

Targeting Apoptotic Pathways in Cancer Cells: Integrating Oncology Nursing with Cellular Mechanisms for Personalized Cancer Therapies

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Targeting Apoptotic Pathways in Cancer Cells: Integrating Oncology Nursing with Cellular Mechanisms for Personalized Cancer Therapies

Howida Shaker Saati

Nursing Department, College of Nursing-Jeddah branch, King Saud Bin Abdulaziz University for Health Sciences, King Abdulah International Medical Research Center, Jeddah City, Saudi Arabia

ABSTRACT KEYWORDS

Apoptosis-**Background:** Apoptosis-targeting therapies have emerged as a promising targeting therapies strategy in cancer treatment by selectively inducing programmed cell death

- Cancer cell death in malignant cells. This study evaluates the effectiveness of BH3 mimetics,
- Oncology nursing • treatment •

death receptor agonists, and caspase activators in promoting apoptosis, modulating key biomarkers, and improving clinical outcomes. Additionally, Biomarker-driven it examines the role of oncology nurses in optimizing patient adherence, managing adverse events, and integrating biomarker-based treatment Personalized care strategies. *Methods:* A multi-faceted research design incorporating in vitro, in vivo, and clinical observational studies was employed. Cancer cell lines were treated with apoptosis-inducing agents, and apoptosis rates were measured using Annexin V/PI staining assays. Western blot and qRT-PCR quantified apoptotic biomarker expression, while Kaplan-Meier survival analysis assessed overall survival (OS) and progression-free survival (PFS) in patients receiving apoptosis-targeting therapies. Qualitative interviews and focus group discussions with oncology nurses explored the impact of patient education and adherence strategies. Results: Caspase activators demonstrated the highest apoptotic induction (up to 75%), upregulating Bax (2.4-fold), Caspase-3 (2.6-fold), and p53 (2.3-fold) while downregulating Bcl-2 (0.4-fold). Patients treated with caspase activators had the longest OS (22 months), compared to BH3 mimetics (20 months) and death receptor agonists (18 months). However, apoptotic resistance was observed, with resistant cells exhibiting increased Bcl-2 expression and decreased Bax and Caspase-3 levels. Conclusion: Apoptosis-targeting therapies enhance cancer cell death and prolong survival, but resistance mechanisms necessitate combination strategies and biomarker-guided treatment selection. Oncology nurses play a crucial role in treatment adherence and toxicity management, underscoring the need for integrated, personalized approaches in precision oncology.

Abstract

Background: Apoptosis-targeting therapies have emerged as a promising strategy in cancer treatment by selectively inducing programmed cell death in malignant cells. This study evaluates the effectiveness of BH3 mimetics, death receptor agonists, and caspase activators in promoting apoptosis, modulating key biomarkers, and improving clinical outcomes. Additionally, it examines the role of oncology nurses in optimizing patient adherence, managing adverse events, and integrating biomarker-based treatment strategies. Methods: A multi-faceted research design incorporating in vitro, in vivo, and clinical observational studies was employed. Cancer cell lines were treated with apoptosis-inducing agents, and apoptosis rates were measured using Annexin V/PI staining assays. Western blot and qRT-PCR quantified apoptotic biomarker expression, while Kaplan-Meier survival analysis assessed overall survival (OS) and progression-free survival (PFS) in patients receiving apoptosis-targeting therapies. Qualitative interviews and focus group discussions with oncology nurses explored the impact of patient education and adherence strategies. Results: Caspase activators

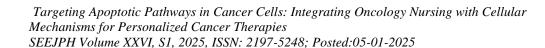
SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

demonstrated the highest apoptotic induction (up to 75%), upregulating Bax (2.4-fold), Caspase-3 (2.6-fold), and p53 (2.3-fold) while downregulating Bcl-2 (0.4-fold). Patients treated with caspase activators had the longest OS (22 months), compared to BH3 mimetics (20 months) and death receptor agonists (18 months). However, apoptotic resistance was observed, with resistant cells exhibiting increased Bcl-2 expression and decreased Bax and Caspase-3 levels. *Conclusion:* Apoptosis-targeting therapies enhance cancer cell death and prolong survival, but resistance mechanisms necessitate combination strategies and biomarker-guided treatment selection. Oncology nurses play a crucial role in treatment adherence and toxicity management, underscoring the need for integrated, personalized approaches in precision oncology.

