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ABSTRACT 

Cardiovascular Disease (CVD) is a serious medical issue in today's society. The 

electrocardiogram (ECG) is considered the most appropriate non-invasive diagnostic 

technique for detecting cardiac conditions. However, interpreting an ECG requires specialist 

experience and is time-consuming. This underscores the need for automated CVD diagnosis 

using advanced techniques. Many researchers have proposed various techniques to identify 

CVD. However, current approaches have been inefficient in identifying small differences 

due to the irregular and complex nature of the ECG rhythms. This research proposes a novel 

hybrid deep learning (DL) model called CNN (Convolutional Neural Network)-GRU (Gated 

Recurrent Unit)-Transformer. The spatial features of ECG are retrieved by the CNN, and 

temporal features are retrieved by the RNN model. Both features are fused and classified for 

CVD detection using the Transformer network. The fusion of features helps detect the minor 

changes in ECG and identify CVD with high reliability. The experimental outcome of the 

proposed model on the PTB-XL database for ECG classification of CVD shows the highest 

accuracy of 98.8% and the lowest false negative rate (FNR) and false positive rate (FPR) of 

1.2% and 0.3%, respectively. The importance of the proposed network architecture is 

analyzed through an ablation study. Two ablation studies are conducted: first, the CNN is 

removed, and the GRU features are given to the Transformer for classification; in the second 

study, the GRU is removed. The ablation study shows accuracies of 95.8% and 97%, which 

are significantly lower than the proposed model’s accuracy. Additionally, the proposed 

network is compared with existing research. The outcome shows that the proposed network 

outperforms state-of-the-art techniques in detecting changes in ECG for CVD classification. 

The analysis of the proposed network suggests that it is a promising tool for detecting CVD 

at earlier stages with high accuracy rates. 

 

I. INTRODUCTION 

CVDs represent an extremely serious threat to human health. They are some of the most severe 

diseases in the world, responsible for a significant number of deaths each year [1]. The majority of 

cardiovascular-related deaths occur unexpectedly, leaving patients with insufficient time to seek medical 

assistance. Hypertension, obesity, high cholesterol, smoking, and poor dietary habits are all risk factors 

for CVD. Daily integrated modern biosensor monitoring can assist with early detection, prevention, and 
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the selection of appropriate treatments for heart diseases [2]. It is critical to identify individuals with heart 

disease early and monitor them regularly to provide optimal healthcare treatment. 

The ECG monitors the electrical signals of the heart, collecting essential information to help 

understand the cardiovascular system's operations [3]. As a non-invasive diagnostic technique, it is 

frequently employed to monitor and diagnose heart problems. It can detect heart issues in their early 

stages and assist in providing appropriate therapy. The ECG delivers essential information to 

cardiologists about the heart's condition, making it an invaluable tool for detecting various cardiac issues. 

An ECG device uses electrodes attached to the patient's skin to monitor the heart's rhythmic contractions 

and relaxations. Normal ECG signals include T, P, and QRS waves. The statistical and anatomical 

properties of ECG waves are key health indicators that can reveal heart problems. For instance, the 

absence of P waves and an irregular ventricular rhythm in ECG data may indicate atrial fibrillation [4]. 

Cardiologists regularly perform ECG screenings on patients to detect heart anomalies and provide 

effective treatment. However, this process requires significant human effort and costly medical 

procedures. As the population ages, the patients suffering from CVDs is expected to increase 

dramatically, necessitating rapid, accurate, and low-cost automatic ECG diagnosis. 

 

By implementing automated CVD detection technologies, healthcare practitioners can optimize 

resource allocation, streamline patient care, and potentially reduce the cost burden on individuals and 

healthcare systems [5]. Previous approaches to ECG-based CVD diagnosis relied heavily on human 

interpretation, which might result in subjectivity and unpredictability in diagnoses. The accuracy of 

traditional techniques depends on the competency of the interpreting healthcare practitioner, and CVD 

might be misinterpreted or misclassified, potentially resulting in erroneous treatment regimens or missed 

opportunities for intervention [6]. Furthermore, traditional techniques may struggle to detect certain types 

of CVD that exhibit complex or atypical patterns. These limitations of traditional CVD detection methods 

highlight the need for novel procedures that improve accuracy, objectivity, and efficiency in recognizing 

and categorizing CVD [7]. Thus, there is significant promise in using DL to accurately and automatically 

identify CVD using ECG signals. Its capacity to automatically learn various patterns and qualities from 

raw data makes it ideal for assessing ECG readings and detecting CVDs. 

