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ABSTRACT

Cardiovascular Disease (CVD) is a serious medical issue in today's society. The
electrocardiogram (ECG) is considered the most appropriate non-invasive diagnostic
technique for detecting cardiac conditions. However, interpreting an ECG requires specialist
experience and is time-consuming. This underscores the need for automated CVD diagnosis
using advanced techniques. Many researchers have proposed various techniques to identify
CVD. However, current approaches have been inefficient in identifying small differences
due to the irregular and complex nature of the ECG rhythms. This research proposes a novel
hybrid deep learning (DL) model called CNN (Convolutional Neural Network)-GRU (Gated
Recurrent Unit)-Transformer. The spatial features of ECG are retrieved by the CNN, and
temporal features are retrieved by the RNN model. Both features are fused and classified for
CVD detection using the Transformer network. The fusion of features helps detect the minor
changes in ECG and identify CVD with high reliability. The experimental outcome of the
proposed model on the PTB-XL database for ECG classification of CVD shows the highest
accuracy of 98.8% and the lowest false negative rate (FNR) and false positive rate (FPR) of
1.2% and 0.3%, respectively. The importance of the proposed network architecture is
analyzed through an ablation study. Two ablation studies are conducted: first, the CNN is
removed, and the GRU features are given to the Transformer for classification; in the second
study, the GRU is removed. The ablation study shows accuracies of 95.8% and 97%, which
are significantly lower than the proposed model’s accuracy. Additionally, the proposed
network is compared with existing research. The outcome shows that the proposed network
outperforms state-of-the-art techniques in detecting changes in ECG for CVD classification.
The analysis of the proposed network suggests that it is a promising tool for detecting CVD
at earlier stages with high accuracy rates.

I. INTRODUCTION

CVDs represent an extremely serious threat to human health. They are some of the most severe
diseases in the world, responsible for a significant number of deaths each year [1]. The majority of
cardiovascular-related deaths occur unexpectedly, leaving patients with insufficient time to seek medical
assistance. Hypertension, obesity, high cholesterol, smoking, and poor dietary habits are all risk factors
for CVD. Daily integrated modern biosensor monitoring can assist with early detection, prevention, and
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the selection of appropriate treatments for heart diseases [2]. It is critical to identify individuals with heart
disease early and monitor them regularly to provide optimal healthcare treatment.

The ECG monitors the electrical signals of the heart, collecting essential information to help
understand the cardiovascular system's operations [3]. As a non-invasive diagnostic technique, it is
frequently employed to monitor and diagnose heart problems. It can detect heart issues in their early
stages and assist in providing appropriate therapy. The ECG delivers essential information to
cardiologists about the heart's condition, making it an invaluable tool for detecting various cardiac issues.
An ECG device uses electrodes attached to the patient's skin to monitor the heart's rhythmic contractions
and relaxations. Normal ECG signals include T, P, and QRS waves. The statistical and anatomical
properties of ECG waves are key health indicators that can reveal heart problems. For instance, the
absence of P waves and an irregular ventricular rhythm in ECG data may indicate atrial fibrillation [4].
Cardiologists regularly perform ECG screenings on patients to detect heart anomalies and provide
effective treatment. However, this process requires significant human effort and costly medical
procedures. As the population ages, the patients suffering from CVDs is expected to increase
dramatically, necessitating rapid, accurate, and low-cost automatic ECG diagnosis.

By implementing automated CVD detection technologies, healthcare practitioners can optimize
resource allocation, streamline patient care, and potentially reduce the cost burden on individuals and
healthcare systems [5]. Previous approaches to ECG-based CVD diagnosis relied heavily on human
interpretation, which might result in subjectivity and unpredictability in diagnoses. The accuracy of
traditional techniques depends on the competency of the interpreting healthcare practitioner, and CVD
might be misinterpreted or misclassified, potentially resulting in erroneous treatment regimens or missed
opportunities for intervention [6]. Furthermore, traditional techniques may struggle to detect certain types
of CVD that exhibit complex or atypical patterns. These limitations of traditional CVD detection methods
highlight the need for novel procedures that improve accuracy, objectivity, and efficiency in recognizing
and categorizing CVD [7]. Thus, there is significant promise in using DL to accurately and automatically
identify CVD using ECG signals. Its capacity to automatically learn various patterns and qualities from
raw data makes it ideal for assessing ECG readings and detecting CVDs.