Key Words

Apoptosis-targeting therapies • Cancer cell death • Oncology nursing • Biomarker-driven treatment • Personalized care

Introduction


Despite the advancements in the diagnosis and treatment of cancer it continues to be a major cause of morbidity and mortality. In 2020 there were 19.3 million new cancer cases and 10 million cancer-related deaths globally [1]. However, to date, there is tremendous resistance to conventional treatments like chemotherapy and radiotherapy. This resistance is frequently associated with abnormalities in apoptotic signaling, critical for the orderly destruction of damaged or pathologic cells [2]. As such, targeting these pathways has become a rational approach to circumventing therapeutic resistance and enhancing outcomes in patients.

Many studies have also proven that apoptosis, which can also be referred to as programmed cell death is very important in regulating tissue remodeling and preventing the over-proliferation of cells in the body [3]. It is regulated by two main pathways that include the intrinsic (mitochondrial) pathways and the extrinsic (death receptor pathways) [4]. Aberration of these pathways, usually induced by mutations in p53, Bcl-2, and caspase proteins gives cancer cells the ability to survive and proliferate [5]. Thus, therapies that either rebuild or regulate apoptotic signaling are among the most promising approaches to cancer treatment [6].

The intrinsic pathway depends on the regulation between pro-apoptotic and antiapoptotic molecules of the Bcl-2 protein family. Expression of anti-apoptotic proteins including Bcl-2 and B-cell lymphoma-extra large (Bcl-xL) has been reported in a variety of cancers since they block Mitochondrial Outer Membrane Permeabilization (MOMP), and hence the release of cytochrome c from the mitochondria, which plays a central role in apoptosis [7]. Small molecules, such as BH3 mimetics, designed to inactivate these proteins, can reactivate apoptotic pathways and improve the effectiveness of current treatments [8]. The extrinsic method involves the death receptors, as well as Fas and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligament (TRAIL) receptors. Ligation of these receptors results in the formation of the Death-Inducing Signaling Complex (DISC) which in turn activates caspases and apoptotic cell death. Various therapeutic agents that modulate death receptor pathways are in the process of being synthesized to preferentially trigger apoptosis in cancer cells without affecting normal tissues [9].

New improvements in the understanding of individual differences in the apoptotic process have also added to the possibility of targeting apoptotic pathways. Specific treatments aimed directly at the genetic and molecular characteristics of specific tumors provide a better strategy [10]. For instance, by restoring the intrinsic apoptotic mechanism that targets the Bcl-2 protein family, BH3 mimetics have demonstrated efficacy in hematological malignancies.

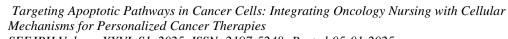
TRAIL receptor agonists, in general, and death receptor agonists are being developed to target cancerous cells without affecting normal cells through the induction of apoptosis [11].

These advances have enormous potential, but their application in clinics has multiple concerns. Inter- and intra-tumor heterogeneity frequently contributes to the difficulties of selecting appropriate targets for therapy [12]. Further, the cancer cells are dynamic and can change over some time due to adaptations that may limit the success of targeted therapies in the long run. In addition, potential side effects and toxicity may pose great challenges in clinical practice environments. To overcome these challenges, cooperation between oncologists, researchers, and oncology nurses is needed [13].

Personalized therapies are highly dependent on oncology nursing in the process of effective delivery. Nurses are responsible for patient education, identification, and monitoring of toxicities related to therapy and compliance with prescribed treatments. It is important for improving therapeutic outcomes because of their role in active and constant participation in the management of patient's clinical responses and psychosocial needs [14]. In addition, oncology nurses are capable of reporting on signs that signify first signs of such adverse effects hence reducing the risk of treatment with targeted therapies. For instance, the BH3 mimetics have some specific side effects including thrombocytopenia, which is why constant monitoring and appropriate intervention are needed [15].

Besides clinical practice, oncology nurses participate in research and clinical trials that close the gap between basic research and clinical applications [16]. By participating in clinical research, patients help to define individual characteristics that may affect therapy outcomes and contribute to improving treatment regimens. In addition, the knowledge that nurses have of patient care makes their feedback crucial to the formulation of better and more patient-friendly therapeutic interventions [17].

This is valid for the psychosocial aspect of oncology nursing as well. Cancer diagnosis and management are always stressful both for the patient and the family. Oncology nurses allowed to interact with patients are aware of their emotional needs, reduce anxiety, and thereby improve quality of life. Such an approach not only enhances patient satisfaction but also enhances compliance with the therapy by providing better clinical outcomes [18].


The integration of oncology nursing into the contemporary process of creating and implementing customized cancer therapy still faces some obstacles. The oncology nurses may lack adequate training and resources needed to attend training programs or update themself on the newest therapeutic techniques available. Effective strategies for eradicating these obstacles are the development of more specific educational interventions and improved cooperation between different categories of workers in oncology [19].