 

In this research, a novel hybrid DL model is proposed, which combines the strengths of three DL 

networks: CNN, GRU, and Transformer. First, the spatial features of ECG are extracted by CNN, and 

temporal features are extracted by the GRU. The extracted features are then fused and classified into 

different types of CVD using the Transformer network. The strength of the proposed model lies in the 

combination of both spatial and temporal features. This helps to identify the minor variations in ECG, 

which are crucial for detecting different types of CVD, as each type varies by only minor changes. The 

dataset for the research is taken from the PTB-XL dataset, and pre-processing is performed to make it 

ready for the DL model.  

 

The article is organized as follows: Section I discusses CVD and ECG, highlighting the need for a 

novel method for CVD detection using ECG. Section II reviews the most recent research on CVD. 

Section III elaborates on the proposed architecture with a flow diagram. Section IV presents the results of 

the proposed network, along with an ablation study and a comparison with existing research, as well as 

detailed information about the dataset. Section V concludes the research with future work. 

 

II. RELATED WORK 

For automated CVD detection using ECG signals, numerous researchers have already explored various 

ML and DL models. Some notable works are summarized in Table I, which aids in identifying recent 

research gaps and addressing these through the proposed novel hybrid DL model. The table outlines the 

models used, the accuracy achieved, and the limitations of each study. This comprehensive review 

provides a foundation for the proposed approach in the research. 
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TABLE I.  LITERATURE REVIEW ON ECG-BASED CVD DETECTION 

Ref Model Accuracy Limitation 

[8] Learner module using Support 

Vector Machine and Random 

Forest 

77.4% Moderate classification accuracy; further 

improvements in model performance and 

feature engineering are required. 

[9] Three-Filter Feature Selection 

approach with Random Forest 

85.58%

  

The novel feature selection technique improved 

performance but added complexity 

[10] Independent Component 

Correlation feature selection 

with Artificial Neural Network 

99.6% Not fully automated feature extraction and 

impractical for large-scale or real-time 

applications. 

[11] Customized CNN-2D for ECG 

image classification 

80%  Further work is required to optimize the 

architecture 

[12] MobileNetV2  95.18 The small database and the absence of a truly 

independent test group. 

[13] Deep Neural Network (DNN) 

with XGBoost 

78.65% An unbalanced dataset leads to poor accuracy 

[14] Long Short-Term Memory 

(LSTM)-based classifier 

95% Training time is not discussed, which impacts 

the cost-effectiveness of the approach. 

[15] Stacked LSTM and Bi-LSTM 95%  High computational costs due to the complex 

structure. 

[16] CNN  94%  Synthetic data generation was introduced, but 

class imbalance remains a challenge. 

[17] DNN with genetic algorithm 94% Increased computational cost due to robust 

feature extraction and optimization protocol. 

[18] 1D CNN 97.40% Excessive pre-processing required, long 

training time, increasing computational cost. 

The proposed research aims to address current gaps, such as imbalanced datasets, reducing 

complexity, and eliminating manual feature extraction, while ensuring the accuracy of CVD detection. 

 

III. PROPOSED METHODOLOGY 

The proposed network for CVD detection using ECG signals is detailed in this section. The hybrid 

CNN-GRU-Transformer network consists of three important modules: CNN, GRU, and Transformer. The 

CNN and GRU are employed to retrieve the spatial and temporal features from the ECG signal, 

respectively. Those features are fused and classified by the transformer network. The overall architecture 

of the proposed hybrid CNN-GRU-Transformer is illustrated in Figure 1. The functioning of each module 

is detailed in the below subsections. 
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Fig. 1. Proposed CNN-GRU-Transformer Network for CVD Classification 

 

A. CNN 

CNNs can be developed with numerous layers, including a convolution layer (CL), a pooling layer 

(PL), an activation layer (AL), and a classification layer [19]. To retrieve features from the input, the 

three layers (CL, PL, AL) are required. Because of their high feature extraction capacity, two-dimensional 

CNNs are commonly used in image processing. The classification layer uses the retrieved features for 

classification. The CL is the fundamental layer of the CNN framework, and it merges input data with 

filtering kernels [20]. The network trains the filter to activate when it retrieves the specified features. The 

mathematical structure can be described in the following equation: 

𝑦𝑗
𝑘 = 𝐾𝑖

𝑘 ∗ 𝑥𝑖
𝑘 = ∑ 𝑥𝑖

𝑘 ∗ 𝑤𝑖𝑗
𝑘 + 𝑏𝑗

𝑖
𝑖∈𝑀𝑗

     [1] 

where 𝑦𝑗
𝑘 denotes the outcome of the 𝑘-th layer; 𝐾𝑖

𝑘 denotes the 𝑖-th convolution kernel of the 𝑘-th 

layer; 𝑥𝑖
𝑘 denotes the input of the 𝑘-th layer; the ∗ symbolizes the convolution process; 𝑤𝑖𝑗

𝑘  and 𝑏𝑗
𝑖 denotes 

the weight and bias.   

