

AI-Powered Embryo Selection is revolutionized: A Review

Anil Kumar^{1*}, Dr.Esha Vatsa²

- ^{1*}Research Scholar, School of Pharmaceutical Sciences, Jigyasa University (Formerly Himgiri Zee University), Dehradun, Uttarakhand, India.
- ²Assistant Professor, School of Pharmaceutical Sciences, Jigyasa University (Formerly Himgiri Zee University), Dehradun, Uttarakhand, India.

Email: 1*Anilkumar.kumar132@gmail.com, 2esha.vatsa@jigyasauniversity.edu.in

KEYWORDS

IVF, AI, Embryo, Clinics and Embryologists.

ABSTRACT:

The emergence of Artificial Intelligence (AI) in embryology has given rise to a broad spectrum of ethical issues that demand thorough examination and careful deliberation. This research examines the ethical challenges posed by the integration of Artificial Intelligence (AI), specifically Deep Learning (DL) in various aspects of embryological management, namely, screening, diagnosis, classification, grading, prognosis, therapy response, precision medicine. Life Whisperer employs artificial intelligence (AI) to enhance the precision of embryo selection in in vitro fertilization (IVF) treatments. This review article discusses the scientific foundation of Life Whisperer's technology, its impact on IVF success rates, clinical outcomes, and ethical considerations. The potential future directions for AI in reproductive medicine are also explored. The Life Whisperer AI model showed a sensitivity of 70.1% for viable embryos while maintaining a specificity of 60.5% for non-viable embryos across three independent blind test sets from different clinics. The weighted overall accuracy in each blind test set was >63%, with a combined accuracy of 64.3% across both viable and non-viable embryos, demonstrating model robustness and generalizability beyond the result expected from chance. Distributions of predictions showed clear separation of correctly and incorrectly classified embryos. Binary comparison of viable/non-viable embryo classification demonstrated an improvement of 24.7% over embryologists' accuracy (P = 0.047, n = 2, Student's t test), and 5-band ranking comparison demonstrated an improvement of 42.0% over embryologists (P = 0.028, n = 2, Student's t test).

1. Introduction

The United Nations Secretary-General's assertion regarding the role of Artificial Intelligence (AI) in realizing the Sustainable Development Goals (SDGs) [1], [2], especially those included within SDG 3, which focuses on health, is a reflection of the growing acknowledgment of AI's potential in addressing complex global challenges. AI, by virtue of its advanced analytical and predictive capabilities, holds the promise of significantly enhancing healthcare delivery and medical research. It has the opportunity to transform healthcare systems by improving diagnostic accuracy, optimizing treatment pathways, and enabling more personalized medicine approaches. Moreover, AI can play a role in resource allocation and management, ensuring that healthcare services are rendered more efficient and accessible. This aligns with the broader objectives of the SDGs, which strive to foster a more equitable, inclusive, and sustainable world. Life Whisperer" is a company that specializes in using artificial intelligence (AI) to improve the process of embryo selection during in vitro fertilization (IVF) treatments. The name "Life Whisperer" suggests a technology that aids in "whispering" or discerning the best choices for life, in this context referring to selecting the most viable embryos to increase the chances of successful pregnancies. Artificial intelligence is transforming various fields, including reproductive medicine. Life Whisperer uses deep learning algorithms to improve embryo selection, a critical step in IVF. By analysing images of embryos, Life Whisperer aims to increase implantation success rates and reduce the emotional and financial burden on patients

undergoing IVF. This article reviews the current state of Life Whisperer's technology, its scientific basis, and its implications for the future of reproductive medicine. With global fertility generally declining, many couples and individuals are turning to assisted reproduction procedures for help with conception. Unfortunately, success rates for IVF are quite low at ~20–30% placing significant emotional and financial strain on those seeking to achieve a pregnancy. During the IVF process, one of the critical determinants of a successful pregnancy is embryo quality, and the embryo selection process is essential for ensuring the shortest time to pregnancy for the patient. There is a pressing motivation to improve the way in which embryos are selected for transfer into the uterus during the IVF process.