In this research, a novel hybrid DL model is proposed, which combines the strengths of three DL
networks: CNN, GRU, and Transformer. First, the spatial features of ECG are extracted by CNN, and
temporal features are extracted by the GRU. The extracted features are then fused and classified into
different types of CVD using the Transformer network. The strength of the proposed model lies in the
combination of both spatial and temporal features. This helps to identify the minor variations in ECG,
which are crucial for detecting different types of CVD, as each type varies by only minor changes. The
dataset for the research is taken from the PTB-XL dataset, and pre-processing is performed to make it
ready for the DL model.

The article is organized as follows: Section I discusses CVD and ECG, highlighting the need for a
novel method for CVD detection using ECG. Section Il reviews the most recent research on CVD.
Section 111 elaborates on the proposed architecture with a flow diagram. Section IV presents the results of
the proposed network, along with an ablation study and a comparison with existing research, as well as
detailed information about the dataset. Section V concludes the research with future work.

Il. RELATED WORK
For automated CVD detection using ECG signals, numerous researchers have already explored various
ML and DL models. Some notable works are summarized in Table I, which aids in identifying recent
research gaps and addressing these through the proposed novel hybrid DL model. The table outlines the
models used, the accuracy achieved, and the limitations of each study. This comprehensive review
provides a foundation for the proposed approach in the research.
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TABLE I. LITERATURE REVIEW ON ECG-BASED CVVD DETECTION
Ref Model Accuracy Limitation
[8] Learner module using Support 77.4% Moderate classification accuracy; further
Vector Machine and Random improvements in model performance and
Forest feature engineering are required.
[9] Three-Filter Feature Selection 85.58% | The novel feature selection technique improved
approach with Random Forest performance but added complexity
[10] Independent Component 99.6% Not fully automated feature extraction and
Correlation feature selection impractical for large-scale or real-time
with Artificial Neural Network applications.
[11] | Customized CNN-2D for ECG 80% Further work is required to optimize the
image classification architecture
[12] MobileNetV2 95.18 The small database and the absence of a truly
independent test group.
[13] Deep Neural Network (DNN) 78.65% An unbalanced dataset leads to poor accuracy
with XGBoost
[14] Long Short-Term Memory 95% Training time is not discussed, which impacts
(LSTM)-based classifier the cost-effectiveness of the approach.
[15] | Stacked LSTM and Bi-LSTM 95% High computational costs due to the complex
structure.
[16] CNN 94% Synthetic data generation was introduced, but
class imbalance remains a challenge.
[17] DNN with genetic algorithm 94% Increased computational cost due to robust
feature extraction and optimization protocol.
[18] 1D CNN 97.40% Excessive pre-processing required, long

training time, increasing computational cost.

The proposed research aims to address current gaps, such as imbalanced datasets,

reducing

complexity, and eliminating manual feature extraction, while ensuring the accuracy of CVD detection.

I1l. PROPOSED METHODOLOGY

The proposed network for CVD detection using ECG signals is detailed in this section. The hybrid
CNN-GRU-Transformer network consists of three important modules: CNN, GRU, and Transformer. The
CNN and GRU are employed to retrieve the spatial and temporal features from the ECG signal,
respectively. Those features are fused and classified by the transformer network. The overall architecture
of the proposed hybrid CNN-GRU-Transformer is illustrated in Figure 1. The functioning of each module
is detailed in the below subsections.
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Fig. 1.Proposed CNN-GRU-Transformer Network for CVD Classification

A. CNN

CNNs can be developed with numerous layers, including a convolution layer (CL), a pooling layer
(PL), an activation layer (AL), and a classification layer [19]. To retrieve features from the input, the
three layers (CL, PL, AL) are required. Because of their high feature extraction capacity, two-dimensional
CNNs are commonly used in image processing. The classification layer uses the retrieved features for
classification. The CL is the fundamental layer of the CNN framework, and it merges input data with
filtering kernels [20]. The network trains the filter to activate when it retrieves the specified features. The
mathematical structure can be described in the following equation:

yf =Kl xf = Yiem; xf * wl + bf [1]

where y}‘ denotes the outcome of the k-th layer; K/ denotes the i-th convolution kernel of the k-th
layer; x} denotes the input of the k-th layer; the * symbolizes the convolution process; Wikj and b}' denotes
the weight and bias.

