

Ayurvedic Intervention for Bronchial Asthma: A Case Study

Dr. Shalini¹, Dr. Sruthi K², Dr. Akshata Nara³

- 1. Assistant Professor, Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India,
- 2. PG Scholar, Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India,
- 3. Assistant Professor, Department of Shalakya Tantra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India,

KEYWORDS

ABSTRACT

Bronchial asthma, Tamaka Shwasa, Samana karma, Agasthya Hareetaki Avaleha. Bronchial asthma is a chronic respiratory disorder that significantly impacts quality of life and is associated with high morbidity and mortality rates. In Ayurveda, it is correlated with *Tamaka Shwasa*, a subtype of *Shwasa Roga*. This case study presents the Ayurvedic management of a 45-year-old woman diagnosed with bronchial asthma. The treatment protocol included the administration of *Agasthya Hareetaki Avaleha* for one month, resulting in notable symptomatic relief and improved clinical outcomes. The intervention addressed the *Kapha* and *Vata* doshas imbalance, contributing to disease remission. These findings suggest the potential of Ayurvedic formulations as a complementary approach to asthma management. However, further research with larger sample sizes and rigorous methodologies is necessary to validate these outcomes and explore broader clinical applications.

Introduction

Bronchial asthma is a chronic inflammatory condition of the airways characterized by airway hypersensitivity, resulting in recurring episodes of wheezing, breathlessness, chest tightness, and coughing.[1] The etiopathology and clinical presentation of bronchial asthma closely resemble *Tamaka Shwasa*, a disease described in Ayurveda as one of *Shwasa roga*. Symptoms of bronchial asthma are often triggered by exposure to allergens, physical exertion, upper respiratory infections, or irritants such as smoke or dust.[2] Similarly, *Tamaka Shwasa* manifests with symptoms such as breathlessness, forcible expiration, cough, wheezing, difficulty breathing while lying down, and relief in a sitting position. It is aggravated by factors like cloudy weather, cold water, cold winds, and a diet that aggravates *Kapha dosha* (the *dosha* responsible for regulating body fluids and maintaining cohesion in the body).[3]

The pathology of *Tamaka Shwasa* begins with dietary habits and lifestyle factors that provoke *Kapha dosha*. When aggravated, *Kapha dosha* combines with *Vata dosha* (the *dosha* responsible for movement and cognition), obstructing the *Prana* (respiratory channels), *Udaka* (pathways for fluid circulation), and *Annavaha srotas* (digestive tract). This obstruction disrupts the normal flow of *Vata dosha*, causing it to move in a reverse direction (*Pratiloma gati*), ultimately leading to *Tamaka Shwasa*.[4] According to *Acharya Charaka*, *Tamaka Shwasa* is classified as a *Yapyavyadhi* (a chronic condition that is incurable but manageable).[5]

Ayurvedic texts recommend different types of *Shodhana* (cleansing therapies) and *Shamana* (palliation therapies), along with various herbal and herbal-mineral formulations, for managing *Tamaka Shwasa*. This case study highlights the effectiveness of *Samana* therapy with *Agasthya hareetaki avaleha* for 1 month. The treatment significantly improved subjective symptoms and objective pulmonary function parameters.

Case Details

A 45-year-old female visited the Ayurvedic outpatient department, reporting recurrent episodes of shortness of breath, cough, and chest tightness after exposure to dust, cold, or exercise for the past 20 years.

History of present illness-

A 45-year-old female patient was asymptomatic and in normal health 20 years ago. She initially noticed episodes of dry cough triggered by consuming cold items or exposure to dust. These symptoms were mild and were ignored. Gradually, she began to develop episodes of cough that were sometimes dry and sometimes accompanied by the expectoration of mild, whitish sputum. These episodes were associated with shortness of breath and chest tightness, particularly during exposure to cold, physical exercise, or after heavy physical work. The episodes were intermittent and resolved spontaneously without medical intervention. The symptoms are aggravated during winter, particularly upon exposure to cold. Although she sought treatment at various hospitals and experienced temporary relief with medications, she did not achieve long-term improvement. Over the past month, coinciding with the onset of winter, the patient has been experiencing similar symptoms, including cough, chest tightness, and shortness of breath. Concerned about her worsening condition, she presented to our Out Patient Department for further evaluation and management.

Past History: The patient has no history of diabetes, hypertension, tuberculosis, significant chest infections, cardiovascular abnormalities, allergic rhinitis, eczema, or any prior hospitalizations for respiratory or systemic conditions.

