

# DEVELOPMENT AND VALIDATION OF STABILITY INDICATING HPLC METHOD FOR ESTIMATION OF ISONIAZID IN BULK AND TABLET DOSAGE FORM

Rachana B.Lamkane<sup>1</sup>, Shraddha R. Kadav<sup>2</sup>, Monali D. Kore<sup>2</sup>, Tanuja S. Nimbalkar<sup>3</sup>, Pranali A.Tate Deshmukh<sup>4</sup>, Sushil D.Patil<sup>5</sup>, Monika N. Madibone<sup>6</sup>, Anita S. Wagh<sup>6</sup>, Pradeep L. Bodake<sup>3\*</sup>, Madhavi S. Bindu<sup>7</sup>

<sup>1</sup>Dalit Mitra Kadam Guruji College of Pharmacy, Mangalwedha, Maharashtra, India 413305

# \*Corresponding Author

Pradeep L. Bodake Principal, Dept. of Pharmaceutics, S. B. Patil College Of Pharmacy, Vangali- Indapur, 413106, MS, India

#### **KEYWORDS ABSTRACT**

Isoniazid, Stability The aim of present study is to develop simple, sensitive, accurate, rapid indicating, Degradation, Validation and RP-HPLC.

and precise reverse phase High Performance Liquid Chromatography (RP-HPLC) method for estimation of isoniazid in bulk drug and pharmaceutical dosage forms. The chromatographic separation was achieved on Neosphere  $C_{18}$  (150×4.6mm, i.d.3 $\mu$ ) column. The Analytical method was developed by using mobile phase consisting of 0.010 M potassium dihydrogen orthophosphate: methanol (85:15 v/v). The flow rate and detection wavelength was 1ml/min and 253 nm respectively. The retention time was 2.975±0.054min. The response of the drug was found to be linear in the range of 15-90 µg/ml (r<sup>2</sup>>0.999). Isoniazid was subjected to acid, alkali, neutral, dry heat, photostability and oxidative degradation. The LOD and LOQ were 0.671 and 2.033 µg/ml respectively. There was no interference of any degradants and excipients in determination of drugs in marketed formulation and it could effectively separate the drug from its degradation products and it can be successfully employed for routine analysis.

# INTRODUCTION [1, 2, 3]

Isoniazid (INH) chemically is an isonicotinic acid hydrazide. It is an antibacterial agent used primarily as a tuberculostic. It blocks the synthesis of mycolic acid, major components of the bacterial cell wall. The structure of INH is given in figure 1 & molecular formula is C<sub>6</sub>H<sub>7</sub>N<sub>3</sub>O and its molecular weight is 137.142 g/mol. The INH is a white crystalline powder it have solubility in water. It is practically insoluble in benzene and ether, solubility in chloroform is 1 %, in boiling alcohol 10 %.

<sup>&</sup>lt;sup>2</sup>Shri Ganpati Institute of Pharmaceutical Science's and Research, Tembhurni, Maharashtra, India 413211

<sup>&</sup>lt;sup>3</sup>S.B Patil College of Pharmacy, Indapur, Pune, Maharashtra, India 413106

<sup>&</sup>lt;sup>4</sup>College of Pharmacy (poly) Akluj Maharashtra, India 413101

<sup>&</sup>lt;sup>5</sup>SSK College of Pharmacy Wadzir, Nashik Maharashtra, India 422102

<sup>&</sup>lt;sup>6</sup> Srinath College of Pharmacy, Aurangabad, Maharashtra, India 431136

<sup>&</sup>lt;sup>7</sup> Jspm's Rajarshi Shahu College of Pharmacy and Research, Tathawade Pune, Maharashtra, India 411033



Figure 1: Structure of Isoniazid

INH is a prodrug and must be activated by bacterial catalase—peroxidase enzyme in mycobacterium tuberculosis called Kat G. Kat G catalyses the formation of isonicotinic acyl radical, which spontaneously couples with NADH to form the nicotinoyl-NAD adduct. This complex tightly binds to the enyol-acyl carrier protein reductase known as Inh A, thereby blocking the natural enyol — AcpM substrate and the action of fatty acid synthase. This process inhibits the synthesis of mycolic acids, which are required components of mycobacterial cell wall. A range of radicals are produced by Kat G activation of INH, including nitric oxide, which has also been shown to be important in the action of another antimycobacterial prodrug pretomanid. INH is bactericidal to rapidly dividing mycobacterial but it bacteriostatic if the bacteria are slowly growing. It inhibits the cytochrome p-450 and hence as a source of free radical. INH is a mild monoamine oxidase inhibitor.