The AL often follows the CL, which is an important layer. A neuron's output and input connections are
typically defined by its activation function, which is nonlinear. This allows the network to acquire
nonlinear characteristics from the input, thereby enhancing its feature extraction performance. The
rectified linear unit (ReLU) is selected as an activation function in CNNs, and it is described in the
following equation:

0y*¥ <0

ReLU(y¥) = { Y 2]

DNNs use batch normalization (BN) to reduce internal correlation shifts while increasing network

training accuracy [21]. Furthermore, BN normalizes the learned parameters (to a range of 0 to 1), which
speeds up the model's training. The transformation process of BN is discussed below:

iy 20
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Where, m denotes the mini-batch size, ug denotes the mean, and 52 denotes the variance. The
network’s parameters, y and (3, are learnable. The PL performs a downsampling process to eliminate
duplicate features and acquire more detailed ones. The most popular pooling operations are maximum
pooling (MP) and average pooling (AP). MP usually outperforms AP in time-series classification tasks,
as shown below:

p{‘ = max(j—1)5+15t5js{a’lk(t)} X

The k-th layer's output features are represented by p¥, al(t) denotes the outcome of the i-th channel’s
t-neuron of the k-th layer, and s represents the pooling stride. After this, the classification layer is
present. The output before the classification layer is considered as the spatial features.

B. GRU

The GRU, a recurrent neural network (RNN), addresses the issue of gradient vanishing in long-term
dependencies during time series learning in conventional RNNs [22]. Both GRU and LSTM tackle this
issue; however, while they perform equally on a range of DL tasks, GRU requires fewer parameters and
computations. This minimize the likelihood of overfitting and conserves computational resources, making
it more efficient. The GRU model consists of two fundamental gates: the update gate (UG) and the reset
gate (RG) [23]. The RG controls the amount of the past hidden state that affects the candidate state, based
on the past hidden state and the current input. The UG decides which historical data from the last hidden
state has to be discarded and which data from the present candidate state has to be included in the new
hidden state. Equations (7) and (8) provide the update formulas for the candidate and hidden states,
respectively, whereas Equations (5) and (6) calculate the RG and UG weights.

T = 0o(Wiyx, + Wyphy_yq) [5]
Zy = 0(Wizxy, + Wy hy—q) [6]
cn = tanh(Wiexy, + Wie(1,0h, 1)) [7]
B = 0 = (1 = 2,)OCy + 2, Ohy_y (8]

Where, x, represents the input at the (n) moment, and h,,_, represents the hidden state at the (n — 1)
moment. W;,. and W;,,- denotes the RG weight matrices. W;, and W,,, denotes the UG weight matrices.
W;. and W, denotes the candidate state weight matrices. At the (n) moment, c,, denotes the candidate
state, h,, and o,, denotes the hidden and output state. The ® denotes element-wise multiplication. The

activation functions o and tanh are calculated using the formulas: o(x) = 1+2_x and tanh(x) =
e*—e”

prape These functions enhance the model's nonlinear capabilities. In the GRU network, the output layer

is also eliminated, and the temporal features are extracted for further processing.
C. Transformer

The Transformer includes both encoder and decoder structures within its architecture [24]. Fusion
Encoder (FTE) leverages both non-local attention and sequential feature learning to capture deep
temporal and spatial characteristics from ECG signals. The CNN feature f;, is spatially segregated as a
series of two-dimensional patches {fhi}ivzl, where f,,. € RP**C, P represents the patch size, and N = H;ZV
represents the number of patches. These spatial features, extracted by the CNN, capture the local patterns
within the ECG signals. Meanwhile, the GRU extracts temporal features from the ECG signals. This
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combination enables the model to learn both spatial and temporal representations effectively. The outputs
from both the CNN and GRU are then fused to create a unified representation for further classification. A

linear projection layer E € R(P*C)*P has been trained for mapping flattened patches into the D-
dimensional hidden embedding region. For making the architecture adaptive to extracted data, a series of

learnable position embeddings, {Epi}livzl, has been included in the patch embeddings, where E,,, € R”.

The stacked transformer encoder receives {f, E +Epi}iv=1. Each encoder layer has a feed-forward

network (FFN) and multi-head self-attention (MSA) mechanism [25]. The encoder layer employs the
skip connection, and layer normalization (LN). The aforementioned procedures are organized as follows:

X0 = [fn,E + Ep1; fn,E + Epas -5 fayE + Epn] [9]

= MSA(LN(x;_1)) + x;_4 [10]
x; =FFN(LN(x))) +x/, l=1... L [11]
[ferey feregs -+ ferey] = LN (xy) [12]

Equation (10) computes the similarities between the n-th and the other patch embeddings, which are
subsequently used as aggregate weights for encoding the n-th patch. MSA acts as a feature extraction
technique, as determined by the following formula:

qi = LN(x-1)Eq [13]
ki = LN(x;-1)E}, [14]
v{ = LN(x_1)E, [15]
Attt (ql,kl,vl) = softmax <%vl> i=12,....H [16]
xf = Concat ({Att' (¢}, ki, v))}_ ) Eoue [17]

Where, E,, E, and E,, € RP*Patt, the patch embedding dimension is decreased to D, to lessen the
computing cost of Equation (16). FTE provides a collection of encoding features {fFTEi} N, for all
sources.