Personal History: Known dust allergy. She denied any history of Smoking or alcohol use.

Treatment history- The condition was Previously managed with inhalers (formoterol fumarate and budesonide) and some oral medications (No record available) as prescribed

Examination:

General examination: Normal, with BP 120/92 mmHg, pulse rate 74/min.

Respiratory system: On examination of the respiratory system, the chest shape was normal with symmetrical expansion, and no deformities were observed. The respiratory rate was within normal limits, with no signs of tachypnea or use of accessory muscles. Breath sounds were vesicular. There were no signs of crepitations or other adventitious sounds. The percussion note was resonant, and the trachea was centrally positioned without any deviation. Overall, no other pathological findings were detected on respiratory system examination.

Diagnosis: Acute exacerbation of chronic asthma, confirmed through reversibility testing. This test involves measuring the Peak Expiratory Flow Rate (PEFR) before and after administering a bronchodilator, salbutamol. A significant improvement in PEFR (≥20% increase from the baseline measurement) after bronchodilator use indicates reversible airway obstruction, a hallmark of asthma.

Ayurvedic Approach

Table 1- Ayurvedic examination of patient and disease

Ashtasthana pareeksha	Dashavidha pareeksha			
Nadi (pulse)- Kapha Vataja (Kapha and Vata	Dushya (A bodily structure which can be			
predominant)	vitiated by aggravated Doșha) -Pranavaha			
	srotas, Annavaha srotas (channels carrying			
	Prana and Anna)			
	Kaphadosha, Vatadosha			
Mootra (urine)- Samyak (Normal state)	Desha (habitat)- Sadharana (A moderate			
	habitat)			
Mala (excreta)- Samyak (Normal state)	Kala- Adana (Hemanta rtu (early winter),			
	Shisira(Winter), Vasanta(spring)			
Jihwa (tongue)-Anupalipata (uncoated)	Bala (strength)- Madhyama (Moderate)			
Shabda (voice/speech)- Prakruta (Normal	Agni (metabolic factors located in the digestive			
state), Spashta (clear)	tract) – Samagni			
Sparsha (touch) – Anushnashita (not too cold	Prakrti (An individual's inherent nature)-			
or warm)	Kapha Vataja			
Drik (vision)- Prakruta (Normal state)	Vaya(Age) – Madhyama (Moderate)			
Akriti (body stature)- Madhyama (Moderate)	Satva(psyche) – Avara (Insufficient)			
	Satmya -Madhura pradhna Shadrasa (Sweet			
	predominant six taste)			
	Ahara-Normal Jarana and Abhyavaharana			
	shakti (digestive capacity)			

Treatment plan

The patient was guided on the *Pathya* and *Apathya* (wholesome and unwholesome) regimen. It was advised to use Warm, light, and freshly prepared meals, at regular timings and it was restricted to having heavy, cold food and drinks, curd, cheese, fried foods, and cold, dust exposure, excess exercises, or work.

Treatment given to the patient-

Table 2- treatment given to the patient

No	No Medicines, Dose		Dose	Frequency, and Mode of Application		
1	Agasthya	hareetaki	5gram	Twice a day, After food, followed by intake of warm		
	avaleha			water		

The patient was educated about the disease, treatment and expected outcomes, and advised to continue rescue inhalers if necessary.

Outcome assessment through subjective and objective parameters (As per guidelines for clinical research methodology in Ayurveda, Institute for Postgraduate Teaching & Research in Ayurveda, Gujarat Ayurved University Jamnagar – 361 008 India 2011)

Subjective parameter

A. Frequency of shwasa vega (frequency of breathing difficulty attacks)

- 0 No attack during the last 1 month
- 1 Frequency of attacks once in a month
- 2 Frequency of attacks once in two weeks
- 3 Frequency of attacks once in a week

- 4 Frequency of attacks twice in a week
- 5 Frequency of attack once or more than once in a day

B. Kasam (cough)

- 0 No cough
- 1 Dry cough without pain/ wet with easy expectoration
- 2 Dry cough with mild pain & expectoration with slight difficulty
- 3 Cough with severe pain/feeling of restlessness because of difficulty in expectoration
- 4 Frequent coughing due to which the patient becomes unconscious / fainting

C. Kapha Nishthivanam (Expectoration)

- 0 No kapha nishthivanam.
- 1 Kapha nishthivanam only in the early morning.
- 2 Kapha nishthivanam 2-3 times daily
- 3 Always kapha nishthivanam

D. Rudhho Ghur-ghurakam (Wheezing)

- 0 No wheezing
- 1 wheezing only in early morning, doesn't require medicine
- 2 wheezing in the early morning, requires medicine
- 3 wheezing in early morning, occasionally during day time
- 4 wheezing throughout the day & requires medicine
- 5 wheezing throughout the day & not responding to any medicine, requires hospitalization.