 

The AL often follows the CL, which is an important layer. A neuron's output and input connections are 

typically defined by its activation function, which is nonlinear. This allows the network to acquire 

nonlinear characteristics from the input, thereby enhancing its feature extraction performance. The 

rectified linear unit (ReLU) is selected as an activation function in CNNs, and it is described in the 

following equation: 

𝑅𝑒𝐿𝑈(𝑦𝑗
𝑘) = {

0 𝑦𝑗
𝑘 < 0

𝑦𝑗
𝑘 𝑦𝑗

𝑘 ≥ 0
       [2] 

DNNs use batch normalization (BN) to reduce internal correlation shifts while increasing network 

training accuracy [21]. Furthermore, BN normalizes the learned parameters (to a range of 0 to 1), which 

speeds up the model's training. The transformation process of BN is discussed below:    



 Hybrid Deep Learning Framework for Enhanced Cardiovascular Disease Detection Using ECG Signal 

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025 

  

5260 | P a g e  

 

{
  
 

  
 𝜇𝐵 =

1

𝑚
∑ 𝑥𝑖
𝑚
𝑖=1

𝛿𝐵
2 =

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)

2𝑚
𝑖=1

𝑥̂𝑖 =
𝑥𝑖−𝜇𝐵

√𝛿𝐵
2+𝜀

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽

      [3] 

Where, 𝑚  denotes the mini-batch size, 𝜇𝐵  denotes the mean, and 𝛿𝐵
2  denotes the variance. The 

network's parameters, 𝛾 and 𝛽, are learnable. The PL performs a downsampling process to eliminate 

duplicate features and acquire more detailed ones. The most popular pooling operations are maximum 

pooling (MP) and average pooling (AP). MP usually outperforms AP in time-series classification tasks, 

as shown below: 

𝑝𝑖
𝑘 = 𝑚𝑎𝑥(𝑗−1)𝑠+1≤𝑡≤𝑗𝑠{𝑎𝑖

𝑘(𝑡)}      [4] 

The 𝑘-th layer's output features are represented by 𝑝𝑖
𝑘, 𝑎𝑖

𝑘(𝑡) denotes the outcome of the 𝑖-th channel’s 

𝑡-neuron of the 𝑘-th layer, and 𝑠  represents the pooling stride. After this, the classification layer is 

present. The output before the classification layer is considered as the spatial features. 

 

B. GRU 

The GRU, a recurrent neural network (RNN), addresses the issue of gradient vanishing in long-term 

dependencies during time series learning in conventional RNNs [22]. Both GRU and LSTM tackle this 

issue; however, while they perform equally on a range of DL tasks, GRU requires fewer parameters and 

computations. This minimize the likelihood of overfitting and conserves computational resources, making 

it more efficient. The GRU model consists of two fundamental gates: the update gate (UG) and the reset 

gate (RG) [23]. The RG controls the amount of the past hidden state that affects the candidate state, based 

on the past hidden state and the current input. The UG decides which historical data from the last hidden 

state has to be discarded and which data from the present candidate state has to be included in the new 

hidden state. Equations (7) and (8) provide the update formulas for the candidate and hidden states, 

respectively, whereas Equations (5) and (6) calculate the RG and UG weights. 

𝑟𝑛 = 𝜎(𝑊𝑖𝑟𝑥𝑛 +𝑊ℎ𝑟ℎ𝑛−1)      [5] 

𝑧𝑛 = 𝜎(𝑊𝑖𝑧𝑥𝑛 +𝑊ℎ𝑧ℎ𝑛−1)      [6] 

𝑐𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑐𝑥𝑛 +𝑊ℎ𝑐(𝑟𝑛⨀ℎ𝑛−1))     [7] 

ℎ𝑛 = 𝑜𝑛 = (1 − 𝑧𝑛)⨀𝑐𝑛 + 𝑧𝑛⨀ℎ𝑛−1     [8] 

Where,  𝑥𝑛 represents the input at the (𝑛) moment, and ℎ𝑛−1represents the hidden state at the (𝑛 − 1) 

moment. 𝑊𝑖𝑟 and 𝑊ℎ𝑟  denotes the RG weight matrices. 𝑊𝑖𝑧 and 𝑊ℎ𝑧 denotes the UG weight matrices. 