A fusion transformer decoder (FTD) is utilized to merge the CNN and GRU features globally. The
feature point £, (i, j) at the (i, j) position of the CNN and GRU features uses the MSA module to perform
a search across the entire feature map, collecting feature points with corresponding temporal and spatial
data. The cosine distance is employed for calculating the similarity matrix (SM) between f3,(i, j), and the
features at every position in f;, using Equation (10). The SM is then normalized. Using this normalized
matrix, The f, (i, j) feature points are summed and weighted. Lastly, the features are concatenated with
fn(i,j). The receptive area of features are expanded by FTE, while improving the recognizing strength of
individual-source features.

Yo = fire, + Epsi firs, + Epzi -+ firey + Epn] [18]
vt = MSA(LN(y,_1)) + y1_4 [19]
yi'" = MCA (LN (¥, LN(¥{")) + ;" [20]
yi = FFN (LN(y")) + /", [=1...L [21]
[férp, férp, - firoy] = LN (vi) [22]
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Equation (20) identifies the similarities between source i (n —th patch embedding) and j (all patch
embeddings), which are used for aggregation. Therefore, MCA is a feature combination mechanism,
which is defined below (single-head cross-attention is given):

q;' = LN (y[)Ey [23]
kit = LN(y,”)E} [24]
vt = LN(y,”)EL [25]
. ,-T
Attli( 1 k’j ’j) _ ft ql,lklj j [26]
q,k; v ) =softmax 5= v,
it = Att' (g k) v )Ebue [27]

where E};,E,f’v € RP*Pact | the patch embedding dimension is deduced to D, for minimizing the
computational complexity of Equation (20). Next, FTD produces the decoding feature {fzrp}Y¥,.

The MCA component does not instantly fuse the patch embeddings fFiTEn and fFjTEn of sources i and j.
The MCA has done a global search on the features in j. Equation (26) uses the cosine distance to
determine the SM between f;'TEn and each embedding in j and then normalized. The patch embeddings
from source j are summed and weighted using the normalized matrix. Next, the features are merged with
fF"TEn. As a result, even if the two sources have semantic biases, FTD combines features from CNN and
GRU that include semantically similar information.

The class token is used to interpret both spatial and temporal information. Instead of initializing
randomly, class tokens are employed to accelerate convergence. Global AP is performed on CNN and
GRU features f,, € RH"*W'*D to produce the semantic class token f,., € R¢, which contributes to the
extraction and fusion of features. To compute the FTD and FTE, Equations (9), (12), (18), and (22) are
adjusted as shown in Equation (28-31):

xo = [fsctEs + Epy; fn,E + Epi .. fayE + Epy] [28]
[fFTEo'fFTEl' . --'fFTEN] = LN (x;,) [29]
v6 = [fFl:TEO + EziJO;fFiTEl + Ezi)l; . -fFiTEN + Ezi)N] [30]
[fFiTDO»fI?iTDl:---;fFiTDN] = LN(YD [31]

Where E; € R¢*P. The tokens of rearranged features are chosen from the decoded and the fused
features fr = firpy + frrp.. The final fully connected network accepts the fused features as input and

generates a prediction map fm for each CVD. The formula for predicting CVD is given in Equation (33).

for = Fu(Fusion(fiigp' + fiffn ), fo, € [0,1]% [33]

IV. DISCUSSION
This section discusses the data collection and processing steps in CVD classification. The
experimental outcomes of the proposed network, ablation study, and metrics comparison with the existing
research are also presented.