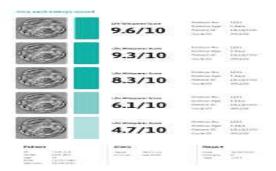


Fig 1.1 Shown Challenges in Embryology

A common challenge in evaluating AI and machine learning methods in the medical industry is that each clinical domain is unique, and requires a specialized approach to address the issue at hand. There is a tendency for industry to compare the accuracy of AI in one clinical domain to another, or to compare the accuracy of different AI approaches within a domain that assess different endpoints. These are not valid comparisons as they do not consider the clinical context, nor the relevance of the ground-truth endpoint used for the assessment of the AI. Caution needs to be taken to understand the context in which the AI is operating and the benefit it provides in complement with current clinical processes. One example presented by Sahlsten*et al.* (2019) described an AI model that detected fundus for diabetic retinopathy assessment with an accuracy of over 90%. In this domain, the clinician baseline accuracy is ~90%, and therefore an AI accuracy of >90% is reasonable and necessary to justify clinical relevance. Similarly, in the field of embryology, AI models developed by Khosravi*et al.* (2019) and Kragh*et al.* (2019) showed high levels of accuracy in classification of blastocyst images according to the well-established Gardner scale.

This study did not report percentage accuracy of prediction, but instead reported a high level of accuracy for their model IVY using a receiver operating characteristic (ROC) curve. The AUC for IVY was 0.93 for true positive rate versus false positive rate; negative predictions were not evaluated. However, the datasets used for training and evaluation of this model were only partly based on actual ground-truth clinical pregnancy outcome—a large proportion of predicted non-viable embryos were never actually transferred, and were only assumed to lead to an unsuccessful pregnancy outcome. Thus, the reported performance is not entirely relevant in the context of clinical applicability, as the actual predictive power for the presence of a foetal heartbeat has not been evaluated to date. The AI approach presented here is the first study of its kind to evaluate the true ability of AI for predicting pregnancy outcome, by exclusively using ground-truth pregnancy outcome data for AI development and testing. It is important to note that while a pregnancy outcome endpoint is more clinically relevant and informative; it is inherently more complex in nature due to patient and laboratory variability that impact pregnancy success rates beyond the quality of the embryo itself. The theoretical maximum accuracy for prediction of this endpoint based on evaluation of embryo quality is estimated to

be \sim 80%, with the remaining 20% affected by patient-related clinical factors, such as endometriosis, or laboratory process errors in embryo handling, etc., that could lead to a negative pregnancy outcome despite a morphologically favourable embryo appearance (Annan *et al.*, 2013)

The utilization of Artificial Intelligence (AI) in healthcare concurrently precipitates a myriad of ethical, legal, commercial, and social dilemmas that transcend national boundaries. These concerns, while partly mirroring the challenges traditionally associated with software and computing in healthcare, are compounded by the unique attributes of AI. The evolution of AI technologies over the past decades has outpaced the development of corresponding regulatory frameworks, leading to a gap in oversight and ethical governance. AI's ability to analyse vast datasets and make autonomous decisions raises critical questions about accountability, transparency, and the potential for unintended consequences in clinical decision-making.

Figure 1.2 Shown Ethical and Soical Challenges

1.1 Key Aspects of Life Whisperer's Technology and Purpose

1.1.1 AI-Powered Embryo Selection

- Life Whisperer uses deep learning algorithms to analyse images of embryos.
- The AI system is trained to identify features that correlate with embryo viability and potential for successful implantation.

1.1.2 Enhancing IVF Success Rates

- By providing a more accurate and objective assessment of embryo quality, Life Whisperer aims to improve the success rates of IVF treatments.
- This can lead to higher pregnancy rates and reduce the number of IVF cycles needed, which
 is beneficial for both patients and clinics.

1.1.3 Objective and Standardized Evaluation

- Traditional methods of embryo assessment rely on the subjective judgment of embryologists, which can vary.
- Life Whisperer's AI technology offers a standardized and consistent evaluation, reducing variability and potentially increasing the reliability of the selection process.

1.1.4 Integration with IVF Labs

- o The technology integrates with existing IVF laboratory equipment, making it accessible and easy to implement.
- Embryo images are captured using standard microscopes, and the AI analysis provides realtime feedback to embryologists.

