
 

Unsteady solute dispersion in Bingham fluid flow 

with combined effects of wall absorption, magnetic field 

and electric field 

SEEJPH Volume XXIV, S4,2024, ISSN: 2197-5248; Posted:12-10-24 

 

1915 | P a g e  

 

Unsteady solute dispersion in Bingham fluid flow 

with combined effects of wall absorption, magnetic field 

and electric field 

 
Suchita T.S ¹, S Senthamilselvi1 and R. VijayaKumar2 

 

1Department of Mathematics,  

Vels Institute of Science, Technology & Advanced Studies,Tamil Nadu, India. 
2
Mathematics Section, FEAT, Annamalai University, Annamalainagar-608002,India. 

Department of Mathematics, Periyar Government Arts College, Cuddalore, 

TamilNadu – 607 001, India.  

Email:1chiku2712@gmail.com, 2rathirath_viji@yahoo.co.in 

Corresponding author Email: 1msselvi2305@gmail.com 

 

KEYWORDS 

Bingham fluid, 

wavy channel, 

interphase mass 

transfer,  

Generalized 

dispersion 

model. 

 

 

ABSTRACT 

The objective of the present investigation is to disseminate a solute at the 

boundary wavy walls of the parallel channel while it is undergoing an irreversible 

first-order chemical reaction. This rheological characteristic, which results from 

suspension in the fluid, influences the dispersion and convection coefficients. The 

exchange coefficient, which is independent of the solvent fluid velocity, is 

primarily caused by the interphase mass transfer. Additionally impacted by the 

wall-catalyzed process are the convection and dispersion coefficients. Solute 

dispersion can be studied to understand how medications or nutrients are 

transferred in plasma during blood flow via porous surfaces. Beyond absorption, 

circulatory flow is a vital component. Our results demonstrate that wavy wall 

absorption significantly affects transport coefficients. 

 

1. Introduction 

In physiological situations where a first-order chemical reaction takes place at the 

tube wall, interphase mass transfer can be used. Transporting oxygen and nutrients to tissue 

cells and extracting metabolic waste products from tissue cells are two examples of such 

circumstances. It also occurs in the pulmonary capillaries, where the blood absorbs oxygen 

and carbon dioxide is expelled. Many studies on the fluid dynamics of biological fluids under 

the influence of magnetic fields have been conducted in the past ten years. The lack of 

biocompatibility of smooth (rough) surfaces in metal-implanted or extracorporeal artificial 

organs results in a variety of blood injury types. It is dangerous since they create stress that 

results in force. Eventually, this force affects the red blood cells, or erythrocytes, causing 

haemolysis, or the loss of haemoglobin. Several authors focused on dispersion to understand 

the transport of nutrients in blood and different artificial devices (Middleman (1972), 

Lightfoot (1974), Cooney (1976), Jayaraman et al., (1981)). The effective dispersion 

coefficient was examined in relation to the average flow speed, the tube radius, and the 

molecular diffusion coefficient by Taylor (1953, 1954), who investigated the dispersion 

process in Newtonian flow. Sankarasubramanian and Gill (1973) explored the dispersion of a 

non-uniform initial distribution in time-variable isothermal laminar flow in a tube with a first-

order rate process near the tube wall. Through a precise process, they investigated miscible 

dispersion in laminar flow in a tube with interfacial transport caused by an irreversible first-

order reaction at the tube wall. The exchange coefficients are a novel idea, and a generic 

formula demonstrating their time-dependent character is constructed. Finding the average 
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concentration distribution in terms of tabular functions is made possible by the exchange 

coefficient, which represents the interphase process. Only the scenario of dispersion in a fully 

established steady flow was included in the analysis. Siddheshwar et al. (2000) have studied 

the problem of plane-Poiseuille flow of a power law fluid with interphase mass transfer. 

Using the generalised dispersion model of Sankarasubramanian and Gill (1970), Nirmala P. 

Ratchagar and Vijaya Kumar (2015) examined the impact of couple stress and magnetic field 

on unstable convective diffusion with interphase mass transfer. In the simplest scenario, they 

take into account a first order chemical reaction at the walls during an exact analysis of 

unsteady convection in couple stress fluid flows. Reaction at the walls is of practical interest. 

