutions is computed using Equation (19):  

𝛽(𝑟) =
𝛽0

1+𝛾𝑟2        [19] 

The attractiveness at zero distance is represented by 𝛽0, while 𝛽  represents the attractiveness itself. 

The solutions move to a new position in the search space using the Equation (20): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0𝑟−𝛾𝑟𝑖,𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5)          [20] 

Where, 𝑥𝑖
𝑡+1  represents the new position, 𝑥𝑖

𝑡  denotes the current position, and the movement 

progresses toward the brighter solution 𝑥𝑗 . The control parameter 𝛼  is obtained from the Gaussian 

distribution. 
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Improved Firefly Algorithm 

The FA's exploration and exploitation balance is primarily determined by the parameter 𝛼, which 

changes dynamically during each algorithm run using Equation (21) [36]: 

𝛼(𝑡) = (1 − (1 − (10−4/9)1 𝑡𝑚𝑎𝑥⁄ )) ∗ 𝛼(𝑡 − 1)   [21] 

Where, 𝑡𝑚𝑎𝑥 represents the maximum iterations performed in a single run. This indicates that the value 

of 𝛼 is higher at the start of a run (providing greater exploration) and decreases throughout the search 

process (leading to greater exploitation power). 

 

Although the FA has relatively steady and effective exploitation, as determined by simulation 

outcomes on standard unconstrained benchmarks, the intensification-diversification trade-off can be 

improved by integrating additional steps into the FA technique. In certain cases, the FA technique 

exhibits premature convergence, which occurs when the entire population converges on the current 

optimal solutions [37]. To address this, the exploration capability of the FA is enhanced by introducing a 

population randomization technique. The 𝐹𝐴 (𝐸3 − 𝐹𝐴)  incorporates two approaches to improve 

exploitation and exploration. 

 

The first strategy improves the exploitation capability of the standard FA by introducing a new 

randomization parameter, 𝑝 , into the algorithm. This parameter determines whether the solution is 

updated using Equation (20) or dispersed around the current optimal solution based on a normal 

distribution. 

𝑥𝑖
𝑡+1 = 𝑥∗,𝑗

𝑡 + 𝑁(𝑥∗,𝑗
𝑡 , 𝜎𝑡

2)       [22] 

Where, 𝑥𝑖
𝑡+1 represents the updated solution, 𝑥∗,𝑗

𝑡  𝑗  represents the current optimal solution, and 𝑁(·)  

represents the normal distribution with the mean being the current optimal solution and variance 𝜎2 at 

iteration  𝑡. The variance influences the step size and decreases with the iterations. The distribution of the 

current optimal solution is computed using Equation (23): 

𝑁(𝑥𝑖
𝑡; 𝑥∗,𝑗

𝑡 , 𝜎𝑡
2) =

1

𝜎√2𝜋
𝑒−(𝑥𝑖

𝑡−𝑥∗,𝑗
𝑡 )

2
2𝜎2⁄

     [23] 

By using Equation (23), the updated solutions move nearer to the optimal solution, making it easier to 

reach the global optimum more quickly.  

As the technique approaches its maximum iteration, the step size (𝜎) decreases and approaches zero 

(𝜎𝑡 → 0). Equation (24) is used to adjust the step size at each iteration 𝑡. 

𝜎𝑡+1 = 𝜎0 − 𝜎0𝑡/𝑡𝑚𝑎𝑥       [24] 

Where, 𝑡 denotes the current iteration, 𝜎0 denotes the initial step size, and 𝑡𝑚𝑎𝑥 denotes the maximum 

iteration. 

 

The second strategy, which improves exploration, involves sorting the solutions after each iteration 

based on their FF value. The weakest solutions are replaced with new random solutions generated by 

Equation (16). This method introduces new, random solutions to prevent the algorithm from becoming 

stuck in suboptimal regions, especially if it converges in the incorrect part of the search space. 
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IV. RESULT AND DISCUSSION 

The outcomes of the  

 

A. Data Collection 

The multimodal ECG and EEG data were collected from the Kaggle site [38] for stress detection. The 

Human Research Ethics Committee of Prince of Songkla University, Thailand, approved the study on 

July 22, 2020. Participants were selected from August 2020 to May 2021. This study comprised 40 

healthy university students, 21 of whom were female (aged 18 to 25). All participants had no history of 

neurological or heart disease, and none were taking medications that could impact the autonomic nervous 

system. The Thai version of the Perceived Stress Scale was employed to assess underlying tension in the 

month leading up to the trial day, with each subject's stress classified into three levels. To manage the 

impact of circadian rhythms on physical activity, all trials were held in a quiet laboratory environment in 

noon (2-4 p.m.). 