Effect on Subjective Parameters-

Table 3-Effect on Subjective Parameters

Criteria	Before (18/12/24)	After (22/1/25)	
Frequency of Shwasa vega	5	1	
Kasam	1	0	
Kaphanishthivanam	1	0	
Rudho ghur ghurakam	3	0	

Effect on Objective Parameter

Table 4-Effect on Objective Parameters

geet on objective i an america							
Parameters	Before (18/12/24)			After (22/1/25)			
	Pred.	Meas.	%	Pred.	Meas.	%	
FEV1	2.71	0.74	27	2.71	1.33	49	
FVC	3.16	1.21	38	3.16	1.77	56	
FEV1/FVC	80.55	61.17	75	80.55	75	93	
PEFR	6.50	1.16	17	6.50	2.50	38	

Follow-Up and Outcome:

The patient showed significant improvement in both subjective and objective parameters. Subjectively, Frequency of *Shwasa vega* (frequency of breathing difficulty attacks) reduced dramatically from daily episodes (score: 5) to once a month (score: 1). *Kasam* (Cough) and *Kaphanishthivanam* (expectoration), which were previously present in the mornings, completely

resolved (score: 0). *Rudhho Ghur-ghurakam* (Wheezing), initially occurring in the early morning and occasionally during the day (score: 3), also completely resolved (score: 0).

Objective measurements also showed substantial improvement. Forced Expiratory Volume in 1 second (FEV1) increased from 0.74 L (27% of predicted) to 1.33 L (49% of predicted), and Forced Vital Capacity (FVC) rose from 1.21 L (38% of predicted) to 1.77 L (56% of predicted). The FEV1/FVC ratio improved from 61.17% to 75%, indicating better lung function. Peak Expiratory Flow Rate (PEFR) also showed notable improvement, increasing from 1.16 L/sec (17% of predicted) to 2.50 L/sec (38% of predicted). Overall, the patient's condition improved significantly, with both subjective symptoms and objective lung function parameters showing marked progress.

These results indicate significant clinical and functional respiratory improvement, reflecting the effectiveness of the treatment approach.

Discussion

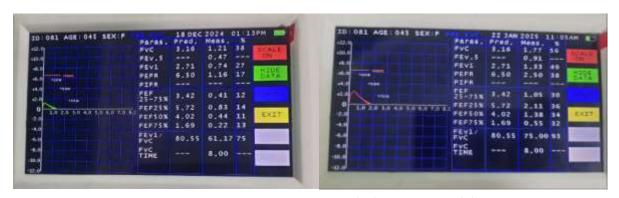


Figure 1- Pulmonary Function test- Before (18/12/24) and After (22/1/25)

According to Ayurveda *Tamaka Shwasa*there is an imbalance of *Kapha* and *Vata doshas*, and is especially recommended to use *laghu* (light), *ushna* (hot), *Vatanulomana* (proper functioning of *Vata*), and *kapha vata-hara* (Kapha and Vata pacifying) substances is particularly indicated.[6] Ayurveda highlights the therapeutic potential of *Ahara*, referring to it as *Bheshaja* (medicine).[7] It asserts that food is the best medicine, and only *Hitakara Ahara* (wholesome food) can sustain good health.[8] Some also state that if a patient adheres to *Pathya Ahara* (wholesome diet), they may not require medication. In this case, proper *Pathya* and *Apathya* (unwholesome) were instructed according to the condition.

Avaleha is a semi-solid dosage form with an extended shelf life, consisting of *Drava Dravya* (liquid substances), *Madhura Dravya* (sweetening agents), *Prakshepa Dravya* (condiments), and *Kalka Dravya* (medicinal pastes). [9] In contemporary times, *Avaleha* has gained significance due to its high palatability, compatibility, nutritional benefits, and enhanced oral absorption.