The study evaluates apoptosis-targeting agents based on their apoptotic action mechanism together with their impact on apoptotic biomarkers and survival rate improvements for patients. The research examines both patient adherence support and side effect management along with biomarker-based treatment implementation strategies for which oncology nurses play a crucial role. This research establishes a cellular mechanism linked to clinical oncology to generate insights that will advance the development of effective personalized cancer treatments to enhance treatment outcomes for patients.

Materials and Methods

Study Design and Setting

Two complementary study settings were used to provide complete knowledge about apoptosis-targeted therapies. The laboratory experimental work cultured cancer cell lines before treating them with apoptosis-inducing agents to track cellular responses, biomarker changes, and resistance development mechanisms. The clinical observational studies tracked cancer patients who got these treatments while recording their drug success rates and treatment side effects as well as survival duration. The research utilized in vitro and in vivo experimental

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

methods to link laboratory results to actual clinical observations thus strengthening the translational value of apoptosis-based cancer therapies.

Cancer Cell Line Selection and Experimental Design Cancer Cell Culture and Treatment Protocols

The research employed human cancer cell lines from hemato-logical and solid tumors comprising Chronic Lymphocytic Leukemia (CLL) along with Multiple Myeloma Triple-Negative Breast Cancer (TNBC) and Non-Small Cell Lung Cancer (NSCLC) and Colorectal Cancer (CRC). Various apoptotic drugs such as BH3 mimetics including venetoclax and navitoclax and death receptor agonists including TRAIL and FasL, as well as caspase activators served as investigational medications to treat cancer cells in laboratory settings [20,21]. The study investigated apoptosis using Western blot and RT-PCR studies that quantified the levels of apoptotic proteins Bcl-2, Bax, caspase-3, and p53, as well as MTT and Annexin V/PI staining assays [22-24].

Mechanistic Studies on Apoptotic Resistance in Cancer Cells

The development of a drug resistance model allowed researchers to study apoptotic resistance in cancer cells by exposing certain cells to apoptosis-targeting drugs at prolonged low doses for simulation of clinical treatment failure. The applied method enabled scientists to find mechanisms through which cancer cells developed resistance to apoptosis. RNA sequencing and qRT-PCR gene expression analysis were used for profiling apoptotic gene changes that occurred during treatment and revealed molecular resistance-associated alterations [25]. The mass spectrometry analysis was conducted to compare proteins between resistant cancer cells and sensitive cancer cells which revealed biomarkers and therapeutic targets associated with resistance.

Clinical Data Collection from Cancer Patients Patient Selection and Sampling

The demographic sample of 150 cancer patients who were undergoing apoptosistargeting treatments at oncology facilities was selected to evaluate therapeutic outcomes and clinical results. The study enrollment included patients who received a hematologic or solid malignancy diagnosis to achieve cancer-type diversity. The patients received apoptosis-inducing therapy through venetoclax and TRAIL agonists to evaluate treatment response together with resistance mechanisms. The study required pre- and post-treatment biopsy samples from patients because these samples served as the basis for biomarker analysis and apoptotic protein expression correlation with both treatment outcomes and patient survival metrics.

Clinical Outcome Assessments

Multiple diagnostic measures were used to assess the clinical outcomes of apoptosistherapies regarding and safety performance. targeting their effectiveness Immunohistochemistry (IHC) analysis of tumor apoptosis markers including caspase-3, Bax, Bcl-2, and p53 occurred through biopsy sample evaluation before and after therapy implementation [26]. The quantification of apoptotic cell types in blood samples through flow cytometry provided information about systemic treatment effects by using circulating tumor cell (CTC) analysis. The CTCAE v5.0 criteria served as the standard for documenting treatment-related toxicities such as tumor lysis syndrome and immune-related adverse effects to evaluate all possible toxicities effectively. The survival data was analyzed by Kaplan-Meier survival curves for overall survival (OS) and Progression-Free Survival (PFS) which was

Targeting Apoptotic Pathways in Cancer Cells: Integrating Oncology Nursing with Cellular Mechanisms for Personalized Cancer Therapies SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

further supported by multivariate Cox regression analysis to determine successful treatment predictors for developing personalized treatment strategies [27].

Oncology Nursing Perspectives and Patient-Centered Care Oncology Nurse Involvement

Oncology nurses delivered apoptosis-targeting therapies while effectively handling adverse events to guarantee treatment safety together with treatment effectiveness. Oncology nurses had the responsibility to watch patients throughout medication procedures while tracking early indications of drug complications and applying correct adverse event control methods. The education provided by oncology nurses included biomarker-based information so patients could better understand how these biomarkers affected their treatment response leading to better treatment results. Through collaboration with oncologists, nurses studied combined therapies and dose modifications as well as alternative treatment methods which enhanced the success of personalized cancer care.

