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Bingham fluid, The objective of the present investigation is to disseminate a solute at the
wavy channel, boundary wavy walls of the parallel channel while it is undergoing an irreversible
interphase mass first-order chemical reaction. This rheological characteristic, which results from

transfer, suspension in the fluid, influences the dispersion and convection coefficients. The
Generalized exchange coefficient, which is independent of the solvent fluid velocity, is
dispersion primarily caused by the interphase mass transfer. Additionally impacted by the
model. wall-catalyzed process are the convection and dispersion coefficients. Solute

dispersion can be studied to understand how medications or nutrients are
transferred in plasma during blood flow via porous surfaces. Beyond absorption,
circulatory flow is a vital component. Our results demonstrate that wavy wall
absorption significantly affects transport coefficients.

1. Introduction

In physiological situations where a first-order chemical reaction takes place at the
tube wall, interphase mass transfer can be used. Transporting oxygen and nutrients to tissue
cells and extracting metabolic waste products from tissue cells are two examples of such
circumstances. It also occurs in the pulmonary capillaries, where the blood absorbs oxygen
and carbon dioxide is expelled. Many studies on the fluid dynamics of biological fluids under
the influence of magnetic fields have been conducted in the past ten years. The lack of
biocompatibility of smooth (rough) surfaces in metal-implanted or extracorporeal artificial
organs results in a variety of blood injury types. It is dangerous since they create stress that
results in force. Eventually, this force affects the red blood cells, or erythrocytes, causing
haemolysis, or the loss of haemoglobin. Several authors focused on dispersion to understand
the transport of nutrients in blood and different artificial devices (Middleman (1972),
Lightfoot (1974), Cooney (1976), Jayaraman et al., (1981)). The effective dispersion
coefficient was examined in relation to the average flow speed, the tube radius, and the
molecular diffusion coefficient by Taylor (1953, 1954), who investigated the dispersion
process in Newtonian flow. Sankarasubramanian and Gill (1973) explored the dispersion of a
non-uniform initial distribution in time-variable isothermal laminar flow in a tube with a first-
order rate process near the tube wall. Through a precise process, they investigated miscible
dispersion in laminar flow in a tube with interfacial transport caused by an irreversible first-
order reaction at the tube wall. The exchange coefficients are a novel idea, and a generic
formula demonstrating their time-dependent character is constructed. Finding the average
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concentration distribution in terms of tabular functions is made possible by the exchange
coefficient, which represents the interphase process. Only the scenario of dispersion in a fully
established steady flow was included in the analysis. Siddheshwar et al. (2000) have studied
the problem of plane-Poiseuille flow of a power law fluid with interphase mass transfer.
Using the generalised dispersion model of Sankarasubramanian and Gill (1970), Nirmala P.
Ratchagar and Vijaya Kumar (2015) examined the impact of couple stress and magnetic field
on unstable convective diffusion with interphase mass transfer. In the simplest scenario, they
take into account a first order chemical reaction at the walls during an exact analysis of
unsteady convection in couple stress fluid flows. Reaction at the walls is of practical interest.
The exact analysis of miscible solute dispersion with interphase mass transfer in a couple
stress poorly conducting fluid surround by porous beds was examined by Rudraiah et al.
(2016). The exchange coefficient, convective coefficient, and dispersion coefficient are
highlighted by the utilization the generalised dispersion model of Sankarasubramanian and
Gill (1973). The porosity parameter and couple stress parameter resulting from suspension in
the fluid only affect the final two coefficients. The interphase mass transfer is the primary
cause of the exchange coefficient, which is unaffected by the solvent fluid velocity. The
convection and dispersion coefficients are also impacted by the interphase mass transfer.