Agastya Haritaki Avaleha is a well-known formulation, particularly indicated for respiratory disorders. It is composed of Haritaki (Terminalia chebula Retz.) as the primary ingredient, along with Dashamoola (a group of ten roots), Kapikacchu (Mucuna pruriens Bek), Shankhapushpi (Clitoria ternatea L.), Shati (Kaempferia galanga L.), Bala (Sida cordifolia L.), Gajapippali (Scindapsus officinalis Schott), Apamarga (Achyranthes aspera Linn.), Chitraka (Plumbago indica L.), Bharangi (Clerodendrum serratum Spreng), Pippalimoola (Piper longum Linn.), Pushkaramoola (Inula racemosa Hook.f.), and Yava (Hordeum vulgare Linn.). Additionally, it contains Guda (jaggery), Pippali Choorna (Piper longum), Taila (Sesamum indicum L.), and Gohrita (ghee). This formulation is mentioned in widely referenced in classical texts. It is primarily

used in the management of Kasa (cough), Shwasa (dyspnea/asthma), Kshaya (consumption), Hikka (hiccups), and for promoting Varna (complexion), Bala (strength), and Ayu (longevity). [10] Haritaki, the main component of Agastya Haritaki Rasayana, is characterized by Ruksha (dry), Laghu (light), and Kashaya Pradhana Pancharasa (predominantly astringent with all tastes except salty). It has Madhura Vipaka (sweet post-digestive effect), Ushna Veerya (hot potency), and Tridoshahara (balancing all three Doshas), which makes it particularly beneficial for respiratory health. [11] Modern research supports its effectiveness, with studies showing that chebulic acid from Haritaki reduces oxidative stress and helps maintain the integrity of the pulmonary alveolar epithelial barrier. [12] Additionally, its ability to inhibit mast cell activation further enhances its therapeutic potential for asthma management. [13]

Bharangi (Clerodendrum serratum), as described in Ayurveda, is characterized by Tikta and Katu Rasa (bitter and pungent tastes), Laghu (light), Ruksha (dry) Guna, and Ushna Veerya (hot potency), with actions that balance Kapha and Vata Doshas. It is also effective in alleviating Swasa (respiratory) and Kasa (cough) conditions. [11] Modern studies validate these Ayurvedic properties by demonstrating that the root of Bharangi can manage allergic asthma by inhibiting the release of inflammatory mediators and preventing eosinophil infiltration in the lungs. [14] Furthermore, icosahydropicenic acid, a pentacyclic triterpenoid saponin from its roots, protects against mast cell degranulation, while ursolic acid helps prevent inflammation in lung and tracheal tissues. [15,16] These findings support the potential of Bharangi as a valuable therapeutic option for asthma management.

Maricha (Piper nigrum) has Katu Rasa (pungent taste), Ushna Veerya (hot potency), and Vatakaphahara (alleviates Vata and Kapha Doshas). Ethanol extracts of Piper nigrum have shown therapeutic potential in the treatment of allergic asthma by inhibiting inflammatory responses and mast cell activation. [17] In vivo evaluation of the extract demonstrated potent antihistaminic activity, reduced smooth muscle contraction, and a significant decrease in eosinophil and other inflammatory cell counts. [18]

Pushkaramoola (Inula racemosa) is specifically indicated in Shwasa and Kasa rogas.[19] Research shows that species of Inula serve as a source of bioactive compounds with significant potential against oxidative stress-related diseases. [20]

Dashamoola, a renowned formulation comprising ten medicinal roots, is widely utilized in Ayurveda for managing Shwasa rogas. These herbs exert therapeutic effects on the respiratory system primarily through their antioxidant and anti-inflammatory properties. Among them, certain botanicals have demonstrated direct efficacy in respiratory conditions. Research suggests that Kantakari (Solanum xanthocarpum) plays a pivotal role in bronchial asthma by restoring the prooxidant-antioxidant balance and alleviating airway inflammation. [21] Likewise, Shalaparni (Desmodium gangeticum) has shown significant anti-asthmatic potential in animal models, as evidenced by reduced WBC and differential counts, along with decreased malonyldialdehyde levels, and acts as an antioxidant. [22] Additionally, Bilva (Aegle marmelos) is traditionally employed in asthma treatment due to the presence of anti-histaminic constituents in its alcoholic extract. [23] Furthermore, Agnimantha (Premna integrifolia) exhibits strong anti-inflammatory and immunomodulatory properties, making it a promising candidate for the development of novel anti-inflammatory therapeutics. [24]