According to literature survey several methods are reported on INH like RP-HPLC [4-10] UV spectroscopy [11-14], HPTLC [15-16], Mass spectroscopy [17], Tritrimetry [18-19], Polarography [20], Coulometry [21] and fluorimetry [22]. This paper describes the validation of RP-HPLC method for the assay of INH as bulk and pharmaceutical dosage form. The method was validated as per ICH guidelines.

#### **MATERIALS AND METHODS:**

#### **Instrument used**

The HPLC system used for study was JASCO HPLC System equipped with pump (Model PU 2080 Plus), Rheodyne sample injector of 50µl capacity, PDA detector (MD 2080) operated with Browin-PDA software (version 1.5)

#### **Chemicals**

Active pharmaceutical ingredient of INH was obtained from Lupin ltd. Aurangabad as a gift sample. Solonex tablet manufactured by (Macleoids Pharmaceuticals) labled to contain 300 mg INH was obtained from local pharmacy. HCL, NaOH, H<sub>2</sub>O<sub>2</sub>, Water, Orthophosphate, Methanol (HPLC grade) was purchased from local pharmacy.

#### Preparation of standard solution

Standard stock solution of INH was prepared by dissolving 30 mg of drug in 100 ml of methanol to get working standard solution having concentration of 300 µg/ml.

### **Determination of absorption maxima**

Three ml of the standard stock solution was further diluted using methanol to get concentration of 30  $\mu$ g/ml. This solution was scanned in UV –Visible range 200-400 nm against distilled water as blank. And the drug shows considerable absorbance at 253 nm which was chosen as detection wavelength.

# **Chromatographic conditions**

The chromatographic column used was neosphere C18 ( $150\times4.6$  mm, i.d.3 $\mu$ ). Mobile phase used was 0.010 M Potassium dihydrogen orthophosphate: Methanol (85:15 v/v) the detection wavelength was 253 nm, the flow rate was 1ml/min and the injection volume 50  $\mu$ l.

#### System sutability test

The system sutability was assessed by injecting standard solution in to chromatographic system containing  $60~\mu g/ml$  concentrations. The parameters and their results are shown in table 1.

**Table 1: Results of system suitability test** 

| Parameters Parameters                        | Isoniazid   |
|----------------------------------------------|-------------|
| Detection wavelength (nm)                    | 253         |
| Linearity range (µg/ml)                      | 15-90       |
| Correlation coefficient (r <sup>2</sup> )    | 0.999       |
| Linear regression Equation <sup>a</sup> (y = | = mx + c)   |
| Intercept (c)                                | -11230      |
| Slope (m)                                    | 31752       |
| Retention time                               | 2.965±0.051 |
| Peak area                                    | 1899762     |
| Throtical plates                             | 2371.7      |
| Asymmetry                                    | 2.25        |

#### Preparation of calibration curve

The standard stock solution was used for preparation of linear concentration of INH. Aliquots of 0.5-3 ml from stock solution of INH were transferred in a series of 10 ml volumetric flask and volume was made up to the mark with methanol. Six replicates per concentration were injected and chromatograms were recorded. The peak area of drug was recorded and calibration curve was plotted of peak area against concentration of drugs. Linear response was observed in the concentration range of 15-90  $\mu$ g/ml. The correlation coefficient was found to be 0.999 for INH

#### Validation of method [23]

Method was validated as per ICH guideline

**Linearity:** Aliquots of 0.5- 3.0 ml from stock solution of INH (300 μg/ml) were transferred in a series of 10 ml volumetric flasks and the volume was made up to the mark with the methanol. Six replicates per concentration were injected and chromatograms were recorded. The peak area of drug was recorded and calibration curve was plotted of peak area against concentration of drug. Linear response was observed in the concentration range of 15-90 μg/ml. The results obtained are shown in table 2. An excellent correlation exists between peak area and concentration of drug within the concentration range indicated above. Calibration curve for INH was shown in figure 2.

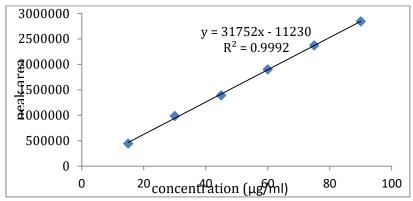



Figure 2: Calibration curve of Isoniazid

**Table 2: Observations for Calibration Curve** 

| Sr. No. | Concentration (µg/ml) | Mean Peak Area |
|---------|-----------------------|----------------|
| 1       | 15                    | 442976         |
| 2       | 30                    | 985504         |
| 3       | 45                    | 1390140        |
| 4       | 60                    | 1900756        |
| 5       | 75                    | 2372629        |
| 6       | 90                    | 2842557        |

**Accuracy:** Accuracy expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value found in acceptable ranges. In mean recovery, study were performed at three different concentration ranges as 80%, 100% and 120% is maintained by standard known sample. The percent recovery for INH was calculated. The results are shown in table 3.