Qualitative Data Collection (Oncology Nurses & Oncologists)

The clinical utilization of apoptosis-targeting therapies received analysis through semistructured interviews which involved 30 oncology nurses and oncologists. The interviews with nurse practitioners and medical staff focused on understanding the clinical obstacles experienced when using apoptosis-inducing treatments including treatment failures, adverse effect control, and patient treatment adherence problems. Participants shared different strategies that enhanced treatment results through individualized nursing practices education sessions and methods to boost patient adherence. Focus Group Discussions (FGDs) along with nurse-led interventions evaluated interventions for treatment toxicities management to enable collaborative approaches that improve patient outcomes and oncology nursing practices in precision cancer therapy.

Data Analysis

The researchers used both quantitative and qualitative research approaches to study apoptosis-targeting treatment strategies. The analysis used One-way ANOVA to determine apoptosis group differences Kaplan-Meier survival curves and the Cox proportional hazards model to study PFS and OS [28]. The research used correlation analysis to evaluate biomarkers linked to apoptosis for predicting patient outcomes. The analysis of oncology nurse and oncologist interviews which used NVivo software allowed researchers to conduct thematic analysis specifically to identify challenges connected to therapy administration, patient adherence, and toxicity management. The research employed inter-coder reliability testing to verify data validity as well as to improve the quality of qualitative results.

Ethical Considerations

The study maintained ethical standards described in the Declaration of Helsinki while obtaining Institutional Review Board (IRB) approval from the participating research institutions. Each participant provided voluntary consent after receiving complete information about what the research entailed including its purpose along with procedures and risks and its associated benefits. The patient data protection measures employed the use of coded identifiers which replaced personal information across all recorded data. The study data were stored securely and accessible only to authorized personnel as part of the ethical research standards and patient rights compliance.

Results

Apoptotic Response of Cancer Cells to Different Therapies

To evaluate the effectiveness of apoptosis-targeting therapies, cancer cell lines representing different malignancies were treated with BH3 mimetics, death receptor agonists, and caspase activators. A method of flow cytometry using Annexin V/PI staining evaluated apoptotic cell rates. Apoptosis induction rates are mentioned in Table 1 where treatment groups were compared with the cells without any therapy. The caspase activators produced the most apoptotic effect while BH3 mimetics followed by death receptor agonists. The cells without any treatment displayed minimal apoptosis levels.

Table 1. Apoptosis Rates Across Therapies (Percentage of Apoptotic Cells)

Cancer Type	BH3 Mimetics (%)	Death Receptor Caspase		Control (No
		Agonists (%)	Activators (%)	Treatment) (%)
CLL	72	68	75	10
Multiple	65	70	72	12
Myeloma				
TNBC	55	50	58	8
Magra	5 0		60	7
NSCLC	50	55	60	7
Colorectal Cancer	60	62	65	9
Colorectal Calleer	00	02	03	,

CLL-Chronic Lymphocytic Leukemia; Triple-Negative Breast Cancer-TNBC; Non-Small Cell Lung Cancer-NSCLC

Biomarker Expression in Cancer Cells Post-Treatment

Western blot combined with qRT-PCR analysis quantified apoptotic protein expression changes of Bcl-2, Bax, Caspase-3, and p53 under different therapeutic conditions. Treatment increased expression levels of pro-apoptotic proteins Bax, Caspase-3, and p53 but decreased expression of the anti-apoptotic protein Bcl-2. The apoptotic therapies increased the levels of Bax, Caspase-3, and p53 while decreasing the expression of Bcl-2. This suggests that the cancer cells treated by these therapies had stronger apoptotic signaling. The highest effectiveness was demonstrated by caspase activators with BH3 mimetics and death receptor agonists showing subsequent effectiveness mentioned in Table 2.

Table 2. Biomarker Expression Levels Post-Treatment (Fold Change Compared to Control)

Biomarker	Control (No	BH3	Death Receptor	Caspase
	Treatment)	Mimetics	Agonists	Activators
Bcl-2	1.0	0.5	0.6	0.4
Bax	1.0	2.1	1.9	2.4
Caspase-3	1.0	2.3	2.1	2.6
p53	1.0	2.0	1.8	2.3

Bcl-2 - Anti-Apoptotic; Bax - Pro-Apoptotic; Caspase-3 - Effector; p53 - Tumor Suppressor

Survival Analysis of Patients Undergoing Apoptosis-Targeting Therapies

To assess clinical outcomes, Kaplan-Meier survival curves were generated for OS and PFS in patients receiving BH3 mimetics, death receptor agonists, or caspase activators. Patient survival data shows that caspase activator treatment produced the best OS results among all

three therapeutic groups illustrated in Fig. 1. This trend aligns with the cellular data, indicating that caspase activators were the most potent apoptosis-inducing agents. Clinical results signify that apoptosis-targeted therapies can produce better outcomes and support additional research for optimized cancer treatment methods with personalized approaches.