Pippali (Piper longum) is used as Prakshepa in this formulation. It is known for its Swasahara (respiratory health-promoting) and Kasahara (cough-relieving) properties. It has Katu Rasa (pungent taste) and Ushna Veerya (hot potency), making it effective in pacifying Vata and Kapha Doshas. [25] It also acts as a Deepana (digestive stimulant), enhancing Jatharagni (digestive fire)

and improving digestion and absorption. Additionally, it is *Yogavahi*, indicating that it can increase the bioavailability of drugs. [26] Animal studies indicate that piperine, the bioactive component of *Piper longum*, helps prevent the accumulation of pro-inflammatory markers and reactive oxygen species in the airways. [27] Clinical studies also demonstrate that it effectively reduces systemic oxidative stress, improves clinical symptoms, and enhances the quality of life in patients with respiratory disorders. [28]

The ingredients in the preparation of Agastya Haritaki Rasayana are predominantly Ushna Veerya (hot potency). Katu (pungent), Tikta (bitter), and Kashaya (astringent) are the dominant Rasa (tastes) present. The formulation primarily exhibits Laghu (light), Ruksha (dry), and Tikshna Guna (sharp properties). Katu Vipaka (pungent post-digestive effect) is more prevalent than Madhura Vipaka (sweet post-digestive effect). Most ingredients are Vatakapha Shamaka (pacifying Vata and Kapha) and Tridosha Shamaka (balancing all three Doshas). This makes it highly effective in maintaining Dosha balance and Samprapti Vighatana (breaking the pathogenesis), thus alleviating asthma symptoms.

Conclusion

In conclusion, this case study demonstrates the potential effectiveness of Ayurvedic treatment, specifically *Agasthya Hareetaki Avaleha*, in managing bronchial asthma by addressing the imbalances of *Kapha* and *Vata* doshas. The patient showed significant improvement in both symptoms and clinical outcomes, supporting the therapeutic value of *Samana* therapies. While these results are promising, further research with larger sample sizes is required to validate the findings and explore the broader application of Ayurvedic treatments in asthma management.

Declaration of patient consent- The authors certify that they have obtained informed consent from the patient to report the case, including using images and clinical information in the journal. The patient understands that their name and initials will not be published and that efforts will be made to protect their identity, however, complete anonymity cannot be guaranteed.

Conflict of Interest- The authors declare no conflict of interest.

Acknowledgment - I gratefully acknowledge the financial support provided by the IoE, Banaras Hindu University for the Seed Grand project (under Dev. Scheme No.6031(B)).

Support: There is no financial support.

References

- 1. Krishna Das KV. Textbook of Medicine. 6th ed. New Delhi: Jaypee Brothers Medical Publishers; 2017. Chapter 143, p. 984.
- 2. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald JM, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008 Jan;31(1):143-78. doi: 10.1183/09031936.00138707.
- 3. Vagbhata. Ashtanga Hridayam, with Sarvangasundara and Ayurved Rasayana commentary by Arundutta and Hemadri, respectively. In: Paradkara HS, editor. Nidana Sthana, Chapter 4, Verse 3, p. 239. Varanasi: Chaukhamba Surbharati Prakashana; Reprint 2010.
- 4. Srikantha Murthy RK. Ashtangahrudaya. Volume 2, Nidana Sthana, Chapter 4, Verses 6–10, p. 38. Varanasi: Chaukambha Krishnadas Academy; 2010.
- 5. Sharma RK, Bhagwandash. Charaka Samhita. Volume 4, Chikitsa Sthana, Chapter 17, Verse 62, p. 131. Varanasi: Chaukambha Sanskrit Series Office; 2009.
- 6. Srikantha Murthy RK. Ashtangahrudaya. Volume 2, Chikitsa Sthana, Chapter 4, Verses 57-58, p. 254. Varanasi: Chaukambha Krishnadas Academy; 2010.
- 7. Kashyap. Amlapitta Chikitsaadhyay. In: Tiwari PV, editor. Kashyap Samhita. 1st ed. Varanasi: Chaukhamba Vishvabharti; 1996. p. 468.