𝑊𝑖𝑐 and 𝑊ℎ𝑐 denotes the candidate state weight matrices. At the (𝑛) moment, 𝑐𝑛 denotes the candidate 

state, ℎ𝑛  and 𝑜𝑛  denotes the hidden and output state. The ⨀ denotes element-wise multiplication. The 

activation functions 𝜎  and 𝑡𝑎𝑛ℎ   are calculated using the formulas:  𝜎(𝑥) =
1

1+𝑒−𝑥
 and 𝑡𝑎𝑛ℎ(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
. These functions enhance the model's nonlinear capabilities. In the GRU network, the output layer 

is also eliminated, and the temporal features are extracted for further processing. 

C. Transformer 

The Transformer includes both encoder and decoder structures within its architecture [24]. Fusion 

Encoder (FTE) leverages both non-local attention and sequential feature learning to capture deep 

temporal and spatial characteristics from ECG signals. The CNN feature 𝑓ℎ  is spatially segregated as a 

series of two-dimensional patches {𝑓ℎ𝑖}𝑖=1
𝑁

, where 𝑓ℎ𝑖 ∈ ℝ
𝑃2∗𝐶, 𝑃 represents the patch size, and 𝑁 =

𝐻∗𝑊

𝑃2
 

represents the number of patches.  These spatial features, extracted by the CNN, capture the local patterns 

within the ECG signals. Meanwhile, the GRU extracts temporal features from the ECG signals. This 
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combination enables the model to learn both spatial and temporal representations effectively. The outputs 

from both the CNN and GRU are then fused to create a unified representation for further classification. A 

linear projection layer 𝐸 ∈ ℝ(𝑃
2.𝐶)∗𝐷  has been trained for mapping flattened patches into the D-

dimensional hidden embedding region. For making the architecture adaptive to extracted data, a series of 

learnable position embeddings, {𝐸𝑝𝑖}𝑖=1
𝑁

, has been included in the patch embeddings, where 𝐸𝑝𝑖 ∈ ℝ
𝐷. 

The stacked transformer encoder receives {𝑓ℎ𝑖𝐸 + 𝐸𝑝𝑖}𝑖=1
𝑁

. Each encoder layer has a feed-forward 

network (FFN) and multi-head self-attention (MSA) mechanism [25].   The encoder layer employs the 

skip connection, and layer normalization (LN). The aforementioned procedures are organized as follows: 

𝑥0 = [𝑓ℎ1𝐸 + 𝐸𝑝1; 𝑓ℎ2𝐸 + 𝐸𝑝2; . . . ; 𝑓ℎ𝑁𝐸 + 𝐸𝑝𝑁]      [9] 

𝑥𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑥𝑙−1)) + 𝑥𝑙−1      [10] 

𝑥𝑙 = 𝐹𝐹𝑁(𝐿𝑁(𝑥𝑙
′)) + 𝑥𝑙

′,   𝑙 = 1 . . .  𝐿     [11] 

[𝑓𝐹𝑇𝐸1 , 𝑓𝐹𝑇𝐸2 , . . . , 𝑓𝐹𝑇𝐸𝑁] = 𝐿𝑁(𝑥𝐿)     [12] 

Equation (10) computes the similarities between the 𝑛-th and the other patch embeddings, which are 

subsequently used as aggregate weights for encoding the 𝑛-th patch. MSA acts as a feature extraction 

technique, as determined by the following formula:   

𝑞𝑙
𝑖 = 𝐿𝑁(𝑥𝑙−1)𝐸𝑞        [13] 

𝑘𝑙
𝑖 = 𝐿𝑁(𝑥𝑙−1)𝐸𝑘        [14] 

𝑣𝑙
𝑖 = 𝐿𝑁(𝑥𝑙−1)𝐸𝑣        [15] 

𝐴𝑡𝑡𝑖(𝑞𝑙
𝑖, 𝑘𝑙

𝑖 , 𝑣𝑙
𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑞𝑙
𝑖𝑘𝑙
𝑖𝑇

√𝐷𝑎𝑡𝑡
𝑣𝑙
𝑖) , 𝑖 = 1,2, . . . , 𝐻   [16] 

𝑥𝑙
𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 ({𝐴𝑡𝑡𝑖(𝑞𝑙

𝑖 , 𝑘𝑙
𝑖, 𝑣𝑙

𝑖)}
𝑖=1

𝐻
)𝐸𝑜𝑢𝑡    [17] 

Where, 𝐸𝑞, 𝐸𝑘 and 𝐸𝑣 ∈ ℝ
𝐷∗𝐷𝑎𝑡𝑡 , the patch embedding dimension is decreased to 𝐷𝑎𝑡𝑡  to lessen the 

computing cost of Equation (16).  FTE provides a collection of encoding features  {𝑓𝐹𝑇𝐸𝑖} 𝑖=1
𝑁  for all 

sources.  