**Table 3: Results of Accuracy** 

| Level of % recovery | Amount<br>taken<br>(µg/ml) | Amount<br>added<br>(µg/ml) | Amount<br>found<br>(µg/ml) | %<br>Recovery | %<br>R.S.D.* |
|---------------------|----------------------------|----------------------------|----------------------------|---------------|--------------|
| 50                  | 30                         | 15                         | 45.07                      | 100.16        | 0.25         |
| 100                 | 30                         | 30                         | 59.85                      | 99.75         | 0.35         |
| 150                 | 30                         | 45                         | 74.39                      | 99.18         | 0.99         |

**Precision:** Precision express that the standard deviation or relative standard deviation (coefficient of variation). The precision were determined at three different parameter such as repeatability, intraday precision and interday precision was performed in specified time. The results are shown in table 4.

**Table 4: Analysis of Precision** 

| Intra-day precision   |              |      |              |
|-----------------------|--------------|------|--------------|
| Concentration (µg/ml) | Average Area | S.D. | %<br>R.S.D.* |
| 45                    | 1407056      | 0.78 | 0.79         |



| 60                  | 1893218 | 0.30 | 0.30 |  |  |
|---------------------|---------|------|------|--|--|
| 75                  | 2359959 | 0.57 | 0.57 |  |  |
| Inter-day precision |         |      |      |  |  |
| 45                  | 1406691 | 1.21 | 1.22 |  |  |
| 60                  | 1888267 | 0.43 | 0.43 |  |  |
| 75                  | 2354050 | 0.54 | 0.54 |  |  |

\*n - 3

**Limit of detection (LOD) and Limit of quantitation (LOQ):** LOD express as lowest amount of analyte in sample the can be estimated but not quantified, LOQ express as the lowest concentration of analyte in sample that can be quantitatively determined by precision and accuracy. This can be calculated by following formula.

$$LOD = 3.3\sigma/S$$

$$LOQ = 10\sigma/S$$

Where,

 $\sigma$  = the standard deviation of the response

S =slope of calibration curve

The results are shown in table 5.

Table 5: Results of LOD and LOQ

| Drug      | LOD (µg/ml) | LOQ (µg/ml) |  |
|-----------|-------------|-------------|--|
| Isoniazid | 0.671       | 2.033       |  |

**Robustness:** Robustness of the developed method was determined by small but deliberate changes in chromatographic conditions such as flow rate ( $\pm$  1 ml/min) and mobile phase composition ( $\pm$  2% methanol). No marked change in chromatogram as well as peak areas of drug which demonstrated robust nature of the developed method. Results of robustness study are presented in table 6.

**Table 6: Results of Robustness studies** 

| Drug      | % R.S.D.* Found For Robustness Study |      |                    |      |
|-----------|--------------------------------------|------|--------------------|------|
| Used      | Flow Rate (1 ml/min)                 |      | Wavelength (253nm) |      |
|           | +1                                   | -1   | +1                 | -1   |
| Isoniazid | 0.53                                 | 0.27 | 0.60               | 0.79 |

<sup>\*</sup>Average of three determinations

Analysis of tablet formulation: Twenty tablets were weighed accurately; the average weight was determined and then ground to a fine powder. Powder equivalent to 30 mg of INH was weighed; transferred to a 100 ml volumetric flask containing about 60 ml of methanol and sonicated for 15 min. Then volume was made up to the mark with the water; filtered through whatman filter paper no. 41. From this solution 1 ml was taken and transferred to 10 ml volumetric flask, and volume was made up to the mark using methanol to get solution having concentration 30  $\mu$ g/ml and was injected and chromatogram was obtained. The injections were repeated six times and the peak areas were recorded. The amount of drug present in sample was estimated form the calibration curve. The % drug content was found to be 99.10±1.58. The results obtained are shown in table 7.