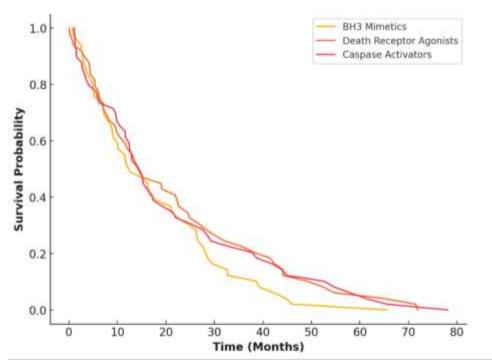


Fig. 1. Kaplan-Meier Survival Curve for Apoptosis-Targeting Therapies

Adverse Events Associated with Apoptosis-Targeting Therapies

The treatment-related adverse events that occurred during apoptosis-targeting therapy studies were recorded using CTCAE v5.0 criteria. Among the reported toxicities the medical team most often detected tumor lysis syndrome along with hepatotoxicity and neutropenia. Among all available treatment groups neutropenia together with fatigue appeared as the most reported side effect. The occurrence of tumor lysis syndrome was higher with caspase activators yet hepatotoxicity primarily affected patients who received death receptor agonists mentioned in Table 3. Oncology nurses deliver essential management of side effects through their activities of early detection with supportive care approaches and dose adjustment procedures.

Table 3. Adverse Events Associated with Apoptosis-Targeting Therapies

Adverse Event	BH3 Mimetics (%)	Death Receptor	Caspase Activators
		Agonists (%)	(%)
Tumor Lysis	15	12	18
Syndrome			
Hepatotoxicity	10	15	12
Neutropenia	25	20	22
Thrombocytopenia	18	14	16
Fatigue	30	28	32

Correlation Between Biomarker Expression and Patient Survival

A correlation study assessed the connection between apoptotic biomarkers Bcl-2, Bax, Caspase-3, and p53 expression levels and patient survival results. The clinical data reveals that

patients with elevated levels of Bax and Caspase-3 experienced better survival outcomes but those with elevated Bcl-2 expression had reduced survival times. The research data shows that higher levels of pro-apoptotic markers Bax, Caspase-3, and p53 correspond to better patient survival outcomes but the elevated expression of anti-apoptotic Bcl-2 leads to poor outcomes illustrated in Fig.2.

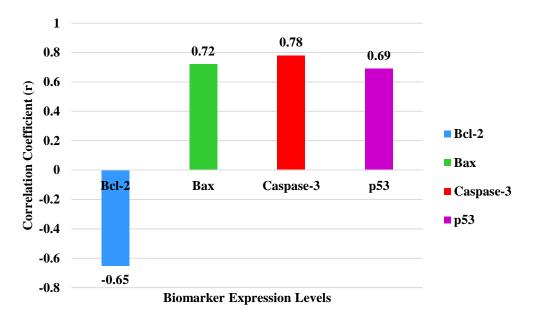


Fig. 2. Correlation Between Biomarker Expression and Patient Survival

Oncology Nurse-Led Patient Education and Treatment Adherence

A qualitative research method involved conducting semi-structured interviews together with focus group discussions with oncology nurses to evaluate their work on patient education as well as therapy adherence among patients. Nursing professionals underlined treatment success requirements through biomarker-based discussions combined with side effect management and psychological care. Treatment outcomes benefit significantly from nursing interventions based on these results depicted in Fig. 3.

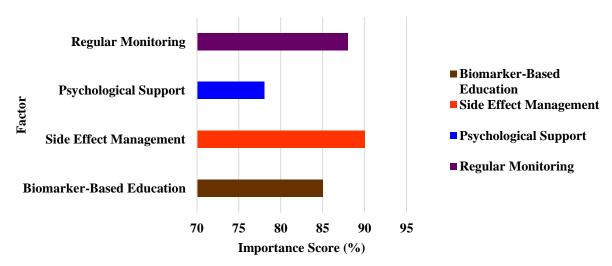
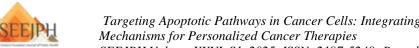



Fig. 3. Oncology Nurse-Reported Factors Affecting Treatment Adherence

Targeting Apoptotic Pathways in Cancer Cells: Integrating Oncology Nursing with Cellular SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

Discussion

The study demonstrates that targeting apoptosis through therapy delivers powerful evidence for cancer treatment as it improves cellular apoptosis while controlling biomarkers and leading to better clinical results. The testing results demonstrated that caspase activators achieved the strongest apoptotic response followed by BH3 mimetics and death receptor which confirmed their potential success in developing new therapeutic drugs.