 

A fusion transformer decoder (FTD) is utilized to merge the CNN and GRU features globally. The 

feature point 𝑓ℎ(𝑖, 𝑗) at the (𝑖, 𝑗) position of the CNN and GRU features uses the MSA module to perform 

a search across the entire feature map, collecting feature points with corresponding temporal and spatial 

data. The cosine distance is employed for calculating the similarity matrix (SM) between 𝑓ℎ(𝑖, 𝑗), and the 

features at every position in 𝑓ℎ using Equation (10). The SM is then normalized. Using this normalized 

matrix, The 𝑓ℎ(𝑖, 𝑗) feature points are summed and weighted. Lastly, the features are concatenated with 

𝑓ℎ(𝑖, 𝑗). The receptive area of features are expanded by FTE, while improving the recognizing strength of 

individual-source features. 

𝑦0
𝑖 = [𝑓𝐹𝑇𝐸1

𝑖 + 𝐸𝑝1
𝑖 ; 𝑓𝐹𝑇𝐸2

𝑖 + 𝐸𝑝2
𝑖 ; . . . 𝑓𝐹𝑇𝐸𝑁

𝑖 + 𝐸𝑝𝑁
𝑖 ]   [18] 

𝑦𝑙
′𝑖 = 𝑀𝑆𝐴(𝐿𝑁(𝑦𝑙−1)) + 𝑦𝑙−1      [19] 

𝑦𝑙
′′𝑖 = 𝑀𝐶𝐴 (𝐿𝑁(𝑦𝑙

′𝑖), 𝐿𝑁(𝑦𝑙
′𝑖)) + 𝑦𝑙

′𝑖     [20] 

𝑦𝑙
𝑖 = 𝐹𝐹𝑁 (𝐿𝑁(𝑦𝑙

′′𝑖)) + 𝑦𝑙
′′𝑖 ,            𝑙 = 1 . . . 𝐿    [21] 

[𝑓𝐹𝑇𝐷1
𝑖 , 𝑓𝐹𝑇𝐷2

𝑖 , . . . , 𝑓𝐹𝑇𝐷𝑁
𝑖 ] = 𝐿𝑁(𝑦𝐿

𝑖)     [22] 
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Equation (20) identifies the similarities between source 𝑖 (𝑛 −th patch embedding) and 𝑗 (all patch 

embeddings), which are used for aggregation. Therefore, MCA is a feature combination mechanism, 

which is defined below (single-head cross-attention is given): 

𝑞𝑙
′𝑖 = 𝐿𝑁(𝑦𝑙

′𝑖)𝐸𝑞′
𝑖         [23] 

𝑘𝑙
′𝑖 = 𝐿𝑁(𝑦𝑙

′𝑗
)𝐸𝑘,𝑣′

𝑖        [24] 

𝑣𝑙
′𝑖 = 𝐿𝑁(𝑦𝑙

′𝑗
)𝐸𝑘,𝑣′

𝑖        [25] 

𝐴𝑡𝑡′𝑖(𝑞𝑙
′𝑖, 𝑘𝑙

′𝑗
, 𝑣𝑙
′𝑗
) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑞𝑙
′𝑖𝑘𝑙

′𝑗𝑇

√𝐷𝑎𝑡𝑡
𝑣𝑙
′𝑗
)    [26] 

𝑦𝑙
′′𝑖 = 𝐴𝑡𝑡′𝑖(𝑞𝑙

′𝑖, 𝑘𝑙
′𝑗
, 𝑣𝑙
′𝑗
)𝐸𝑜𝑢𝑡

𝑖       [27] 

where 𝐸𝑞
𝑖 , 𝐸𝑘,𝑣

𝑗
∈ ℝ𝐷∗𝐷𝑎𝑡𝑡 , the patch embedding dimension is deduced to 𝐷𝑎𝑡𝑡  for minimizing the 

computational complexity of Equation (20). Next, FTD produces the decoding feature {𝑓𝐹𝑇𝐷}𝑖=1
𝑁 . 