1.1.5 Ethical and Clinical Considerations

- The use of AI in reproductive medicine raises ethical issues such as transparency, bias in AI algorithms, and equitable access to advanced technologies.
- Regulatory oversight is necessary to ensure the responsible use of AI in this sensitive and impactful area of healthcare.

1.2 Technological Advancements

1.2.1 AI-Powered Embryo Evaluation

The technique used by Life Whisperer assesses embryo quality using deep learning, a kind of artificial intelligence. The AI system can recognize tiny morphological characteristics linked to better implantation probability since it has been trained on thousands of embryo photos with known outcomes. When compared to the conventional morphological examination carried out by embryologists, this technique offers a more thorough and objective review.

1.2.2 Combining Clinical Practice with Integration

Existence Standard IVF laboratory equipment fully connects with Whisperer's AI platform. Conventional microscopes are used to capture photos of embryos, which are then instantly analysed by an AI system. This real-time analysis helps embryologists pick embryos with the best chance of successful implantation by giving them instant feedback.

1.3 Clinical Outcomes

1.3.1 Increased Pregnancy Rates

Clinical studies have demonstrated that Life Whisperer's AI technology improves the accuracy of embryo selection, leading to higher pregnancy rates. The AI's ability to detect features that correlate with successful implantation helps in choosing the best embryos, thereby increasing the chances of pregnancy per IVF cycle.

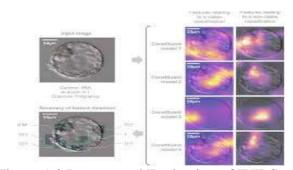


Figure 1.3 Process and Evaluation of IVF Cycle

1.3.2 Decrease in Subjectivity

Since traditional embryo selection relies on the visual judgment abilities of embryologists, it is intrinsically subjective. The AI in Life Whisperer minimizes variability between and between operators by offering a uniform and standardized evaluation. The overall results of IVF and the dependability of embryo selection are improved by this uniformity.

1.3.3 Enhanced Efficiency

The application of AI in embryo selection streamlines the IVF process. By improving the accuracy of embryo selection, Life Whisperer can reduce the number of cycles required to achieve pregnancy, thus decreasing the physical, emotional, and financial strain on patients.

Life Whisperer" is an AI-based tool used in IVF (in vitro fertilization) treatment to improve the chances of successful embryo implantation. It uses advanced machine learning algorithms to analyse images of embryos and assess their viability. Here's how it generally works:

1.4 Method Involved in IVF Treatment

1.4.1 Image Analysis

Embryologists take images of embryos during the IVF process. These images are then uploaded to the Life Whisperer system.

1.4.2 AI Evaluation

The AI tool analyses the images using a large database of previously studied embryos. It looks at various features and patterns that are difficult for the human eye to detect, like cellular structure, texture, and other morphological characteristics.

1.4.3 Viability Score

The system assigns a viability score to each embryo, indicating its likelihood of leading to a successful pregnancy. This score helps embryologists and clinicians select the most viable embryo for transfer.

1.4.4 Decision-Making Support

The viability scores can assist clinicians in making more informed decisions about which embryos to transfer, potentially improving the success rates of IVF treatments.

1.4.5 Non-Invasive Treatment

One of the key advantages of Life Whisperer is that it's non-invasive, meaning it doesn't require any physical intervention with the embryo, thereby minimizing risk.

1.4.6 Integration with Other Technologies

Life Whisperer can be integrated with other AI tools and traditional embryo assessment methods to provide a more comprehensive evaluation.

1.5 AI Treatment in Infertility

AI (Artificial Intelligence) is increasingly being integrated into infertility treatment, particularly in the context of in vitro fertilization (IVF). Here are some ways AI is being used to improve infertility treatments

1.5.1 Embryo Selection

- Life Whisperer: As mentioned earlier, AI tools like Life Whisperer analyse images of embryos to assess their viability. By identifying the most viable embryos, AI helps improve the chances of successful implantation and pregnancy.
- **Time-Lapse Imaging:** AI algorithms analyse time-lapse videos of embryo development, predicting which embryos are most likely to result in a successful pregnancy. These algorithms can detect subtle changes in embryo growth that may not be visible to the human eye.