 

The ECG was recorded using a bipolar limb lead attached to an ECG amplifier (AD Instruments, New 

Zealand). The signals were filtered from 0.3 to 200 Hz and captured at a sampling rate of 1000 Hz. EEG 

electrodes were fitted to a helmet with 8 electrodes: Fp1, Fp2, P3, P4, F3, F4, T3, and T4. Monopolar 

recordings were performed between the reference and active electrodes, with a sampling rate of 200 Hz, 

and the filter was configured as low-pass with a 200 Hz cut-off frequency. 

 

Stress was induced in this study using a mathematical challenge that is routinely utilized to cause brain 

activation and physiological responses (blood pressure, cortisol levels, and HR). The experimental 

procedure involved six steps: Step 1 was habituation, Step 2 was the eyes-open period, which is the non-

stress scenario or baseline, Step 3 was the mathematical stress challenge 1, which is the low-stress 

scenario, Step 4 was a break, Step 5 was the mathematical stress challenge 2, which is the high-stress 

scenario, and Step 6 was recovery, which allowed subjects to rest for 5 minutes. 

 

The physiological signals of EEG and ECG were collected from Kaggle and pre-processed to remove 

noise. Noise is introduced in both signals due to various reasons. To eliminate the noise, a band-pass filter 

was utilized, which helps cut off frequencies above the high-pass and below the low-pass cutoff range. 

This improves the results of stress detection. The EEG and ECG samples in the dataset consist of 40 no-

stress samples, 40 low-stress samples, and 40 high-stress samples. However, for deep learning, the dataset 

was insufficient. Data augmentation was performed to duplicate the existing samples, resulting in 160 

samples in each category. The augmented dataset was split into three parts: 336 samples for training, 96 

for validation, and 48 for testing. 

 

After pre-processing, the training and validation samples of both ECG and EEG signals were fed into 

the normal CNN and the optimized FA-CNN and IFA-CNN models for training and validation to detect 

the stress state of individuals. For CNN, hyperparameters were randomly fixed using the trial-and-error 

method. For FA-CNN and IFA-CNN, the hyperparameters were chosen using optimization techniques. 

After training and validation, the models were tested with 48 samples. 

 

The confusion matrix for each model using multimodal data is shown in Table 1. The IFA-CNN 

correctly predicted 46 samples and misclassified 2 samples. The FA-CNN correctly predicted 44 samples 

and misclassified 4 samples, while the CNN correctly identified 10 samples and misclassified 8. Based on 

the confusion matrix, performance metrics were calculated. Table 1 also shows the accuracy of each 

model using multimodal data. The IFA-CNN achieved the highest accuracy of 0.9792. 

 

In addition to accuracy, other important metrics (Precision, Recall, F1, TNR, FNR, and FPR) were 

calculated to validate the efficiency of the IFA-CNN model, as shown in Table II. Similarly, the metrics 

for FA-CNN and CNN for each stress category are tabulated in Tables III and IV. Analysis of Tables II to 
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IV reveals that IFA-CNN achieved the highest Precision, Recall, and F1 scores of 0.9804, 0.9792, and 

0.9791, respectively, and the lowest FNR and FPR values of 0.0208 and 0.0104. 

 

TABLE II.  CONFUSION MATRIX AND ACCURACY OF CNN MODELS USING MULTIMODAL DATA 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III.  PERFORMANCE ANALYSIS OF IFA-CNN ON STRESS DETECTION USING MULTIMODAL DATA 

Class Precision Recall F1 FNR FPR 

No Stress 1.0000 0.9375 0.9677 0.0625 0.0000 

Low Stress 1.0000 1.0000 1.0000 0.0000 0.0000 

High Stress 0.9412 1.0000 0.9697 0.0000 0.0313 

Macro 0.9804 0.9792 0.9791 0.0208 0.0104 

Micro 0.9792 0.9792 0.9792 0.0208 0.0104 

 

TABLE IV.  PERFORMANCE ANALYSIS OF FA-CNN ON STRESS DETECTION USING MULTIMODAL DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.9333 0.8750 0.9032 0.1250 0.0313 

Low Stress 0.8333 1.0000 0.9091 0.0000 0.0909 

High Stress 1.0000 0.8824 0.9375 0.1176 0.0000 

Macro 0.9222 0.9191 0.9166 0.0809 0.0407 

Micro 0.9167 0.9167 0.9167 0.0833 0.0417 

 