The exact analysis of miscible solute dispersion with interphase mass transfer in a couple 

stress poorly conducting fluid surround by porous beds was examined by Rudraiah et al. 

(2016). The exchange coefficient, convective coefficient, and dispersion coefficient are 

highlighted by the utilization the generalised dispersion model of Sankarasubramanian and 

Gill (1973). The porosity parameter and couple stress parameter resulting from suspension in 

the fluid only affect the final two coefficients. The interphase mass transfer is the primary 

cause of the exchange coefficient, which is unaffected by the solvent fluid velocity. The 

convection and dispersion coefficients are also impacted by the interphase mass transfer.  

Siti Nurul Aifa Mohd Zainul Abidin (2024) explored the Herschel-Bulkley (H-B) 

fluid model, a non-Newtonian mathematical model of blood flow in a catheterised stenosed 

artery. Additionally, the wall absorption effect is taken into account in this inquiry. The 

convective-diffusion equation that describes the dispersion process determines the solute 

movement. Three effective transport coefficients exchange, convection, and diffusion are 

obtained by solving the transport equation using an accurate technique known as the 

Generalised Dispersion Model (GDM). The goal of this work has been to examine the flow 

properties of a Bingham plastic fluid through a porous material when both an electric and 

magnetic field are present. In order to emphasise the dispersion coefficient and mean 

concentration, the generalised dispersion model of Sankarasubramanian and Gill (1970) has 

been applied. convection coefficient and dispersion coefficient are affected by the rheological 

parameter, magnetic field, electric number and porous parameter arising due to suspension in 

the fluid. The exchange coefficient arises mainly due to the interphase mass transfer, and it is 

independent of the solvent fluid velocity. The convection and dispersion coefficients are also 

affected by the interphase mass transfer. Finally the outcome of non-dimensional parameter is 

deliberated by graphs. 

2. Mathematical Formulation 

The constitutive equation for blood, expressed as Bingham fluid, is as follows, according to 

Misra  and Adhikary (2017) 
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In the channel, equations (1) and (2) depict the two stages of blood flow. The flat velocity 

profile in the central core region creates the plug flow region. Shear stress in this plug flow 

zone is less than yield stress τ0.  
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Figure 1: Physical problem 

The following assumptions are used to obtain the governing equations along with associated 

boundary conditions: 

An electric field and a uniform magnetic field B0 are supplied to the blood flow in the y-

direction. In a channel enclosed by porous beds, the solute diffuses over the porous medium 

in a fully formed flow. The horizontal channel two side wall are at 'cos' xadhy +== and 

'cos' xadhy −−=−= . For concentration C, which depends on coordinates x’ and y and 

time (t), a slug is added. The mass balance equation concerning the solute concentration C 

with heterogeneous chemical reaction. Under the aforementioned presumption, the following 

governing equations apply to the incompressible flow of a non-Newtonian fluid in cartesian 

coordinates: 
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The concentration C satisfying the convective diffusion equation gives 
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Boundary conditions for velocity and concentration are 
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The symmetric conditions, 
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As the amount of solute in the system is finite, 
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fu  - component of velocity, *p -pressure,  -viscosity of the fluid, 0B - applied 

magnetic field, 0 - the electrical conductivity, t -time, D -molecular diffusivity, k-

permeability of the porous medium, *

pu  -Darcy velocity,  -slip parameter, 
'

0C -reference 

concentration, Ks-reaction rate constant catalyzed by the walls, xy   -shear stress, 0 -plastic 

dynamic viscosity, 0 -yield stress. Beavers and Joseph's (1967) slip condition at the lower 

and upper permeable surfaces is represented by equations (10) and (11).  
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In non-dimensional form, equations (3) to (9) are 
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we define the axial coordinate moving with the average velocity of flow as '' tuxx −=  which 

is in dimensionless form −= 'XX .Then equation (13) becomes 
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The dimensionless form of the initial and boundary conditions (10) to (16)
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porous parameter, sK is the reaction rate constant catalyzed by the walls.
 3. Method of solution 