**Table 7: Analysis of tablet formulation** 

| Tuble / Timely bis of tublet formation |     |                                |                         |       |              |
|----------------------------------------|-----|--------------------------------|-------------------------|-------|--------------|
| Drug                                   |     | Concentration injected (µg/ml) | Conc. recovered (µg/ml) | _     | %<br>R.S.D.* |
| Isoniazid                              | 300 | 30                             | 29.73                   | 99.10 | 1.59         |

# Force degradation studies [24, 25]

**Acid hydrolysis:** Hydrochloric acid (0.1 N, 1 ml) was added to 2 ml stock solution (300  $\mu$ g/ml) of INH in 10 ml volumetric flask. Then the mixture was refluxed at  $80^{\circ}$  C for 1 hr and neutralized with sodium hydroxide solution and diluted with solvent to obtain final concentration 60  $\mu$ g/ml. Then injected in stabilized chromatographic conditions. Representative chromatogram for acid treated INH was depicted in figure 3.

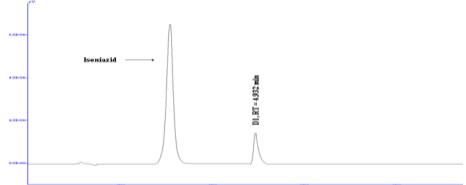



Figure 3: Acid hydrolysis for INH (D1, RT =4.932 min)

Alkaline hydrolysis: Sodium hydroxide (0.1 N, 1 ml) was added to 2 ml stock solution (300  $\mu$ g/ml) of INH in 10 ml volumetric flask. Then the mixture was refluxed at 80° C for 1 hr and neutralized with hydrochloric acid and diluted with solvent to obtain final concentration 60  $\mu$ g/ml. Then injected in stabilized chromatographic conditions. Chromatogram for alkali treated INH was depicted in figure 4.

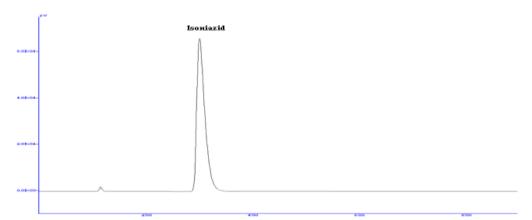



Figure 4: Base hydrolysis for INH

**Neutral hydrolysis:** Distilled water (1 ml) was added to 2 ml stock solution (300  $\mu$ g/ml) of INH in 10 ml volumetric flask. The mixture was refluxed at 80° C for 1 hr and diluted with solvent to obtain final concentration 60  $\mu$ g/ml. Then injected into HPLC system and analyzed under stabilized chromatographic conditions and the chromatogram for INH are shown in figure 5.

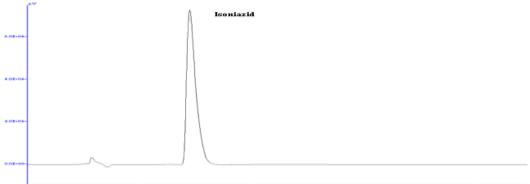



Figure 5: Neutral hydrolysis for INH

#### **Oxidative degradation**

Hydrogen peroxide (3 %, 1 ml) was added to 2 ml stock solution (300  $\mu$ g/ ml) of INH in 10 ml volumetric flask. The mixture was refluxed at 80° C for 1 hr and diluted with solvent to obtain final concentration 60  $\mu$ g/ml. Then injected into HPLC system and analyzed under stabilized chromatographic conditions and the chromatogram for INH was shown in figure 6.

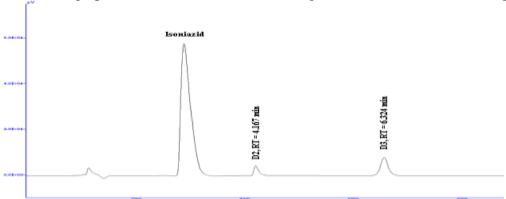



Figure 6: Oxidative degradation for INH

**Dry heat degradation:** Susceptibility to dry heat was studied by exposing the solid drug to  $80^{\circ}$  C for a period of 8 hrs. The sample was withdrawn at appropriate times, dissolved in solvent and diluted with solvent to get  $60 \mu g/ml$  as final concentration. The resulting solution was then injected in stabilized chromatographic conditions. Decrease in the peak area of drug as compared to control sample indicated degradation of drug under thermal stress condition. About 8.84% degradation exhibited by INH without formation of degradation product and the chromatogram was depicted in figure 7.

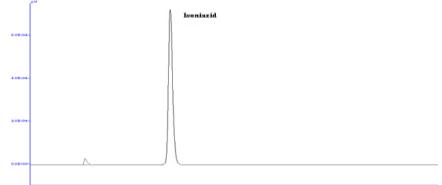



Figure 7: Photolytic degradation for INH

**Photolytic degradation:** The study was performed by spreading the drug substance in petridish as thin film and kept in photostability chamber equipped with ultraviolet light (200 watt h sequre /meter) for 24 hrs. Suitable control was kept in dark for comparison for the same period. Sample was weighed, diluted with solvent to obtain concentration  $60 \mu g$  /ml and then was injected in stabilized chromatographic conditions. The drug was found to undergo photolysis with 11.67% degradation with decrease in the peak area. No additional degradation peak was observed. Chromatogram of INH was depicted in figure 8.