- 8. Tiwari PV, editor. Yogaratnakara. 1st ed. Varanasi: Chaukhamba Vishvabharti; 2010. p. 286.
- 9. Tripathi B. Sharangdhar Samhita: Poorva Khanda, (4th ed.). Varanasi: Chaukhamba Orientalia.; 1994.
- 10. Agnivesha. Charaka Samhita, Hindi Commentary by Dr. Bhramanand Tripathi. Chikitsa Sthanam, Chapter 18, Verses 57-62, p. 649. Varanasi: Chaukhambha Surbharati Prakashan.
- 11. Sri Bhavmishra. Bhavprakash Nighantu, edited by G.S. Pandey. Haritakyadivarga, Chapter 1, p. 5. Varanasi: Chaukhamba Bharti; Reprint Edition 2015.
- 12. Lee KW, Nam MH, Lee HR, Hong CO, Lee KW. Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter. BMC Complement Altern Med. 2017 Jul 19;17(1):373. doi:10.1186/s12906-017-1870-5.
- 13. Srivastava S, Choudhary GP. In-vivo and in-vitro mast cell stabilizing activity of ethyl acetate and methanol extract of Terminalia chebula fruits: a therapeutic approach for asthma. Int J Pharmacognosy. 2016;3(6):246-50. doi: 10.13040/IJPSR.0975-8232.3(6).246-50.
- 14. Arora P, Ansari SH, Nainwal LM. Clerodendrum serratum extract attenuates production of inflammatory mediators in ovalbumin-induced asthma in rats. Turk J Chem. 2021 Nov 4;46(2):330–341. doi: 10.55730/1300-0527.3310.
- 15. Bhujbal SS, et al. Protective effects of icosahydropicenic acid isolated from the roots of Clerodendrum serratum (L) Moon on experimental allergic asthma. J Complement Integr Med. 2010;7(1).
- 16. Acharya N. Bioactivity guided isolation of ursolic acid from Clerodendrum serratum roots and evaluation of its efficacy against asthma in guinea pigs. 2014.
- 17. Bui TT, Piao CH, Song CH, Shin HS, Shon DH, Chai OH. Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cell activation. Cell Immunol. 2017 Dec;322:64-73. doi:10.1016/j.cellimm.2017.10.005.
- 18. Bhattacharjee A, Sarkar BR, Dey BK. Evaluation of in-vivo histamine release inhibitory potential of Piper nigrum seed extract. MOJ Tumor Res. 2018;1(6):180-185. doi:10.15406/mojtr.2018.01.00025.
- 19. Tavares WR, Seca AML. Inula L. secondary metabolites against oxidative stress-related human diseases. Antioxidants (Basel). 2019 May 6;8(5):122. doi: 10.3390/antiox8050122.
- 20. Gulati K, et al. Evaluation of anti-inflammatory and immunomodulatory effects of aqueous extract of Solanum xanthocarpum in experimental models of bronchial asthma. EC Pharmacol Toxicol. 2016;2(6):241-250.
- 21. Chaitanya L. Anti-asthmatic activity of the root extracts of Desmodium gangeticum DC. Int J Multidiscip Res Rev. 2016;1:109-115.
- 22. Jyothsna S, Sriram, et al. Quantification of trace elemental concentration in bark and leaves of Aegle marmelos L. used against asthma disease in Telangana by EDXRF-technique. Adv Mater Res. 2022;1169:57-64.
- 23. Azad R, Babu NK, Gupta AD, Reddanna P. Evaluation of anti-inflammatory and immunomodulatory effects of Premna integrifolia extracts and assay-guided isolation of a COX-2/5-LOX dual inhibitor. Fitoterapia. 2018 Nov;131:189-199. doi: 10.1016/j.fitote.2018.10.016.
- 24. Sri Bhavmishra. Bhavprakash Nighantu, edited by G.S. Pandey. Haritakyadivarga, Chapter 1. Varanasi: Chaukhamba Bharti; Reprint Edition 2015.

- 25. Sharma RK, Bhagwandash. Charaka Samhita. Volume 2, Vimana Sthana, Chapter 1, Verse 16. Varanasi: Chaukambha Sanskrit Series Office; 2009.
- 26. Arora P, Athari SS, Nainwal LM. Piperine attenuates production of inflammatory biomarkers, oxidative stress and neutrophils in lungs of cigarette smoke-exposed experimental mice. Food Biosci. 2022;49:101909. doi: 10.1016/j.fbio.2022.101909.
- 27. Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms, and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet Suppl. 2014;13(1):93–105. doi: 10.3109/19390211.2014.952865.
- 28. Sharma RK, Bhagwandash. Charaka Samhita. Volume 1, Sootra Sthana, Chapter 25. Varanasi: Chaukambha Sanskrit Series Office; 2009.