 

The MCA component does not instantly fuse the patch embeddings 𝑓𝐹𝑇𝐸𝑛
𝑖  and 𝑓𝐹𝑇𝐸𝑛

𝑗
 of sources 𝑖 and 𝑗.  

The MCA has done a global search on the features in 𝑗 . Equation (26) uses the cosine distance to 

determine the SM between 𝑓𝐹𝑇𝐸𝑛
𝑖  and each embedding in 𝑗 and then normalized. The patch embeddings 

from source 𝑗 are summed and  weighted using the normalized matrix. Next, the features are merged with 

𝑓𝐹𝑇𝐸𝑛
𝑖 . As a result, even if the two sources have semantic biases, FTD combines features from CNN and 

GRU that include semantically similar information.   

 

The class token is used to interpret both spatial and temporal information. Instead of initializing 

randomly, class tokens are employed to accelerate convergence. Global AP is performed on CNN and 

GRU features 𝑓ℎ ∈ ℝ
𝐻′∗𝑊′∗𝐷  to produce the semantic class token 𝑓𝑠𝑐𝑡 ∈ ℝ

𝐶 , which contributes to the 

extraction and fusion of features. To compute the FTD and FTE, Equations (9), (12), (18), and (22) are 

adjusted as shown in Equation (28-31): 

𝑥0 = [𝑓𝑠𝑐𝑡𝐸𝑠 + 𝐸𝑝0; 𝑓ℎ1𝐸 + 𝐸𝑝1; . . . ; 𝑓ℎ𝑁𝐸 + 𝐸𝑝𝑁]   [28] 

[𝑓𝐹𝑇𝐸0 , 𝑓𝐹𝑇𝐸1 , . . . , 𝑓𝐹𝑇𝐸𝑁] = 𝐿𝑁(𝑥𝐿)     [29] 

𝑦0
𝑖 = [𝑓𝐹𝑇𝐸0

𝑖 + 𝐸𝑝0
𝑖 ; 𝑓𝐹𝑇𝐸1

𝑖 + 𝐸𝑝1
𝑖 ; . . . 𝑓𝐹𝑇𝐸𝑁

𝑖 + 𝐸𝑝𝑁
𝑖 ]   [30] 

[𝑓𝐹𝑇𝐷0
𝑖 , 𝑓𝐹𝑇𝐷1

𝑖 , . . . , 𝑓𝐹𝑇𝐷𝑁
𝑖 ] = 𝐿𝑁(𝑦𝐿

𝑖)     [31] 

Where 𝐸𝑠 ∈ ℝ
𝐶∗𝐷 . The tokens of rearranged features are chosen from the decoded and the fused 

features 𝑓𝐹 = 𝑓𝐹𝑇𝐷0
CNN + 𝑓𝐹𝑇𝐷0

GRU. The final fully connected network accepts the fused features as input and 

generates a prediction map 𝑓𝑝𝑖 for each CVD. The formula for predicting CVD is given in Equation (33). 

𝑓𝑝𝑖 = 𝐹𝑡𝑖(𝐹𝑢𝑠𝑖𝑜𝑛(𝑓𝐹𝑇𝐷
𝐶𝑁𝑁 + 𝑓𝐹𝑇𝐷

𝐺𝑅𝑈)), 𝑓𝑝𝑖 ∈ [0,1]
ℎx𝑤x𝐶   [33] 

 

IV. DISCUSSION 

This section discusses the data collection and processing steps in CVD classification. The 

experimental outcomes of the proposed network, ablation study, and metrics comparison with the existing 

research are also presented. 

 

A. Data Collection and Processing 

This study takes ECG signal from the PTB-XL ECG database [26]. The dataset includes 21,837 

clinical 12-lead ECGs from 18,885 individuals, each lasting 10 seconds and collected at 500 and 100 Hz 
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with 16-bit resolution [27]. ECG results are susceptible to contamination by background noise and 

bioelectrical interference. For accurate evaluation and assessment, unwanted noise must be removed from 

the ECG. This work uses DWT [28], a widely used denoising method, as a viable choice for denoising 

ECG data. The research also developed wavelet families for ECG signals, such as Haar, Symlets, Bior, 

Daubechies, and Coiflet, to identify which wavelet type produced the most effective signal denoising 

results. Based on the highest signal-to-noise ratios, the Symlet wavelet was chosen as the best DWT 

parameter for ECG signal denoising. Next, the Fast Fourier Transform (FFT) was employed to map the 

denoised ECG signal to images [29]. The formula for the FFT of the ECG time series x is defined as 

follows: 

𝑌𝑝+1,𝑞+1 = ∑ ∑ 𝜔𝑚
𝑗𝑝𝑛−1

𝑘=0
𝑚−1
𝑗=0 𝜔𝑛

𝑘𝑝𝑋𝑗+1,𝑘+1    [34] 

Where, 𝜔𝑚 = 𝑒−2𝜋𝑖/𝑚  and 𝜔𝑛 = 𝑒
−2𝜋𝑖/𝑛  represents the complex roots, 𝑖  represents the imaginary 

unity, 𝑞 and 𝑘 represents indices (0 to 𝑛 − 1), and  𝑝 and 𝑗 represents indices (0 to 𝑚–  1). The sample 

scalogram images are given in Figure 2. 