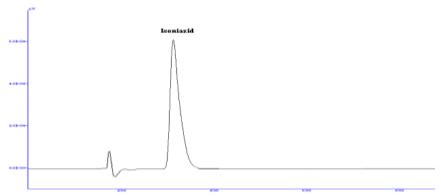



Figure 8: Thermal degradation for INH

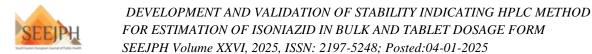
## **RESULTS AND DISCUSSION:**

The stability indicating RP-HPLC method for simultaneous estimation of INH in bulk and tablet dosage form was developed and validated. The performed method was simple, precise, accurate and economic, and validated as per ICH guideline. The method was developed by using mobile phase 0.01 M pottasium dihydrogen orthophosphate:methanol (85:15) v/v. The retention time was found to be 2.975±0.054 min for INH and flow rate 1 ml/min. The system suitability parameter was determined and values are in acceptable ranges. The linearity range was found to be 15 -90 µg/ml for INH and calibration curve was plotted as peak area verses concentration. The correlation coefficient (r<sup>2</sup>) value for INH was 0.999. The accuracy study was performed in three different level 80%, 100% and 120%. The mean percent recovery of INH was found to be 100.16%, 99.75% and 99.18% respectively and they were found in limit the method was found to be accurate. The precision study mean % RSD was found to be less than 2, indicated that the method was precise. The LOD was found to be 0.671 µg/ml. The LOQ was found to be 2.033 µg/ml for INH. The percent assay was found to be 99.10 % for INH. The percent degradation was performed in acid, base, neutral, oxidative, photolytic and thermal conditions was found to be 16.24 13.04 %, 11.32 %, 20.49%, 11.67%, and 8.84% for INH. The results are shown in table 8.

**Table 8: Results of Force Degradation Study** 

| Sr.<br>No. | Mode of degradation                            | % Recovery of active substance | % degradation |
|------------|------------------------------------------------|--------------------------------|---------------|
| 1.         | Acid (1 N HCl)                                 | 83.76                          | 16.24         |
| 2.         | Alkali (0.1 N NaOH)                            | 86.96                          | 13.04         |
| 3.         | Neutral (H <sub>2</sub> O)                     | 88.68                          | 11.32         |
| 3.         | Oxidation (3 % H <sub>2</sub> O <sub>2</sub> ) | 79.51                          | 20.49         |
| 4.         | Dry heat                                       | 91.16                          | 8.84          |
| 5.         | Photolysis                                     | 88.33                          | 11.67         |

# **CONCLUSION**


The developed and validated stability indicating RP-HPLC method for determination of INH in tablet dosage form was found to be simple, precise, selective and accurate. The stress degradation studies demonstrated susceptibility of the drug to acid, base, neutral hydrolysis, oxidative, thermal and photolytic stress conditions. The degradation products produced during the stability study were well separated from the pure drug signifying the specificity of



developed procedure. All the analyzed validation parameters showed acceptable data with satisfactory correlation co-efficient and lower % RSD. The developed method can be utilized by industry for quantitative estimation of drug as bulk and in tablet dosage form.