Siti Nurul Aifa Mohd Zainul Abidin (2024) explored the Herschel-Bulkley (H-B)
fluid model, a non-Newtonian mathematical model of blood flow in a catheterised stenosed
artery. Additionally, the wall absorption effect is taken into account in this inquiry. The
convective-diffusion equation that describes the dispersion process determines the solute
movement. Three effective transport coefficients exchange, convection, and diffusion are
obtained by solving the transport equation using an accurate technique known as the
Generalised Dispersion Model (GDM). The goal of this work has been to examine the flow
properties of a Bingham plastic fluid through a porous material when both an electric and
magnetic field are present. In order to emphasise the dispersion coefficient and mean
concentration, the generalised dispersion model of Sankarasubramanian and Gill (1970) has
been applied. convection coefficient and dispersion coefficient are affected by the rheological
parameter, magnetic field, electric number and porous parameter arising due to suspension in
the fluid. The exchange coefficient arises mainly due to the interphase mass transfer, and it is
independent of the solvent fluid velocity. The convection and dispersion coefficients are also
affected by the interphase mass transfer. Finally the outcome of non-dimensional parameter is
deliberated by graphs.

2. Mathematical Formulation
The constitutive equation for blood, expressed as Bingham fluid, is as follows, according to
Misra and Adhikary (2017)

ou’

Ty =~k E 7z, if Tyl > 70 @
ou;
Wf =0 it |r,l<7 (2)

In the channel, equations (1) and (2) depict the two stages of blood flow. The flat velocity
profile in the central core region creates the plug flow region. Shear stress in this plug flow
zone is less than yield stress To.
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Figure 1: Physical problem

The following assumptions are used to obtain the governing equations along with associated
boundary conditions:
An electric field and a uniform magnetic field Bo are supplied to the blood flow in the y-
direction. In a channel enclosed by porous beds, the solute diffuses over the porous medium
in a fully formed flow. The horizontal channel two side wall are at y=h'=d +acosAx'and

y =—h'=—-d —acosAx'. For concentration C, which depends on coordinates x’ and y and
time (t), a slug is added. The mass balance equation concerning the solute concentration C
with heterogeneous chemical reaction. Under the aforementioned presumption, the following
governing equations apply to the incompressible flow of a non-Newtonian fluid in cartesian
coordinates:

Region 1:

ou;
ox' )

op' X . .

—iﬁ—yﬁ—fuf—Bgaou,—f-peEX:O 4
o’

_74_’08 =0 (5)
ay y

The concentration C satisfying the convective diffusion equation gives

2 2
&C, D(ac agj ®)
ox' ox'? oy
Region 2:
o
T 7
> ()
op' . «
—a—g—fup+—B§aoup+peEx+a0=O )
op'
—5 + pe Ey = O (9)
Boundary conditions for velocity and concentration are
ou; .
ayf =—%(uf—up) at  y=h (10)
M@y a oyt a1)
y W "

The symmetric conditions,
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ou;

=0 at y=0 12)
oy

Uy =Uy at  y=y, (13)
C'=Coy (X)Y,(Y) at  t=0 (14)
—Dﬁ(t,x',h')z K.C'

aca'y )
D= (t,x',—h")= K.

oy
As the amount of solute in the system is finite,
C'(tny) = (0, y) =0 (16)

where, u; - component of velocity, p”-pressure, s -viscosity of the fluid, B,- applied
magnetic field, o,- the electrical conductivity, t -time, D -molecular diffusivity, k-
permeability of the porous medium,u; -Darcy velocity, «-slip parameter, C,-reference
concentration, Ks-reaction rate constant catalyzed by the walls, z,, -shear stress, u,-plastic

dynamic viscosity, 7, -yield stress. Beavers and Joseph's (1967) slip condition at the lower

and upper permeable surfaces is represented by equations (10) and (11).
Introducing the non-dimensional quantities

u; u ' ' ' '
U, =2, =% oY s X e 2 X peWd e P DU, O

u' u' d d Pe d Pe D pu' d C,
pokd o _pd o Ed W

D <,V Vv d

In non-dimensional form, equations (3) to (9) are

Region 1:
du, .,
o -MU, =s,+Wes,(1-a.7n) @7

2 2
20 80_1[86’ aaj 18)

or ' ox' Pellox? o
we define the axial coordinate moving with the average velocity of flow as x = x'—tu' which
is in dimensionless form X = X —7.Then equation (13) becomes

00 .00 1 (80 &%
ar+Uffa><_Pe2[ax2+ar72j 49
.U
where, y+ _ =
Uf
Region 2:
{E: +Wes (1- acn)}
Uo=- o’ +M? (20)
The dimensionless form of the initial and boundary conditions (10) to (16)
U
0 ~=-aoU, -U,) at n=h (21)
on
U,
=acU; -U,) at n=-h (22)
on
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U,