 
Fig. 2. Scalogram images of ECG signal 

 

The scalogram images are separated into three groups: training, validation, and test. These data were 

then normalized in the range of 0 to 1 and utilized as inputs to the proposed model for evaluation. Table II 

provides a detailed description of the PTB-XL dataset before and after balancing, including the data used 

for training, validation, and testing. 
TABLE II.  DETAILS OF PTB-XL DATASET 

Data Actual Balanced Train Validation Test 

NORM 7185 1000 700 200 100 

CD 3232 1000 700 200 100 

STTC 3064 1000 700 200 100 

MI 2936 1000 700 200 100 

HYP 812 1000 700 200 100 

 

B. Experimental Outcome 

The research was conducted on Google Colaboratory. The Python programming language was used, 

and the TPU runtime was selected to implement the network. For CVD identification, ECG signals from 

the PTB-XL database were collected and processed. The processed signals were fed into the proposed 

CNN-GRU-Transformer network. A total of 3,500 samples were used for training, and 1,000 samples 

were used for validating the CNN-GRU-Transformer model. The loss and accuracy plots of the model are 

shown in Figures 3 and 4. 
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Fig. 3. Loss plot of the proposed network on CVD Classification 

 
Fig. 4. Accuracy plot of the proposed network on CVD Classification 

 After training and validation, 100 samples from each CVD category were used for testing the 

model. The proposed model correctly identified 494 CVD categories and misclassified 6 CVDs out of 

500 ECG signals. The confusion matrix of the proposed network is shown in Figure 5. Using the 

confusion matrix elements, metrics such as accuracy, precision, recall, F1 score, specificity, FNR, and 

FPR were calculated using Equations (4-9). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      [35] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       [36] 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       [37] 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2.𝑇𝑃

2.𝑇𝑃+𝐹𝑁+𝐹𝑃
      [38] 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
       [39] 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
        [40] 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
        [41] 
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Fig. 5. Confusion Matrix of the Proposed Network 

 

In these equations, TP (True Positive) and TN (True Negative) denotes the correct detection of CVD 

from the ECG, while FP and FN indicate incorrect detections of CVD. Table III shows the performance 

evaluation of the proposed model for each CVD category. The proposed network obtained an accuracy of 

98.80%. Other metrics such as precision, recall, F1 score, and specificity were 98.80%, 98.80%, 98.80%, 

and 99.70%, respectively, while FRR and FAR were 1.20% and 0.30%, respectively. The proposed 

network performed excellently in predicting normal, MI, and CD conditions. 
TABLE III.  PERFORMANCE COMPARISON OF THE PROPOSED NETWORK  

 Accuracy Precision Recall F1 Specificity FNR FPR 

NORM  

 

 

98.80 

100.00 99.01 99.50 100.00 0.99 0.00 

CD 99.00 100.00 99.50 99.75 0.00 0.25 

STTC 97.03 98.00 97.51 99.25 2.00 0.75 

MI 100.00 99.01 99.50 100.00 0.99 0.00 

HYP 97.98 97.98 97.98 99.50 2.02 0.50 

Average 98.80 98.80 98.80 99.70 1.20 0.30 

 

An ablation study was conducted on the proposed network. In the proposed network, CNN and GRU 

features were fused by a transformer to perform classification. In Ablation Study 1, the GRU module was 

removed from the proposed network, and CNN features were fed to the transformer module for 

classification. The performance metrics achieved by the model were: Accuracy: 95.80%, Precision: 

95.80%, Recall: 95.81%, F1 Score: 95.79%, Specificity: 98.95%, FRR: 4.19%, FAR: 0.30%. Table IV 

provides the detailed metrics obtained for each category in Ablation Study I. 

 

In the second ablation study, the CNN module was removed from the proposed network, and GRU-

retrieved features were fed to the transformer module for the classification of CVD from ECG signals. 