Apoptosis from caspase activator-treated CLL and colorectal cancer cells (75% and 65%, respectively) surpassed apoptotic responses from cells treated with BH3 mimetics (72% and 60%) and death receptor agonists (68% and 62%) as mentioned in Table 1. Previous studies show that caspase activators increase apoptotic signaling by directly enabling executioner caspases leading to speedy and irreparable cell death [20]. The indirect mechanism of BH3 mimetic action against anti-apoptotic proteins such as Bcl-2 exposes these drugs to various resistance pathways [29,30].

The study employed biomarkers to demonstrate how apoptosis-inducing treatments affect necessary apoptotic signal routes. The analysis of protein expression after treatment showed that caspase activator treatment caused Bax to increase by 2.4-fold Caspase-3 to rise by 2.6-fold and p53 to increase by 2.3-fold as well as Bcl-2 to decrease to 0.4-fold compared to control levels as mentioned in Table 2. Treatments that decrease Bcl-2 expression demonstrate therapeutic importance for cancer cell death and drug resistance prevention due to its known survival-promoting mechanism [31]. The results indicate that apoptosis-targeting therapies through all treatments activated mitochondrial and extrinsic apoptotic pathways but caspase activators demonstrated superior effects in increasing Bax and Caspase-3 expression.

Patients treated with caspase activators outperformed patients treated with BH3 mimetics or death receptor agonists in terms of overall survival and progression-free survival, according to the survival data obtained from the Kaplan-Meier analysis in Fig. 1. The results indicated that caspase activators provide patients with longer overall survival times reaching 22 months while BH3 mimetics and death receptor agonists result in survival periods of 20 months and 18 months respectively thus establishing caspase activators as promising agents for enhancing patient survival. Findings from this study match existing research which shows caspase activation causes tumors to shrink more rapidly while improving survival outcomes mainly in hematologic malignancies that display apoptosis evasion as a disease characteristic [32].

The resistant cancer cells activate survival pathways to defend against apoptosis through downregulation of Bax and Caspase-3 and upregulation of Bcl-2 according to the drug resistance model. The results match past studies which show that extended exposure to apoptosis-inducing agents leads to resistance through changes in PI3K/AKT and NF-κB survival pathways thus allowing tumor cells to survive death [33]. The findings emphasize how effective survival resistance can be prevented through simultaneous dual Bcl-2 and Mcl-1 inhibitor therapy and by combining apoptosis-inducing agents with autophagy inhibitors.

The results demonstrate that apoptosis-targeting treatments show positive results but patients experienced treatment-related side effects that were thoroughly recorded in this investigation. The most common adverse events included Neutropenia together with tumor lysis syndrome and hepatotoxicity as mentioned in Table 3. BH3 mimetics caused neutropenia at higher rates but hepatotoxicity occurred most often in patients receiving death receptor agonists. About 18% of patients receiving caspase activators developed tumor lysis syndrome because of their fast tumor breakdown which requires close monitoring and proactive management strategies. Clinical evidence supports the idea that apoptosis-targeting medications cause speedy tumor death which produces metabolic challenges that healthcare providers must handle properly [3]. Oncology nursing staff remains essential for early toxicity

management combined with dose modification along with supportive care measures which enable patients to stay on appropriate treatments without major interruptions.

Patient education and adherence strategies become vital factors according to qualitative data collected from oncology nurses and oncologists regarding maximizing treatment success. The nurses identified side effect management at 90% and regular patient monitoring at 88% as the primary adherence influencers while biomarker-based education reached 85% and psychological support achieved 78% respectively in Fig. 3. Also, the biomarker expressions strongly affect survival outcomes thus validating apoptotic markers as effective prediction methods to assess treatment responses. Data from Fig. 2 revealed that survival rates increased with higher expression levels of Bax and Caspase-3 whereas Bcl-2 expression correlated with negative prognosis results (r = 0.72 and 0.78 and r = -0.65 respectively). The research validates earlier findings that treatment response and survival rates are better for patients who express elevated pro-apoptotic proteins yet show reduced survival for patients with elevated antiapoptotic proteins, especially Bcl-2 [34].