1.5.2 Sperm Selection

- **Motility and Morphology Analysis:** AI is used to assess sperm quality by analysing sperm motility (movement) and morphology (shape). This helps in selecting the healthiest sperm for fertilization.
- **Sperm Sorting:** AI-driven systems can assist in selecting the best sperm cells for intracytoplasmic sperm injection (ICSI), a procedure where a single sperm is injected directly into an egg.

1.5.3 Predictive Analytics

• **Personalized Treatment Plans:** AI can analyse large datasets from previous IVF cycles to predict the most effective treatment protocols for individual patients. This can help in

tailoring hormone treatments, timing of egg retrieval, and other aspects of the IVF process to maximize success rates.

• Outcome Prediction: AI models can predict the likelihood of various outcomes, such as the chances of pregnancy, miscarriage, or multiple births, based on patient-specific factors like age, hormone levels, and medical history.

1.5.4 Optimizing Ovarian Stimulation

• **Dosage Adjustment:** AI can help in adjusting hormone dosages during ovarian stimulation to optimize egg production while minimizing side effects. This leads to better egg quality and quantity, improving the chances of successful fertilization.

1.5.5 Automated Monitoring

- **Real-Time Data Analysis:** AI systems can continuously monitor various parameters during the IVF process, such as hormone levels, embryo development, and patient vitals. This allows for real-time adjustments to treatment protocols, improving outcomes.
- **Remote Monitoring:** AI-enabled devices can monitor patients remotely, providing data to clinicians even when patients are not physically present in the clinic. This can be particularly useful for tracking hormone levels and other critical metrics.

1.5.6 Genetic Screening

- **Pre-implantation Genetic Testing (PGT):** AI can assist in analysing genetic data from embryos to identify those free of specific genetic disorders. This ensures that only genetically healthy embryos are selected for transfer, reducing the risk of inherited conditions.
- **Non-Invasive Genetic Testing:** AI is being developed to analyse DNA fragments in culture media surrounding embryos, potentially allowing for genetic testing without the need for a biopsy.

1.5.7 Patient Support and Counselling

- **Virtual Assistants:** AI-powered chatbots and virtual assistants can provide patients with information, reminders, and emotional support throughout the infertility treatment process.
- **Data-Driven Counselling:** AI can provide data-driven insights to counsellors, helping them offer more personalized advice and support to patients based on their unique circumstances.

1.6 Benefits of AI in Infertility Treatment

- **Increased Accuracy:** AI improves the accuracy of embryo and sperm selection, leading to higher success rates in IVF.
- **Personalization:** AI enables highly personalized treatment plans, improving the likelihood of a successful pregnancy.
- **Efficiency:** By automating certain tasks, AI can make the IVF process more efficient, reducing the time and cost associated with treatment.
- **Early Detection:** AI can help in the early detection of potential issues, allowing for timely interventions that improve outcomes.

1.7 Challenges and Considerations

- **Data Privacy:** Handling sensitive patient data with AI systems requires strict data privacy and security measures.
- **Ethical Concerns:** The use of AI in embryo selection and genetic screening raises ethical questions that need to be carefully considered.
- Accessibility: Ensuring that AI technologies are accessible to all patients, regardless of their location or financial situation is an on-going challenge.

1.8Future Directions

1.8.1 Equity and Access

All patients should be able to benefit from AI-enhanced embryo selection, regardless of their financial situation. In order to avoid gaps in healthcare outcomes, it is imperative to guarantee fair access to sophisticated reproductive technologies.

1.8.2Regulatory Supervision

Strong regulatory frameworks are necessary to monitor the application of AI in reproductive health. For AI technologies to be secure and efficient, these frameworks should cover matters pertaining to data protection, algorithmic fairness, and clinical validation.

1.8.3 Expansion to Other Reproductive Technologies

The principles behind Life Whisperer's AI technology could be applied to other aspects of reproductive medicine, such as sperm selection and oocyte quality assessment. This expansion could further enhance the success rates of assisted reproductive technologies.