#### **REFERENCES:**

- 1. www.drugbank/http.com (Accessed on 1/1/25).
- 2. https://pubchem.ncbi.nlm.nih.gov/ (Accessed on 1/1/25).
- 3. https://en.wikipedia.org/wiki/Ethambutol/isoniazid (Accessed on 1/1/25).
- 4. Jongrungruangchok S., Songsak T. Validation of HPLC Methods for Determination of Isoniazid, Rifampicin, Pyrazinamide, and Ethambutol in Fixed-Dose Combination Antituberculosis. Bulletin of health science and technology. 2015;13:17-28
- 5. Prasanthia B., Vijaya Ratnaa J., Phani R. S. Ch. Development and Validation of RP-HPLC Method for Simultaneous Estimation of Rifampicin, Isoniazid and Pyrazinamide in Human Plasma. Journal of Analytical Chemistry. 2015; 8: 1015–1022.
- 6. Pratap Kumar G., Gnanaprasuna D. Stability Indicating Method Development and Validation For The Simultaneous Estimation of Ethambutol and Isoniazid In Bulk and Pharmaceutical Dosage Form By Using RP-HPLC. Int J Pharma Res Health Sci. 2016; 4: 1424-1428.
- 7. Glass B.D., Agatonovic-Kustrin S., Chen Y. J., Wisch M.H. Optimization of a Stability-Indicating HPLC Method for the Simultaneous Determination of Rifampicin, Isoniazid, and Pyrazinamide in a Fixed-Dose Combination Using Artificial Neural Networks. Journal of Chromatographic Science. 2007; 45.
- 8. Adepu G. S., Srikala A., Rajitha G. Analytical Method Development and Validation for Simultaneous Estimation of Isoniazid, Thiacetazone and Pyridoxine HCL in Tablet Dosage Form By RP-HPLC Method. J. of Global Trends in Pharma Sci. 2017; 8: 3622-3633.
- 9. Koshe K. K., Maniyar U., Katariya M. V., Jaiswal S., Katariya V. R., Karva G. S. Stress Degradation Study For Assay Method Development and Validation of Anti-tubercular Drug In Combined Finished Pharmaceutical Formulation. World journal of pharmaceutical science. 2017; 3: 245-252.
- 10. Bhandari R., Kaur I. P. A Sensitive HPLC Method for Determination of Isoniazid in Rat Plasma, Brain, Liver and Kidney. J Chromat Separation Techniq. 2012; 3: 3.
- 11. Rajput J. Development and Validation of Chemometric Assisted UV Spectroscopic and RPLC-PDA Methods for Simultaneous in Vitro Analysis of Rifampicin and Piperine in Their Pharmaceutical Formulation. Indo American Journal of Pharmaceutical Research. 2014; 5: 41-55.
- 12. Shette D. N., Narayana B., Samshuddin S. Novel Reagent For The Spectrophotometric Determination of Isoniazid. International Schloary Reasearch Notice. 2015; 4: 40-56.
- 13. Safavi A., Karimi M.A., Nezad M.R.H., Kamali R., Saghir N. Sensitive Indirect Spectrophotometric Determination of Isoniazid. Spectrochimica Acta- Part A. 2004; 60(4): 765-769.
- 14. Nagraja P., Sunitha K., Vasantha R., Yathirajan H. Novel Method for The Spectrophotometric Determination of Isoniazid and Ritrodrine Hydrochloride. Tukrish Journal of chemistry. 2004; 26(5): 743-750.
- 15. Mukne A. P., Jadhav S. G., Vishwanathan V. Validated HPTLC Method For Simultaneous Quantification of Isoniazid, Rifampicin and Glabridin. J. Pharma Biomed Sci. 2016; 6: 453-459.
- 16. Ali J., Ali N., Sultana Y., Baboota S., Faiyaz S. Development and Validation of Stability Indicating HPTLC Methods For Analysis of Antitubercular Drugs. An International Journal Abstracted in Chemical Abstracts. 2007; 18: 168-169.