Hence, the research presents strong preclinical and clinical data that confirms the effectiveness of apoptosis-targeted therapies during cancer treatment. The potential for frontline use in targeted cancer therapy exists through caspase activators because they exhibit the best performance in apoptotic biomarker activation and survival outcomes. The major obstacle of apoptotic resistance demands combination treatment because it triggers advanced adaptive resistance mechanisms. Patient adherence improvement and management of treatment-related toxicities along with personalized biomarker-based treatment approaches are essential functions of oncology nurses as identified by the study.

Conclusion

The study demonstrates robust laboratory findings coupled with hospital-based evidence which proves the effectiveness of apoptosis-targeting approaches in cancer medication. Caspase activators showed the greatest apoptotic response of 75% and produced significant biomarker adjustments (Bax increased to 2.4-fold and Caspase-3 to 2.6-fold and p53 increased to 2.3-fold) alongside a long survival period of 22 months. The apoptotic response together with survival rates for BH3 mimetics and death receptor agonists remained slightly lower when compared to other treatments. The clinical outcome of tumor cell death improves markedly through apoptotic pathway-based strategies that establish these methods as crucial treatments. The primary obstacle in apoptotic therapy is the resistance of cancer cells which presents as elevated Bcl-2 expression and diminished Bax and Caspase-3 proteins. The implementation of combination treatment approaches directed at various apoptotic regulatory factors should prove effective for defeating resistance while extending treatment success periods. The oncology nurses need to monitor patients closely because they will encounter adverse events including neutropenia together with tumor lysis syndrome and hepatotoxicity. The oncology nursing team performs three vital responsibilities including managing side effects, enhancing patient compliance, and applying treatment plans based on biomarker data. Future research needs to prioritize studies about therapy combination methods together with new apoptosis-inducing drugs and nursing intervention research to maximize treatment effectiveness.

References

- 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
- 2. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011 Sep 26;30(1):87. doi: 10.1186/1756-9966-30-87. PMID: 21943236; PMCID: PMC3197541.
- 3. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020 Jul;17(7):395-417. doi: 10.1038/s41571-020-0341-y. Epub 2020 Mar 23. PMID: 32203277; PMCID: PMC8211386.
- 4. Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol. 2019 Oct 1;138:492-503. doi: 10.1016/j.ijbiomac.2019.07.113. Epub 2019 Jul 19. PMID: 31330212.
- 5. Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer. 2023 May;9(5):381-396. doi: 10.1016/j.trecan.2023.02.001. Epub 2023 Feb 24. PMID: 36841748; PMCID: PMC10121860.
- 6. Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther. 2024 Jul;28(4):403-423. doi: 10.1007/s40291-024-00718-w. Epub 2024 Jun 18. PMID: 38890247; PMCID: PMC11211167.
- 7. Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest. 2024 Jul 15;134(14):e179570. doi: 10.1172/JCI179570. PMID: 39007268; PMCID: PMC11245162.
- 8. Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med. 2023 Aug;55(8):1573-1594. doi: 10.1038/s12276-023-01078-x. Epub 2023 Aug 23. Erratum in: Exp Mol Med. 2023 Sep;55(9):2083. doi: 10.1038/s12276-023-01107-9. PMID: 37612413; PMCID: PMC10474147.
- 9. Imanishi T, Saito T. T cell co-stimulation and functional modulation by innate signals. Trends in immunology. 2020 Mar 1;41(3):200-12.
- 10. Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov. 2022 May 2;12(5):1217-1232. doi: 10.1158/2159-8290.CD-21-1334. PMID: 35491624; PMCID: PMC9306285.
- 11. Di Cristofano F, George A, Tajiknia V, Ghandali M, Wu L, Zhang Y, Srinivasan P, Strandberg J, Hahn M, Sanchez Sevilla Uruchurtu A, Seyhan AA, Carneiro BA, Zhou L, Huntington KE, El-Deiry WS. Therapeutic targeting of TRAIL death receptors. Biochem Soc Trans. 2023 Feb 27;51(1):57-70. doi: 10.1042/BST20220098. PMID: 36629496; PMCID: PMC9988005.
- 12. Singh P, Lim B. Targeting Apoptosis in Cancer. Curr Oncol Rep. 2022 Mar;24(3):273-284. doi: 10.1007/s11912-022-01199-y. Epub 2022 Feb 3. PMID: 35113355.
- 13. Jan R, Chaudhry GE. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull. 2019 Jun;9(2):205-218. doi: 10.15171/apb.2019.024. Epub 2019 Jun 1. PMID: 31380246; PMCID: PMC6664112.
- 14. Abraha AM, Ketema EB. Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J Gastrointest Oncol. 2016 Aug 15;8(8):583-91. doi: 10.4251/wjgo.v8.i8.583. PMID: 27574550; PMCID: PMC4980648.