=0 at =0 (23)

on

U,=uU pf at n=r. (24)

0=y (X)Y () at =0 (25)

ZQ(T,X,h)z - po

az (26)

—(r, X,-h)= pé

on

O(zr,0,17) = %(r, o0,17) =0 (27)

Bio,d? ; gV’ . -
where M 2 = 2020-_is the square of the Hartmann number, We = is the electric numbers
u Ho
q . d . d .
p__Redp o, Adjs the Reynolds number, pe— "9 is the Peclet number, o = — is the
Pe OX' p D Jk

porous parameter, K is the reaction rate constant catalyzed by the walls.

3. Method of solution
By solving equation (17) and satisfying the boundary conditions (21) to (24). The blood
velocity is obtained as

1 .
AieMMAze'M"“‘WWe s,(L-ay,). it 0<y<n,

U = ] (28)
A"+ Ae™ —WWe s(l-a.n), if n,<n<h
5. + 3 Wes,a
5 T aa 1“%c
where, A = 3SR A 7 M
S5 S3 =35,
s, =M,52 =&@,s3 =(M +aoc)e™,s, =(M —ac)e™
2 Pe o0&
Wes 1 Re
5= M 21 (05(7(1— ach) — Olc)—l- aolJ p’U p = —W(E +WeSl(l— O,’Ch)j
The axial velocity components that have been normalised are
U =t (29)
Uf
where
_ 1h
Uy =5 [V man (30)

1
“2hM
The generalised dispersion model of Gill and Sankarasubramanian (1970), which is expressed
as a series expansion in the form of

e M) L2 A M 1 2 A ™ (14 M7, ) + ™M (sWe(h(-2 + har,) + ar,ip? )+ 2A (e™ + "™ (-1+ M17,))))
c 1 [ c/c c

0(r, X, n) =6, (z, X) + f,(r n)%n (r n)az‘gm + (31)
e e e where, 6_is
the dimensionless cross sectional average concentration, given by
h
0, X) = %je(f, X, mdn (32)
0
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Integrating equation (19) with respect to 7 in (0,h) and using the equation (31) and (32), we
get

00, _ 1 00 10 %8
o T 1 ju [a (7. X)+ f,(z, 77) +f (1, n) axz ..]dn (33)
In this model we write
a——kZ; k()axk (34)
where the dispersion coefficient, K, (r) Substituting the Equation (34) in (33) we obtain

06 0%0 636’ 1 0% (o 00, .\
K06’m+K1(r)—+K2(r)aX2+K (r ) ...... :PezaXZJr[an(fogm J

h
hax! (f(m)e (z, X)+f(r¢7) +f(m) ...jdn
00, a 9 we get,
g 16, i )

K ()=t 422t ) %ju faemdn  (=123.) (3)
where f , =0

Equation (35) can be truncated after the term involving K,without causing serious error,
because kK, , etc. become negligibly small compared to K,.

The resulting model for the mean concentration is
00, 00 0’0
;—Koﬁle( )ax +K,( )ax2
The differential equations of the following form are obtained by substituting (31) in (19) and

using generalised dispersion model of Gill and Sankarasubramanian (1973) to the resultant

(36)

equation.
of,  o%f , 1 <
67; - 6772k “Uifu+— Pe? f :;Ki fi (k=012..) @7

where, f,=1f,=0
Since @, is chosen to satisfy the initial and boundary conditions on @ from equations (25) to
(26) conditions on the f, function becomes

f, = finite at z=0 (38)
2 f,(e.h) =4, (39)
on
9 f (z,0)=0 (40)
on
Also, from equation (32) we have
L] (endn =0, (k=012) o
Substituting k = 0 in equation (37) we get the differential equation for f as
%: 0 f20 3 fOKo (42)
or 0On
For i =0 in (30) we have
h

Ko(r):[afoj —f,K, 43)

on 0
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These two equations (42) and (43) must be solved simultaneously, with an initial condition
for using (32) that requires entering that equation to obtain