TABLE V.  PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING MULTIMODAL DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.8125 0.9286 0.8667 0.0714 0.0882 

Low Stress 0.8667 0.7222 0.7879 0.2778 0.0667 

High Stress 0.8235 0.8750 0.8485 0.1250 0.0938 

Macro 0.8342 0.8419 0.8343 0.1581 0.0829 

Micro 0.8333 0.8333 0.8333 0.1667 0.0833 

 

To analyze the advantages of using multimodal signals for stress detection, the same steps were 

repeated with ECG and EEG signals alone. This means that the CNN, FA-CNN, and IFA-CNN models 

were trained, validated, and tested with ECG and EEG signals separately for stress level prediction. The 

accuracy and confusion matrices of the models (CNN, FA-CNN, IFA-CNN) are provided in Table V. The 

Model Accuracy Label No 

Stress 

Low 

Stress 

High 

Stress 

IFA-CNN  0.9792 No Stress 15 0 1 

Low 

Stress 

0 16 0 

High 

Stress 

0 0 16 

FA-CNN 0.9167 No Stress 14 2 0 

Low 

Stress 

0 15 0 

High 

Stress 

1 1 15 

CNN 0.8333 No Stress 13 1 0 

Low 

Stress 

2 13 3 

High 

Stress 

1 1 14 
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IFA-CNN achieved the highest number of correctly identified stress level samples (43) using ECG 

signals alone, followed by FA-CNN (41) and CNN (40). Based on the confusion matrix, accuracy and 

other metrics were calculated. The accuracy achieved by IFA-CNN, FA-CNN, and CNN was 0.8958, 

0.8542, and 0.8333, respectively. The other metrics for each category of stress level prediction by IFA-

CNN, FA-CNN, and CNN are presented in Tables VI and VII. When using ECG signals alone, FA-CNN 

achieved better precision (0.8969), recall (0.9020), and F1 (0.8969) compared to the other models. The 

Precision, Recall, and F1 scores for FA-CNN were 0.8556, 0.8600, and 0.8552, respectively, while for 

CNN, they were 0.8120, 0.8132, and 0.812. 

 

TABLE VI.  CONFUSION MATRIX AND ACCURACY OF CNN MODELS USING ECG  DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VII.  PERFORMANCE ANALYSIS OF IFA-CNN ON STRESS DETECTION USING ECG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.8750 1.0000 0.9333 0.0000 0.0588 

Low Stress 0.9333 0.8235 0.8750 0.1765 0.0323 

High Stress 0.8824 0.8824 0.8824 0.1176 0.0645 

Macro 0.8969 0.9020 0.8969 0.0980 0.0519 

Micro 0.8958 0.8958 0.8958 0.1042 0.0521 

 

TABLE VIII.  PERFORMANCE ANALYSIS OF FA-CNN ON STRESS DETECTION USING ECG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.8000 0.9231 0.8571 0.0769 0.0857 

Low Stress 0.8333 0.8333 0.8333 0.1667 0.1000 

High Stress 0.9333 0.8235 0.8750 0.1765 0.0323 

Macro 0.8556 0.8600 0.8552 0.1400 0.0727 

Micro 0.8542 0.8542 0.8542 0.1458 0.0729 

 

TABLE IX.  PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING ECG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.8000 0.8000 0.8000 0.2000 0.0909 

Low Stress 0.8235 0.8750 0.8485 0.1250 0.0938 

High Stress 0.8125 0.7647 0.7879 0.2353 0.0968 

Macro 0.8120 0.8132 0.8121 0.1868 0.0938 

Micro 0.8125 0.8125 0.8125 0.1875 0.0938 

 

Model Accuracy Label No Stress Low Stress High Stress 

IFA-CNN  0.8958 No Stress 14 0 0 

Low Stress 1 14 2 

High Stress 1 1 15 

FA-CNN 0.8542 No Stress 12 1 0 

Low Stress 2 15 1 

High Stress 1 2 14 

CNN 0.8333 No Stress 13 2 1 

Low Stress 2 13 1 

High Stress 1 1 14 



 Optimization of Convolutional Neural Network for Accurate Stress Detection Using Multimodal 

Physiological Signals 

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025  
 

5252 | P a g e  

 

The analysis of stress level prediction using EEG signals alone was also conducted. The outcome of 

the confusion matrix and accuracy is given in Table IX. In this scenario, the correct prediction of stress 

level samples by IFA-CNN, FA-CNN, and CNN was 41, 39, and 37, respectively. The misclassifications 

were 7 for IFA-CNN, 9 for FA-CNN, and 11 for CNN. The accuracy of IFA-CNN, FA-CNN, and CNN 

was 0.8542, 0.8125, and 0.7708, respectively. The remaining metrics for IFA-CNN, FA-CNN, and CNN 

using EEG signals are provided in Tables X to XII. 