By solving equation (17) and satisfying the boundary conditions (21) to (24). The blood 

velocity is obtained as  
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The axial velocity components that have been normalised are 
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The generalised dispersion model of Gill and Sankarasubramanian (1970), which is expressed 

as a series expansion in the form of 
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Integrating equation (19) with respect to   in (0,h) and using the equation (31) and (32), we 

get
 

)33(...),(),(),(
11

0

2

2

21

'

2

2

2













d

X
f

X
fXU

XhXPe

h

mm
mf

m

 









+




+




+




−




=





 
In this model we write
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where the dispersion coefficient, )(kK  Substituting the Equation (34) in (33) we obtain 
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where 01 =−f

 Equation (35) can be truncated after the term involving 2K without causing serious error, 

because 
,43 , KK , etc. become negligibly small compared to .2K  

The resulting model for the mean concentration is 
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The differential equations of the following form are obtained by substituting (31) in (19) and 

using generalised dispersion model of Gill and Sankarasubramanian (1973) to the resultant 

equation. 
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Since m is chosen to satisfy the initial and boundary conditions on  from equations (25) to 

(26) conditions on the kf function becomes 
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Also, from equation (32) we have
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These two equations (42) and (43) must be solved simultaneously, with an initial condition 

for using (32) that requires entering that equation to obtain 
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Substituting 0=  in (31) and setting )3,2,1(0)( == kf k  gives the initial condition for 0f as 
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The solution of the reaction diffusion equation (42) with these conditions are formulated as 
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The solution of (48) subject to conditions (49) to (51) is 
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From (47), it follows that 
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MATHEMATICA 12.0 is used to obtain the first ten roots of the transcendental equation 

(53), which are listed in Table 1. In the expansions of and, these 10 roots ensure the series 

will converge. With that, we obtain from (48) in the form  
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Here )(0 K  is independent of velocity distribution. 
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As ,→ we get the asymptotic solution for 0K from (56) as 

)57()( 2

00 −=K  

where 0 is the first root of the equation (53). Physically, this represents first order chemical 

reaction coefficient to obtain )(0 K . We get )(1 K , from (35) (with i = 1 ) knowing 

),(0 f  and ),(1 f  . Likewise, ),....(),( 32  KK , 

require the knowledge of ,1010 ,,, ffKK and 2f . Equation (55) in the limit ,→  reduces 

to )58()(),( 0

0

0
0 




 Cos

Sin
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Then we find 2211 , KandfKf . For asymptotically long times, i.e., ,→ equation (35) 

and (37) give sfandsK ki ''  as 
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The sf k '  must satisfy the conditions (32) and this permits the eigen function expansion in 

the form of 
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Substituting (61) in (60) and multiplying the resulting equation by )cos(  j and integrating 

with respect to  from 0 to h, gives 
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Multiplying by )(  jCos and integrating with respect to  , we get 
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where 
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The first expansion coefficient kB ,0 in equation (61) using conditions (38) to (41) can be 

expressed in terms of kjB , (j =1 to 9) as,(Using the boundary condition 
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Further, from (57) and (61) we find that 
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Using (63), (64) and (66) in the resultant equation after substituting i = 1 in (59), we obtain 
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Using (62), (63) and (66) in the outcome equation after substituting i = 2 in (59), we obtain  
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The mean concentration distribution as a function of and the parameters Pe, and is found 

using the asymptotic coefficients in (32).This distribution is an approximate representation 

for short and moderate times and is valid for a long duration.  

By calculating the cross-sectional average from (25) the initial condition for solving (34) may 

be obtained. According to Sankar Rao (1995), the solution of (34) with asymptotic 

coefficients may be expressed as follows: Long-term evaluations of the coefficients have an 

impact that is independent of the initial concentration distribution.  
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4. Results and Discussion 

The effects of magnetic field, electric field, and heterogeneous chemical reactions on 

the dispersion of a solute in a Bingham fluid (blood) as it flows through a porous medium in a 

rectangular channel enclosed by porous beds are examined. The channel walls act as catalysts 

for the reaction. Figures 2 to 18 show the graphic representation of the most dominant 

dispersion coefficient, convection coefficient, and mean concentration for fixed values using 

MATHEMATICA 12.0. These values are calculated for different values of Hartmann 

number(M=1,1.1,1.2,1.3), porous parameter )120,100,60,10( = , rheological parameter 

)3.0,2.0,1.0,0( =c , reaction rate parameter )10,1,10( 22−=  and electric number(We=5, 15,25,35) 

for fixed values ,1.0,019.0 == XX s 10.0,100 == Pe .  