- 17. Prajapati P., Agrawal Y. K. Development of Green Methods for Seperation and Identification of the Degradation Imputity of Isoniazid by SFC-MS/MS. ANAL Methods-Royal Society of Chemistry. 2015; 7: 7776-7783.
- 18. El- Brashy A.M., El- Ashry S.M. Colorimetric and Tritrimetric Assay of Isoniazid. Journal of Pharmaceutical and Biomedical Analysis. 1992; 6: 421-426.
- 19. Shishoo C.J., Devani M. B. Non-aqueous Tritrimetric Determination of Isoniazid in Presence of Excess of Sodium p-aminosalicylate in Dosage forms. Journal of pharamceutical science. 1970; 59(1): 92-93.
- 20. Vallon J., Badinand A., Bichon C. Determination of Isoniazid N acetyl Isoniazid and Isonicotinic Acid By Polarography With Superimposed Sinusoidal Tension. Analytica Chimica Acta. 1975; 78(1): 93-98.
- 21. Jennings V. J., Dodson A., Harrison A. Coulometric Microtitration of Arsenic (III) and Isoniazid Using a Viterous Carbon Generating Electrode. Analyst. 1974; 99(1177): 145-148.
- 22. Bartos J. Elements of Functional Organic Fluorometry. VII. Fluorometry of Pyridine Derivatives. Annales Pharmaceutics Françaises. 1971; 29(17): 1-73.
- 23. ICH, Quality of Biotechnological Products, Stability Testing of Biotechnological or Biological Products Q5C and Q1A(R2), International Conference on Harmonization, IFPMA, Geneva, 1995.
- 24. Ayyappan J., Umapathi P., Darlin Quine S. Development and Validation of a Stability Indicating High-Performance Liquid Chromatography (HPLC) Method For The Estimation of Isoniazid and Its Related Substances In Fixed Dose Combination of Isoniazid and Ethambutol Hydrochloride Tablets. African Journal of Pharmacy and Pharmacology. 2011; 5: 1513-1521.
- 25. Shinde N. G., Bangar B. N., Deshmukh S. M., Sulake S. P., Sherekar D. P. Pharmaceutical Forced Degradation Studies With Regulatory Consideration. Asian Journal of Research and Pharmaceutical Science. 2017; 4: 178-188.
  - 26. MRP Rao, S Taktode, SS Shivpuje, S Jagtap. Optimization of Transmucosal Buccal Delivery of Losartan Potassium using Factorial Design. Indian Journal of Pharmaceutical Education and Research, 2016; 50(2): S132-S139.
  - 27. N Patre, S Patwekar, S Dhage, S Shivpuje. Formulation & Evaluation Of Piroxicam Bionanocomposite For Enhancement of Bioavailability. European Journal of Molecular & Clinical Medicine, 2020; 7(11): 9362-9376.
  - 28. SJ Wadher, SL Patwekar, SS Shivpuje, SS Khandre, SS Lamture. Stability Indicating Assay Methods for Simultaneous Estimation of Amoxicillin Trihydrate And Cloxacillin Sodium in Combined Capsule Dosage Form by UV-Spectrophotometric Method. European Journal of Biomedical and Pharmaceutical sciences, 2017; 4(10): 858-864
  - 29. Santosh A. Payghan Shivraj S. Shivpuje Shailesh L. Patwekar, Karna B. Khavane, Padmavati R. Chainpure. A Review on Different Preparation Method Used For Development of Curcumin Nanoparticles. International Journal of Creative Research Thoughts, 2021;9(1):4088-4101.
  - 30. Zeba Ashfaq Sheikh P. R. Chainpure, S. L. Patwekar, S. S. Shivpuje. Formulation and evaluation of Garciniacambogia and Commiphoramukul Herbal tablets used for AntiObesity. International Journal of Engineering, Science and Mathematics, 2019; 8(4): 180-195.
  - 31. Pravin P Karle, Shashikant C Dhawale, Vijay V Navghare, Shivraj S Shivpuje. Optimization of extraction conditions and evaluation of Manilkara zapota (L.) P. Royen fruit peel extract for in vitro α-glucosidase enzyme inhibition and free radical scavenging potential. Future Journal of Pharmaceutical Sciences, 2021; 7(1):1-10.