0.(0,X) = %}Hm(O,X,n)dn (44)
Substituting 7 =0 in (31) and setting f, () =0 (k =1.2,3) gives the initial condition for fyas
_ 000, X,77)
f,(0,77) = 0.0, X) (45)
Substituting equation (39) and (40) into equation (45),we get
fy ) =— 22 (46)
H!u/(n)dn
The solution of the reaction diffusion equation (42) with these conditions are formulated as
fo(z,1) = 9o (z,7) eXp{—f Ko (n)dn} (47)
from which it follows that g,(z,7) has to satisfy
a9, _ 9°g,
or  on’ (48)
with conditions
f0=g0=1h“’¢ at =0 (49)
= [yndr
g,= finite at =0 (50)
Do __py. at n=h (51)
on
The solution of (48) subject to conditions (49) to (51) is
90 (7.7) = 2, e Cos(,1) (52)

where £, 'S are the roots of
. tany, =4, n=012,.. (53)
And A, ’s are given by

[wm)cos undn
= sin2u \? 9
[1+ » ”J{w(n)dn
From (47), it follows that
> A€ Cos(u,n)
fo (2_177) — - 290(1’77) — I‘I:(;J (55)

[9o(z.mdn Z%e’“ﬁ’smun
MATHEMATICA 12.0 is used to obtain the first ten roots of the transcendental equation
(53), which are listed in Table 1. In the expansions of and, these 10 roots ensure the series

will converge. With that, we obtain from (48) in the form
2 A€ SN )
Ko (00) =2 A (56)
g4t sin
nZ:O/un "
Here K,(7) is independent of velocity distribution.
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As 7 — oo, we get the asymptotic solution for K, from (56) as

Ko (o) =~ (57)

where 1, is the first root of the equation (53). Physically, this represents first order chemical
reaction coefficient to obtain K, (). We get K, (), from (35) (with i = 1 ) knowing
fo(o0,77) and f, (o0, 77) . Likewise, K, (), K;(0),....,

require the knowledge of K, K,, fo, f, and f,. Equation (55) in the limit 7 — oo, reduces

10 £, (o0,y) = ﬁcmuo) (58)

0

Then we find f, K, f, and K,. For asymptotically long times, i.e.,z — oo, equation (35)
and (37) give K,'sand f,'s as

5
Ki(£) = 0z = A (o) - juf falom)dy (=123, (59)

o f 1

L =)+ Kl)f“—(Pez—Kz.] o (=12.) (60

The f,'s must satisfy the conditions (32) and this permits the eigen function expansion in
the form of

9
f (0,17) = B;,Cos(u;n), k=1,23,.. (61)
j=0

Substituting (61) in (60) and multiplying the resulting equation by cos(x;77) and integrating
with respect to 7 from 0 to h, gives

1
B« Cos(u;m) :,u{Pe ZBj «2COS(u;m) —U ZBJ «1COS(4;17) — ZKH ixiCOs(4m)
j

Multiplying by Cos(;77) and integrating with respect to 77, we get

Bjyk:ﬂ2 [Pezg s ufZQ:BJ“ [ Slzr:jJJ ]Zi;sj,k,i I(j,I)] k=(L2) (62)
where

103, = th Cos(u;m)Cos(uym)dn = 1(, j) (63)
B, ,=0,B;,=0 for j=11t0 9 (64)

The first expansion coefficient B, in equation (61) using conditions (38) to (41) can be
expressed in  terms ofB;, (j =1 to 9) as(Using the boundary condition

1h
[ fuzndn=6,,=0)
0

_ | _Ho S Sin

Box = (smﬂoj; T k=(123..) (65)

Further, from (57) and (61) we find that

Booz-ﬂi0 (66)
= Siny,

Using (63), (64) and (66) in the resultant equation after substituting i = 1 in (59), we obtain

1922 |Page



Unsteady solute dispersion in Bingham fluid flow
&EEIPH with combined effects of wall absorption, magnetic field
£ and electric field
SEEJPH Volume XXIV, S4,2024, ISSN: 2197-5248; Posted:12-10-24

1(0,0)
Ki(@)=—r——"7— (67)
{l+ SanyO}
2,
Using (62), (63) and (66) in the outcome equation after substituting i = 2 in (59), we obtain
_L o sing g
K= pe ( Sinzuoj;B”"l”’ (©8)
Ho| L+ ———
241,
1 sing, ) .
whereBH:_ : 2(“ '”MJ o 1(5,0)
M = Mg 2p; ) Sinu,

The mean concentration distribution as a function of and the parameters Pe, and is found
using the asymptotic coefficients in (32).This distribution is an approximate representation
for short and moderate times and is valid for a long duration.
By calculating the cross-sectional average from (25) the initial condition for solving (34) may
be obtained. According to Sankar Rao (1995), the solution of (34) with asymptotic
coefficients may be expressed as follows: Long-term evaluations of the coefficients have an
impact that is independent of the initial concentration distribution.