 

TABLE X.  CONFUSION MATRIX AND ACCURACY OF CNN MODELS USING EEG DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE XI.  PERFORMANCE ANALYSIS OF IFA- CNN ON STRESS DETECTION USING EEG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.9333 0.8235 0.8750 0.1765 0.0323 

Low Stress 0.8235 0.9333 0.8750 0.0667 0.0909 

High Stress 0.8125 0.8125 0.8125 0.1875 0.0938 

Macro 0.8565 0.8565 0.8542 0.1435 0.0723 

Micro 0.8542 0.8542 0.8542 0.1458 0.0729 

 

 

TABLE XII.  PERFORMANCE ANALYSIS OF FA-CNN ON STRESS DETECTION USING ECG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.8125 0.8125 0.8125 0.1875 0.0938 

Low Stress 0.8125 0.8125 0.8125 0.1875 0.0938 

High Stress 0.8750 0.8750 0.8750 0.1250 0.0625 

Macro 0.8333 0.8333 0.8333 0.1667 0.0833 

Micro 0.8333 0.8333 0.8333 0.1667 0.0833 

 

 

TABLE XIII.  PERFORMANCE ANALYSIS OF CNN ON STRESS DETECTION USING EEG  DATA 

Class Precision Recall F1 FNR FPR 

No Stress 0.7857 0.7857 0.7857 0.2143 0.0882 

Low Stress 0.7647 0.8125 0.7879 0.1875 0.1250 

High Stress 0.7647 0.7222 0.7429 0.2778 0.1333 

Macro 0.7717 0.7735 0.7722 0.2265 0.1155 

Micro 0.7708 0.7708 0.7708 0.2292 0.1146 

 

Finally, to determine which model and signal type provide better stress level prediction, the accuracy 

of different CNN variants using single and multimodal signals was compared. The comparison chart is 

Model Accuracy Label No Stress Low Stress High Stress 

IFA-CNN  0.8542 No Stress 14 1 2 

Low Stress 0 14 1 

High Stress 1 2 13 

FA-CNN 0.8125 No Stress 12 1 2 

Low Stress 1 14 1 

High Stress 2 2 13 

CNN 0.7708 No Stress 11 1 2 

Low Stress 1 13 2 

High Stress 2 3 13 
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presented in Figure 3. The figure clearly shows that IFA-CNN achieves better accuracy than FA-CNN 

and CNN models. By comparing the accuracy across all IFA-CNN models, the multimodal signal 

achieved the highest accuracy of 0.9792. 

 

 

Fig. 2. Accuracy comparison of different CNN variants with single and multimodal physiological signals 

for stress prediction. 

 

V. CONCLUSION 

The research focuses on designing a highly accurate stress-level prediction framework. To achieve 

this, multimodal ECG and EEG data from Kaggle were acquired and processed. The processing 

techniques included noise removal and augmentation. The processed signals were then fed into three 

models: a CNN model without optimization, an optimized CNN using the Firefly Algorithm (FA-CNN), 

and an Improved Firefly Algorithm (IFA-CNN) for feature extraction and stress-level classification. 

Three experiments were conducted. In the first experiment, multimodal data were given to the DL models 

for stress prediction. In the second and third experiments, ECG and EEG signals were used separately. 

Standard positive and negative metrics were employed to analyze the performance of the models. For 

multimodal data, the IFA-CNN achieved the highest accuracy of 0.9792, while the FA-CNN and CNN 

yielded accuracies of 0.9167 and 0.8333, respectively. Similarly, for ECG and EEG data, the IFA-CNN 

outperformed the other models, achieving accuracies of 0.8958 and 0.8542, respectively. The results infer 

two key points: first, multimodal signals improve stress prediction accuracy, and second, the IFA-CNN 

performs better than the FA-CNN and the CNN without optimization techniques. The proposed model's 

outcomes for stress-level prediction demonstrate a promising future for medical applications. 

 

The limitations of the research include the exclusive use of Kaggle data, which raises concerns about 

the model's generalizability. To address this, future work will involve testing the model on other standard 

datasets or real-time data. Additionally, the current analysis focuses only on accuracy, which is 

insufficient for real-time deployment. To determine the model's suitability for real-time applications, 

future research will evaluate other parameters, such as complexity and processing time. These aspects 

will be incorporated into future studies. 
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