- 32. Sheetal Rathod P. R. Chainpure, S. L. Patwekar, S. S. Shivpuje. A Study Of Carica Papaya Concerning It's Ancient And Traditional Uses Recent Advances And Modern Applications For Improving The Milk Secretion In Lactating Womens. International Journal of Research, 2019;8(2):1851-1861.
- 33. Shivraj S. Shivpuje Shailesh J. Wadher, Bhagwan B. Supekar. Development And Validation Of New Ft-Ir Spectrophotometric Method For Simultaneous Estimation Of Ambroxol Hydrochloride And Cetirizine Hydrochloride In Combined Pharmaceutical. International Research Journal of Pharmacy, 2019; 10(3):110-114.
- 34. Shivraj S. Shivpuje, Shailesh J. Wadher, Bhagwan B. Supekar. Simultaneous Estimation of Ambroxol Hydrochloride and Cetirizine Hydrochloride in Combined Solid Tablet Formulations by HPTLC- Densitometric Method. Asian Journal of Biochemical and Pharmaceutical Research, 2019; 9(1):1-10.
- 35. JW Sailesh, SS Shivraj, SI Liyakat. Development and Validation of Stability Indicating RP-HPLC Method for the Estimation of Simvastatin in Bulk and Tablet Dosage form. Research Journal of Pharmacy and Technology, 2018; 11(4): 1553-1558.
- 36. Patil S. S. Shivpuje Shivraj S. Patre Narendra G. Development and Validation Of Stability Indicating HPTLC Method For Determination of Nisoldipine (Niso) In Tablet Dosage Form. European Journal of Biomedical and Pharmaceutical sciences, 2017; 4(12):462468.
- 37. W Shailesh, K Tukaram, S Shivraj, L Sima, K Supriya. Development and Validation of Stability Indicating UV Spectrophotometric Method for Simultaneous Estimation of Amoxicillin Trihydrate and Metronidazole In Bulk And In-House Tablet. World Journal of Pharmaceutical and Medical Research, 2017;3(8):312-318.
- 38. J Wadher Shailesh, M Kalyankar Tukaram, S Shivpuje Shivraj. Development and Validation of Stability Indicating Assay Method for Simultaneous Estimation of Amoxicillin Trihydrate and Cloxacillin Sodium In Pharmaceutical Dosage Form By Using RP-HPLC. World Journal of Pharmaceutical Research, 2017; 10(6):1002-1006.
- 39. Shital S. Sangale, Priyanka S. Kale, Rachana B. Lamkane, Ganga S. Gore, Priyanka B. Parekar, Shivraj S. Shivpuje (2023). Synthesis of Novel Isoxazole Derivatives as Analgesic Agents by Using Eddy's Hot Plate Method. South Asian Res J Pharm Sci, 5(1): 18-27.
- 40. Priyanka B. Parekar, Shivraj S. Shivpuje, Vijay V. Navghare, Manasi M. Savale, Vijaya B. Surwase, Priti S. Mane- Kolpe, Priyanak S. Kale. Polyherbal Gel Development And Evaluation For Antifungal Activity, European Journal of Molecular & Clinical Medicine. 2022; 9(03): 5409-5418.
- 41. Jain AA, Mane-Kolpe PD, Parekar PB, Todkari AV, Sul KT, Shivpuje SS. Brief review on Total Quality Management in Pharmaceutical Industries, International Journal of Pharmaceutical Research and Applications. 2022; 7(05):1030-1036.
- 42. Sumaiyya. K. Attar, Pooja P. Dhanawade, Sonali S. Gurav, Prerna H. Sidwadkar, Priyanka B. Parekar, Shivraj S. Shivpuje. Development and Validation of UV Visible Spectrophotometric Method for Estimation of Fexofenadine Hydrochloride in Bulk and Formulation, GIS SCIENCE JOURNAL. 2022; 9(11): 936-944.
- 43. Sumayya Kasim Atar, Priyadarshini Ravindra Kamble, Sonali Sharad Gurav, Pooja Pandit Dhanawade, Priyanka Bhanudas Parekar, Shivraj Sangapa Shivpuje. Phytochemical Screening, Physicochemical Analysis of Starch from Colocasia Esculenta, NeuroQuantology, 2022; 20(20): 903-917.
- 44. Priti D.Mane-Kolpe, Alfa A. Jain, Tai P. Yele, Reshma B. Devkate, Priyanka B. Parekar, Komal T. Sul, Shivraj S. Shivpuje. A Systematic Review on Effects of Chloroquine as a Antiviral against Covid-19, International Journal of Innovative Science and Research Technology, 2022;7(11): 989-995.



- 45. Dr. Rohit Jadhav, Prof. Abhay D. Kale, Dr. Hitesh Vishwanath Shahare, Dr. Ramesh Ingole, Dr Shailesh Patwekar, Dr S J Wadher, Shivraj Shivpuje. Molecular Docking Studies and Synthesis of Novel 3-(3- hydroxypropyl)-(nitrophenyl)[1,3] thiazolo [4,5-d] pyrimidin2(3H)-one as potent inhibitors of P. Aeruginosa of S. Aureus, Eur. Chem. Bull. 2023; 12(12): 505-515.
- 46. Priyanka B. Parekar, Savita D. Sonwane, Vaibhav N. Dhakane, Rasika N. Tilekar, Neelam S. Bhagdewani, Sachin M. Jadhav, Shivraj S. Shivpuje, Synthesis and Biological Evaluation of Novel 1,3,4-Oxadiazole Derivatives as Antimicrobial Agents, Journal of Cardiovascular Disease Research, 2023; 14(8):611-624.
- 47. Kavita R. Mane, Prachi A. Ghadage, Aishwarya S. Shilamkar, Vaishnavi A. Pawar, Sakshi B. Taware, Priyanka B. Parekar, Shivraj S. Shivpuje. Phytochemical Screening, Extraction and In-vivo study of Immunomodulation effect of Withania somnifera, Momordicadioica and Annonasqumosa leaves. Journal of Cardiovascular Disease Research, 2023; 14(9): 231-241.
- 48. Harshada S. Deshmukh, Vishal B. Babar, Prajkta S. Jagtap, Rupendra V. Doshi, Shivarti V. Deokate, Ashwini V. Todkari, Amrata S. Mantri, Priyanka B. Parekar, Shivraj Shivpuje (2024). A Comprehensive Review Article on Herbal Cosmetics. South Asian Res J Pharm Sci, 6(3): 50-68.