_ 1 e XK )]
am (Tv x) - ZPQWexp KO( )T 4K2(OO)T (69)
where 6_(7,0) =0, (Zim (r,0)=0

4. Results and Discussion

The effects of magnetic field, electric field, and heterogeneous chemical reactions on
the dispersion of a solute in a Bingham fluid (blood) as it flows through a porous medium in a
rectangular channel enclosed by porous beds are examined. The channel walls act as catalysts
for the reaction. Figures 2 to 18 show the graphic representation of the most dominant
dispersion coefficient, convection coefficient, and mean concentration for fixed values using
MATHEMATICA 12.0. These values are calculated for different values of Hartmann
number(M=1,1.1,1.2,1.3), porous parameter(c=10,60,100120), rheological parameter

(n, =0,0.10.2,0.3), reaction rate parameter (4=107,1,10°) and electric number(We=5, 15,25,35)
for fixed values x, =0.019, X =0.1, Pe =100, = 0.10.

Equation (57), which is used to numerically assess the expression for the absorption
coefficient _k (»), Is displayed in Figure 2. Although it is unaffected by the Hartmann

number, porous parameter, rheological parameter, it is clear that the increases as the wall
reaction parameter # grows. Molecular diffusion can provide the reaction at the wall more

quickly if the absorption parameter takes huge values. Therefore, compared to tubular flow,
there is greater solute absorption at the annulus wall.
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Figure 2: Variation of — K, versus
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Figure 3: Impact of M on - K,
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Figure 4: Impact of We on — K,
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Figure 5: Impact of n_,on — K,

.

Figure 6: Impact of con — K,

The variance of the convection and dispersion coefficients diminishes as the range of the wall
reaction parameter g grows as seen in Figures 3 to 10. This phenomenon is attributed to the

synergistic effect of magnetic field strength and wall reaction parameter, enhancing the
decline in convection and dispersion coefficients (Singh, J., and Kumar, V. (2020)). Figures
3 to 6 display the convection coefficient expression for different values of the Hartmann
number, electric number, rheological parameter, and porous parameter with wall response
parameter. These expressions are numerically analysed using equation (67). It is observed
that the convection coefficient decreases with increases in the Hartmann number and electric
number. The increase in Hartmann number and electric number enhances the convection
coefficient in blood flow due to the augmented Lorentz force, electrical body force, and
porous medium resistance, which intensify the flow velocity and mixing, thereby increasing
dispersion(Tripathi and Kumar(2020)). Figures 5 and 6 show that the increase in rheological
parameter and porous parameter, result in increasing convection coefficient — K (z).As a

result, the laminar flow is maintained.

The expression for the dispersion coefficient is shown in Figures 7 to 10 for varies values of
the rheological parameter, electric number, Hartmann number, and porous parameter with
values of the wall response parameter. It is evaluated numerically using equation (68).
Increasing the Hartmann number and promoting plug flow conditions in blood flow typically
reduce the dispersion coefficient in Figure 7 and 8. The Hartmann number quantifies the
influence of magnetic fields on electrically conducting fluids; higher values suppress velocity
fluctuations, leading to more uniform flow and decreased mixing. Plug flow, characterized by
a uniform velocity profile across the cross-section, minimizes axial dispersion by ensuring
that fluid elements move together without significant mixing. Consequently, both increased
Hartmann numbers and plug flow conditions tend to reduce the dispersion coefficient in
blood flow. The former impact outweighs the latter for all » due to the two-dimensional
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structure of the flow in a channel, and we see a monotonic drop in K,(z)—Pe™” as 7,

increases. When 7, =0, (68) gives Annapurna and Gupta(1979). Plotting the dispersion

coefficient versus reaction rate parameter values is shown in Figures 9 and 10. It is found that
when the electric number and porous parameter increases, the dispersion coefficient rises.
This is because higher electric fields and porosity promote more irregular flow paths and
enhanced mixing, causing increased dispersion of solutes within the blood.