A. Data Collection and Processing
This study takes ECG signal from the PTB-XL ECG database [26]. The dataset includes 21,837
clinical 12-lead ECGs from 18,885 individuals, each lasting 10 seconds and collected at 500 and 100 Hz
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with 16-bit resolution [27]. ECG results are susceptible to contamination by background noise and
bioelectrical interference. For accurate evaluation and assessment, unwanted noise must be removed from
the ECG. This work uses DWT [28], a widely used denoising method, as a viable choice for denoising
ECG data. The research also developed wavelet families for ECG signals, such as Haar, Symlets, Bior,
Daubechies, and Coiflet, to identify which wavelet type produced the most effective signal denoising
results. Based on the highest signal-to-noise ratios, the Symlet wavelet was chosen as the best DWT
parameter for ECG signal denoising. Next, the Fast Fourier Transform (FFT) was employed to map the
denoised ECG signal to images [29]. The formula for the FFT of the ECG time series x is defined as
follows:

v w PX; j+1,k+1 [34]

Where, w,,, = e"2™/™ and w,, = e~2™/™ represents the complex roots, i represents the imaginary
unity, q and k represents indices (0 ton — 1), and p and j represents indices (0 to m- 1). The sample
scalogram images are given in Figure 2.
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Fig. 2.Scalogram images of ECG signal

The scalogram images are separated into three groups: training, validation, and test. These data were
then normalized in the range of 0 to 1 and utilized as inputs to the proposed model for evaluation. Table Il
provides a detailed description of the PTB-XL dataset before and after balancing, including the data used
for training, validation, and testing.

TABLE Il.  DETAILS OF PTB-XL DATASET

Data Actual | Balanced Train Validation Test

NORM | 7185 1000 700 200 100
CD 3232 1000 700 200 100
STTC 3064 1000 700 200 100
Ml 2936 1000 700 200 100
HYP 812 1000 700 200 100

B. Experimental Outcome

The research was conducted on Google Colaboratory. The Python programming language was used,
and the TPU runtime was selected to implement the network. For CVD identification, ECG signals from
the PTB-XL database were collected and processed. The processed signals were fed into the proposed
CNN-GRU-Transformer network. A total of 3,500 samples were used for training, and 1,000 samples
were used for validating the CNN-GRU-Transformer model. The loss and accuracy plots of the model are
shown in Figures 3 and 4.
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Fig. 3.Loss plot of the proposed network on CVD Classification
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Fig. 4. Accuracy plot of the proposed network on CVD Classification

After training and validation, 100 samples from each CVD category were used for testing the
model. The proposed model correctly identified 494 CVD categories and misclassified 6 CVDs out of
500 ECG signals. The confusion matrix of the proposed network is shown in Figure 5. Using the
confusion matrix elements, metrics such as accuracy, precision, recall, F1 score, specificity, FNR, and
FPR were calculated using Equations (4-9).

Accuracy = ———TN__ [35]
TP+TN+FP+FN
Precision = — [36]
TP+FP
Recall = —= [37]
TP+FN
F1— Score = —22 [38]
2.TP+FN+FP
e TN
Specificity = TNTFP [39]
FNR = -~ [40]
TP+FN
FPR = =% [41]
FP+TN
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Fig. 5.Confusion Matrix of the Proposed Network

In these equations, TP (True Positive) and TN (True Negative) denotes the correct detection of CVD
from the ECG, while FP and FN indicate incorrect detections of CVD. Table I11 shows the performance
evaluation of the proposed model for each CVD category. The proposed network obtained an accuracy of
98.80%. Other metrics such as precision, recall, F1 score, and specificity were 98.80%, 98.80%, 98.80%,
and 99.70%, respectively, while FRR and FAR were 1.20% and 0.30%, respectively. The proposed
network performed excellently in predicting normal, Ml, and CD conditions.

TABLE Ill. PERFORMANCE COMPARISON OF THE PROPOSED NETWORK
Accuracy  Precision  Recall F1 Specificity = FNR  FPR
NORM 100.00 99.01 99.50 100.00 0.99 0.00
CD 99.00 100.00 99.50 99.75 0.00 0.25
STTC 98.80 97.03 98.00 9751 99.25 2.00 0.75
MI 100.00 99.01 99.50 100.00 0.99 0.00
HYP 97.98 97.98 97.98 9950 2.02 0.50
Average 98.80 98.80 98.80 99.70 120 0.30

An ablation study was conducted on the proposed network. In the proposed network, CNN and GRU
features were fused by a transformer to perform classification. In Ablation Study 1, the GRU module was
removed from the proposed network, and CNN features were fed to the transformer module for
classification. The performance metrics achieved by the model were: Accuracy: 95.80%, Precision:
95.80%, Recall: 95.81%, F1 Score: 95.79%, Specificity: 98.95%, FRR: 4.19%, FAR: 0.30%. Table IV
provides the detailed metrics obtained for each category in Ablation Study I.