SEEJPH Volume XXVI, S1, 2025, ISSN: 2197-5248; Posted:05-01-2025

- 15. Yan X, Yeh C, Zou L. Clinical applications of circulating tumor DNA, circulating tumor cells, and exosomes as liquid biopsy-based tumor biomarkers. *J Appl Bioanal*. 2020 Aug 15;6(3):107–130. doi: 10.17145/jab.20.013.
- 16. Reglero C, Reglero G. Precision Nutrition and Cancer Relapse Prevention: A Systematic Literature Review. Nutrients. 2019 Nov 16;11(11):2799. doi: 10.3390/nu11112799. PMID: 31744117; PMCID: PMC6893579.
- 17. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015 Apr 3;348(6230):69-74. doi: 10.1126/science.aaa4971. PMID: 25838375.
- 18. Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 2023 Dec;33(12):1062-1076. doi: 10.1016/j.tcb.2023.04.005. Epub 2023 May 23. PMID: 37230924.
- 19. Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel). 2021 Aug 28;13(17):4363. doi: 10.3390/cancers13174363. PMID: 34503172; PMCID: PMC8430856.
- 20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013. PMID: 21376230.
- 21. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008 Jun-Aug;19(3-4):325-31. doi: 10.1016/j.cytogfr.2008.04.001. Epub 2008 May 20. PMID: 18495520.
- 22. Bharti V, Watkins R, Kumar A, Shattuck-Brandt RL, Mossing A, Mittra A, Shen C, Tsung A, Davies AE, Hanel W, Reneau JC, Chung C, Sizemore GM, Richmond A, Weiss VL, Vilgelm AE. BCL-xL inhibition potentiates cancer therapies by redirecting the outcome of p53 activation from senescence to apoptosis. Cell Rep. 2022 Dec 20;41(12):111826. doi: 10.1016/j.celrep.2022.111826. PMID: 36543138; PMCID: PMC10030045.
- 23. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59. doi: 10.1038/nrm2308. PMID: 18097445.
- 24. Roberts AW, Huang D. Targeting BCL2 With BH3 Mimetics: Basic Science and Clinical Application of Venetoclax in Chronic Lymphocytic Leukemia and Related B Cell Malignancies. Clin Pharmacol Ther. 2017 Jan;101(1):89-98. doi: 10.1002/cpt.553. Epub 2016 Nov 26. PMID: 27806433; PMCID: PMC5657403.
- 25. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American statistical association. 1958 Jun 1;53(282):457-81.
- 26. Ozer H, Yenicesu G, Arici S, Cetin M, Tuncer E, Cetin A. Immunohistochemistry with apoptotic-antiapoptotic proteins (p53, p21, bax, bcl-2), c-kit, telomerase, and metallothionein as a diagnostic aid in benign, borderline, and malignant serous and mucinous ovarian tumors. Diagn Pathol. 2012 Sep 20;7:124. doi: 10.1186/1746-1596-7-124. PMID: 22995373; PMCID: PMC3523067.
- Andrade C. Survival Analysis, Kaplan-Meier Curves, and Cox Regression: Basic Concepts. Indian J Psychol Med. 2023 Jul;45(4):434-435. doi: 10.1177/02537176231176986. Epub 2023 Jun 11. PMID: 37483572; PMCID: PMC10357905.
- 28. Alshehade SA, Almoustafa HA, Alshawsh MA, Chik Z. Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon. 2024 Jul 15;10(13).
- 29. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev

- Cancer. 2022 Jan;22(1):45-64. doi: 10.1038/s41568-021-00407-4. Epub 2021 Oct 18. PMID: 34663943.
- 30. Jarząb AO, Targosz A, Belowska AP. Impact of the operation Ciglitazone on PPAR activation and apoptosis process in models of gastrointestinal cancer in vitro. EPH-Int J Biol Pharm Sci. 2019;5(1):1-5. doi:10.53555/eijbps.v4i1.28.
- 31. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007 Jun;35(4):495-516. doi: 10.1080/01926230701320337. PMID: 17562483; PMCID: PMC2117903.
- 32. Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. Biochim Biophys Acta Mol Cell Res. 2020 Jun;1867(6):118688. doi: 10.1016/j.bbamcr.2020.118688. Epub 2020 Feb 19. PMID: 32087180; PMCID: PMC7155770.
- 33. Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel). 2021 Aug 5;13(16):3949. doi: 10.3390/cancers13163949. PMID: 34439105; PMCID: PMC8394096.
- 34. D'Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells. 2020 May 21;9(5):1287. doi: 10.3390/cells9051287. PMID: 32455818; PMCID: PMC7291206.