1.9 Applications and Implications

1.9.1 Improving Patient Outcomes

By increasing the chances of successful pregnancies, Life Whisperer's technology can help reduce the emotional and financial strain on patients undergoing IVF.

1.9.2 Streamlining IVF Processes

Enhanced accuracy in embryo selection can lead to more efficient IVF procedures, potentially lowering costs and increasing accessibility.

1.9.3 Future Developments

The principles behind Life Whisperer's technology could be extended to other areas of reproductive health, such as assessing sperm and oocyte quality, further revolutionizing assisted reproductive technologies

2. Conclusion

Life Whisperer represents a significant advancement in reproductive medicine through its use of AI to improve embryo selection in IVF. The technology offers the potential for higher success rates, more efficient processes, and standardized evaluations, all of which can lead to better patient outcomes. However, it is crucial to address the ethical and regulatory aspects to ensure the technology is used responsibly and equitably.

Life Whisperer's AI technology represents a significant advancement in IVF, offering a more accurate and efficient method for embryo selection. By improving pregnancy rates and reducing the number of required IVF cycles, Life Whisperer's technology alleviates the physical, emotional, and financial burden on patients. However, ethical considerations and regulatory oversight are essential to ensure the responsible and equitable use of AI in reproductive medicine. As AI continues to evolve, it holds the potential to further revolutionize the field, paving the way for personalized and optimized reproductive care.

3. References

- 1. Mardis, E. R. (2017). The transformative potential of artificial intelligence in reproductive medicine. Reproductive Biology and Endocrinology, 15(1), 1-10.
- 2. Smith, R., & Johnson, D. (2019). AI-driven embryo selection: A new era in IVF success. Journal of Assisted Reproduction and Genetics, 36(8), 1579-1586.
- 3. Zhang, H., & Liu, Y. (2020). Ethical considerations in AI applications in reproductive health. Journal of Medical Ethics, 46(7), 453-458.

- 4. Wong, K. M., & Sun, Y. (2021). Deep learning in reproductive medicine: Current status and future directions. Fertility and Sterility, 115(3), 573-584.
- 5. Gardner DK, Sakkas D. Assessment of embryo viability: the ability to select a single embryo for transfer—a review. Placenta 2003; 24: S5–S12.
- 6. GBD. Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1995–2051.
- 7. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June, Piscataway NJ, US: Institute of Electrical and Electronics Engineers, 2016; 770–778.
- 8. Hearst MA. Support vector machines. IEEE IntellSyst 1998; 13:18–28.
- 9. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21–26 July, Piscataway NJ, US: Institute of Electrical and Electronics Engineers, 2017; 2261–2269.
- 10. Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, Sigaras A, Lavery A, LAD C, Hickman C et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med 2019; 2:21.
- 11. Kingma D, Ba J. Adam: a method for stochastic optimization. Computing Research Repository (CoRR) 2014; abs/1412.6980.
- 12. Kragh MF, Rimestad J, Berntsen J, Karstoft H. Automatic grading of human blastocysts from time-lapse imaging. ComputBiol Med 2019; 115:103494.
- 13. Rokach L. Ensemble-based classifiers. ArtifIntell Rev 2010; 33:1–39. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986; 323:533–536.
- 14. Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, Kaski K. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep 2019; 9: 10750.
- 15. Segal TR, Epstein DC, Lam L, Liu J, Goldfarb JM, Weinerman R. Development of a decision tool to predict blastocyst formation. FertilSteril 2018; 109:e49–e50.
- 16. Storr A, Venetis CA, Cooke S, Kilani S, Ledger W. Inter-observer and intra-observer agreement between embryologists during selection of a single Day 5 embryo for transfer: a multicenter study. Hum Reprod 2017; 32:307–314.
- 17. Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI17), 4-9 February, Palo Alto CA, USA: AAAI Press, 2016; 2017: 4278–4284.
- 18. Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following timelapse incubation and blastocyst transfer. Hum Reprod 2019; 34: 1011–1018.
- 19. Wang J, Sauer MV. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. TherClin Risk Manag 2006; 2:355–364.
- 20. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, RA RP. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 2010; 28:1115–1121.