In the second ablation study, the CNN module was removed from the proposed network, and GRU-
retrieved features were fed to the transformer module for the classification of CVD from ECG signals.
The metrics achieved by Ablation Study 2 were: Accuracy: 97.00%, Specificity: 99.25%, Precision:
97.02%, Recall: 97.00%, F1: 97.00%, FRR: 3.00%, FAR: 0.75%. Table V provides the detailed metrics
obtained for each category in Ablation Study Il. By comparing the performance of the ablation studies
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with the proposed model, it is clear that each module contributes to improving the accuracy of CVD
detection. The confusion matrix of the ablation study without GRU and CNN is given in Figure 6.
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Fig. 6.Confusion Matrix of the Ablation Study

TABLE IV. PERFORMANCE COMPARISON OF THE PROPOSED NETWORK WITHOUT GRU FEATURES
Accuracy  Precision Recall F1 Specificity FNR FPR

NORM 97.06  97.06 97.06 99.25 294 000
CD 97.00  97.00 97.00 99.25 300 025
STTC 95.80 95.92 9216 94.00 99.00 7.84 07
Mi 9412  96.97 9552 9850 3.03 0.00
HYP 9490 9588 95.38 98.76 412 030
Average 95.80 9581 95.79 98.95 419 030

TABLE V. PERFORMANCE COMPARISON OF THE PROPOSED NETWORK WITHOUT CNN FEATURES
Accuracy  Precision Recall F1 Specificity FNR FPR

NORM 98.04  98.04 98.04 9950 196 050
CDh 9515  97.03 96.08 98.75 297 1.25
STTC 97.00 97.94  97.94 97.94 9950 2.06 050
MI 98.98  96.04 97.49 99.75 396 0.25
HYP 9500  95.96 95.48 98.75 404 1.25
Average 97.02  97.00 97.00 99.25 300 0.75

The proposed model in this research was compared with existing research work from the literature.
Table VI shows the comparison of performance metrics. Among the studies considered for comparison,
references [1-4] reported accuracy metrics greater than 90%. The highest accuracy attained was by
reference [1], which achieved an accuracy of 98.51%. However, the proposed network achieved the
highest accuracy of 98.80%, surpassing all other studies. Other references produced accuracy values
below 90%. All the studies used the same PTB-XL database.

TABLE VI. COMPARISON OF PROPOSED NETWORK WITH THE STATE-OF-ART RESEARCH

Ref Accuracy Recall Specificity Precision F1
[30] 98.51 97.9 98.12 - 97.95
[31] 93 90 - 92 93
[32] 97.5 97.42 - 97.61 97.52
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[33] 91.24 97.82 64.03 90.73 94.13
[34] 88.7 81.7 - 84.9 83.3
[35] 89.84 76.87 93.48 81.83 78.75
[36] 89.87 65.19 - 81.08 71.49
[37] 89.1 69.3 93.4 79.8 -

[38] 89.4 75.6 - 77.8 76.7
Ours 98.80 98.80 99.70 98.80 98.80

The state-of-the-art comparison and the ablation study outcomes further validate the effectiveness of
the proposed network for CVD classification using ECG signals.

V. CONCLUSION

The research aims to develop an efficient novel hybrid DL model to detect the type of CVD from ECG
signals. The research used the PTB-XL dataset, which contains labeled CVD ECG signals. The collected
signals suffered from noise and an imbalanced dataset, which were addressed through pre-processing
techniques. The processed signals were converted into spectrogram images, which were then fed into the
proposed network for training and testing. The proposed network correctly identified 494 CVVD categories
and misclassified 6 CVD out of 500 ECG signals, achieving an accuracy of 98.8%. The proposed network
architecture was further analyzed through an ablation study. First, the CNN was removed from the
network, and it resulted in an accuracy of 97%. Next, the RNN was removed, and the accuracy dropped
to 95.8%. The comparison with state-of-the-art research highlights the effectiveness of the proposed
network. The power of the proposed network architecture lies in its ability to collect both spatial and
temporal information from the ECG signal using the CNN and GRU networks. These features are
effectively fused and classified with the help of the Transformer.

The limitation of the research is that only one public dataset was used to validate the model. To assess
the generalizability of the network, it should be validated with additional datasets in the future.
Furthermore, future work involves deploying the model in real-time. The FPGA will be designed for
optimal usage of hardware resources and power, while maintaining a high detection rate of CVD.
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