Figure 8: Impact of 77, on K, (z) — Pe™

&e“' s
}

Figure 9: Impact of We on K, (z) — Pe™
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0=10,60.100,120

VUUU B e e

Figure 10: Impact of & on K, (7) — Pe™

Figures 11 to 15 depict the mean concentration ¢ with time for different values of Hartmann
number, electric number, reaction rate parameter, rheological parameter and porous
parameter. Figure 11 to 13 shows that decrease in @, with increasing the value of Hartmann
number, reaction rate parameter and porous parameter. This phenomenon occurs due to the
enhanced Lorentz force, which reduces the flow velocity and increases the residence time of
the solute, leading to increased reaction and reduced mean concentration. Figure 14 and 15
show the plots of time dependent mean concentration versus for different values of electric
number and rheological parameter. It is observed that the mean concentration increases with
increasing electric number and rheological parameter, but it is reverse while increasing time.
Figures 16 to 18 depict the mean concentration 9 with X for different values of Hartmann

number, rheological parameter and porous parameter.

Figure 11: Impact of M on 6,
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3=10"21,100

2 B 6 8 10 12 14

Figure 13: Impact of & on &,
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Figure 15: Impact of 7, on 6,

M=1111213

Figure 16: Impact of M on &,

Figure 17: Impact of o on 6,

1929 |[Page



Unsteady solute dispersion in Bingham fluid flow
gEﬁlH with combined effects of wall absorption, magnetic field
- and electric field
SEEJPH Volume XXIV, S4,2024, ISSN: 2197-5248; Posted:12-10-24

Figure 18: Impact of 7,0n 6,

Figure 16 and 17 shows that decrease in peak of & with increasing the value of

Hartmann number and porous parameter. This can lead to a more uniform distribution of
solutes, resulting in a higher peak mean concentration. From Figure 18 it is evident that

increase in @, with increasing the value of rheological parameter. When the breadth of the

channel or rheological parameters (like viscosity) increase, the peak of mean concentration in
blood flow increases. A wider channel allows for more dispersion of the solute, leading to a
more uniform distribution and a lower peak concentration.

5.Conclusion

The generalised dispersion model of Sankarasubramanian and Gill (1973) is used to examine
how a magnetic field affects a solute dispersion in a fluid flow with wavy boundary retention
effects in a conduit. The three transport coefficients the exchange (absorption) coefficient,
convection coefficient, and dispersion coefficient are used to characterise the dispersion
process. It is observed that the absorption coefficient is unaffected by the rheological
parameter, electric number, Hartmann number, and porous parameter. Both the electric
number and the magnetic field affect the convection coefficient. It is found that as the electric
number and magnetic field grow, the negative asymptotic convection coefficient drops,
whereas as the wall absorption parameter increases, it increases. The boundary reaction
dramatically reduces the axial dispersion.This results corresponds to those given by Ashis
Kumar Roy et al., (2018).

Table 1 Equation roots for g, tanu, =

7 o i 1 fa i [t 1o jt7 i 1o
109 | 0.000834 314477 0G.28478 042584 12,5072 157086 188501 21.0016 25,1331 28.2747
0,06 022176 SI5740 620113 943008 125703 IG.7111 IR.8622 210034 26,1347 28.2761
1078 1 0301063 31731 6.29006 943038 12,5743 16,7143 188549 21,0067 25,1367 282770
0.5 0,663271  3.20231 636162 947740 12,606 1573207  I8876 22,0130 26,1626 25,202
1.0 | 0860334 3.42062 64373 0.652033 12,6463 16,7713 180024 222126 25,1724 28.3000
5.0 131384  4.03357 60096 080275 12,0352 10.0107 191065 22,2126 253270 28.4483
10.0 1 A2R8T 13068 T.22811 10,2008 13.2142 16.2504 19327 22,4108 255064 28.6106
100.0 1.566256 LOGGBTT  T7.77637 108871  13.0081 17.1003 20,2208 23,3327 20,4456 20.6677
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