The metrics achieved by Ablation Study 2 were: Accuracy: 97.00%, Specificity: 99.25%, Precision: 

97.02%, Recall: 97.00%, F1: 97.00%, FRR: 3.00%, FAR: 0.75%. Table V provides the detailed metrics 

obtained for each category in Ablation Study II. By comparing the performance of the ablation studies 
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with the proposed model, it is clear that each module contributes to improving the accuracy of CVD 

detection. The confusion matrix of the ablation study without GRU and CNN is given in Figure 6. 

 
a) Without GRU      b) Without CNN  

Fig. 6. Confusion Matrix of the Ablation Study 

 

TABLE IV.  PERFORMANCE COMPARISON OF THE PROPOSED NETWORK WITHOUT GRU FEATURES 

 Accuracy Precision Recall F1 Specificity FNR FPR 

NORM  

 

 

95.80 

97.06 97.06 97.06 99.25 2.94 0.00 

CD 97.00 97.00 97.00 99.25 3.00 0.25 

STTC 95.92 92.16 94.00 99.00 7.84 0.75 

MI 94.12 96.97 95.52 98.50 3.03 0.00 

HYP 94.90 95.88 95.38 98.76 4.12 0.50 

Average 95.80 95.81 95.79 98.95 4.19 0.30 

 

 

TABLE V.  PERFORMANCE COMPARISON OF THE PROPOSED NETWORK WITHOUT CNN FEATURES 

 Accuracy Precision Recall F1 Specificity FNR FPR 

NORM  

 

 

97.00 

98.04 98.04 98.04 99.50 1.96 0.50 

CD 95.15 97.03 96.08 98.75 2.97 1.25 

STTC 97.94 97.94 97.94 99.50 2.06 0.50 

MI 98.98 96.04 97.49 99.75 3.96 0.25 

HYP 95.00 95.96 95.48 98.75 4.04 1.25 

Average 97.02 97.00 97.00 99.25 3.00 0.75 

 

The proposed model in this research was compared with existing research work from the literature. 

Table VI shows the comparison of performance metrics. Among the studies considered for comparison, 

references [1-4] reported accuracy metrics greater than 90%. The highest accuracy attained was by 

reference [1], which achieved an accuracy of 98.51%. However, the proposed network achieved the 

highest accuracy of 98.80%, surpassing all other studies. Other references produced accuracy values 

below 90%. All the studies used the same PTB-XL database. 

 
TABLE VI.  COMPARISON OF PROPOSED NETWORK WITH THE STATE-OF-ART RESEARCH 

Ref Accuracy Recall Specificity Precision F1 

[30] 98.51 97.9 98.12 - 97.95 

[31] 93 90 - 92 93 

[32] 97.5 97.42 - 97.61 97.52 
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[33] 91.24 97.82  64.03 90.73 94.13 

[34] 88.7 81.7 - 84.9 83.3 

[35] 89.84 76.87 93.48 81.83 78.75 

[36] 89.87 65.19 - 81.08 71.49 

[37] 89.1 69.3 93.4 79.8 - 

[38] 89.4 75.6 - 77.8 76.7 

Ours 98.80 98.80 99.70 98.80 98.80 

 

The state-of-the-art comparison and the ablation study outcomes further validate the effectiveness of 

the proposed network for CVD classification using ECG signals. 
 

V. CONCLUSION 

The research aims to develop an efficient novel hybrid DL model to detect the type of CVD from ECG 

signals. The research used the PTB-XL dataset, which contains labeled CVD ECG signals. The collected 

signals suffered from noise and an imbalanced dataset, which were addressed through pre-processing 

techniques. The processed signals were converted into spectrogram images, which were then fed into the 

proposed network for training and testing. The proposed network correctly identified 494 CVD categories 

and misclassified 6 CVD out of 500 ECG signals, achieving an accuracy of 98.8%. The proposed network 

architecture was further analyzed through an ablation study. First, the CNN was removed from the 

network, and it resulted in an accuracy of 97%. Next, the RNN was removed, and the accuracy dropped 

to 95.8%. The comparison with state-of-the-art research highlights the effectiveness of the proposed 

network. The power of the proposed network architecture lies in its ability to collect both spatial and 

temporal information from the ECG signal using the CNN and GRU networks. These features are 

effectively fused and classified with the help of the Transformer. 

 

The limitation of the research is that only one public dataset was used to validate the model. To assess 

the generalizability of the network, it should be validated with additional datasets in the future. 

Furthermore, future work involves deploying the model in real-time. The FPGA will be designed for 

optimal usage of hardware resources and power, while maintaining a high detection rate of CVD. 
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