Equation (57), which is used to numerically assess the expression for the absorption 

coefficient )(0 − K , is displayed in Figure 2. Although it is unaffected by the Hartmann 

number, porous parameter, rheological parameter, it is clear that the increases as the wall 

reaction parameter   grows. Molecular diffusion can provide the reaction at the wall more 

quickly if the absorption parameter takes huge values. Therefore, compared to tubular flow, 

there is greater solute absorption at the annulus wall. 
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Figure 2: Variation of 0K− versus   

 
Figure 3: Impact of M on 1K−  

 

 
Figure 4: Impact of We on 1K−  
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Figure 5: Impact of c on 1K−  

 
Figure 6: Impact of  on 1K−  

The variance of the convection and dispersion coefficients diminishes as the range of the wall 

reaction parameter   grows as seen in Figures 3 to 10. This phenomenon is attributed to the 

synergistic effect of magnetic field strength and wall reaction parameter, enhancing the 

decline in convection and dispersion coefficients (Singh, J., and Kumar, V. (2020)).  Figures 

3 to 6 display the convection coefficient expression for different values of the Hartmann 

number, electric number, rheological parameter, and porous parameter with wall response 

parameter. These expressions are numerically analysed using equation (67). It is observed 

that the convection coefficient decreases with increases in the Hartmann number and electric 

number. The increase in Hartmann number and electric number enhances the convection 

coefficient in blood flow due to the augmented Lorentz force, electrical body force, and 

porous medium resistance, which intensify the flow velocity and mixing, thereby increasing 

dispersion(Tripathi and Kumar(2020)). Figures 5 and 6 show that the increase in rheological 

parameter and porous parameter, result in increasing convection coefficient )(1 K− .As a 

result, the laminar flow is maintained. 

The expression for the dispersion coefficient is shown in Figures 7 to 10 for varies values of 

the rheological parameter, electric number, Hartmann number, and porous parameter with 

values of the wall response parameter. It is evaluated numerically using equation (68). 

Increasing the Hartmann number and promoting plug flow conditions in blood flow typically 

reduce the dispersion coefficient in Figure 7 and 8. The Hartmann number quantifies the 

influence of magnetic fields on electrically conducting fluids; higher values suppress velocity 

fluctuations, leading to more uniform flow and decreased mixing. Plug flow, characterized by 

a uniform velocity profile across the cross-section, minimizes axial dispersion by ensuring 

that fluid elements move together without significant mixing. Consequently, both increased 

Hartmann numbers and plug flow conditions tend to reduce the dispersion coefficient in 

blood flow. The former impact outweighs the latter for all   due to the two-dimensional 
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structure of the flow in a channel, and we see a monotonic drop in 
2

2 )( −− PeK    as c  

increases. When ,0=c (68) gives Annapurna and Gupta(1979). Plotting the dispersion 

coefficient versus reaction rate parameter values is shown in Figures 9 and 10. It is found that 

when the electric number and porous parameter increases, the dispersion coefficient rises. 

This is because higher electric fields and porosity promote more irregular flow paths and 

enhanced mixing, causing increased dispersion of solutes within the blood.  

 

Figure 7: Impact of M on
2

2 )( −− PeK   

 

 Figure 8: Impact of c  on
2

2 )( −− PeK   

 

Figure 9: Impact of We on
2

2 )( −− PeK    
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Figure 10: Impact of   on
2

2 )( −− PeK   
Figures 11 to 15 depict the mean concentration

m with time
 
for different values of Hartmann 

number, electric number, reaction rate parameter, rheological parameter and porous 

parameter. Figure 11 to 13 shows that decrease in m with increasing the value of Hartmann 

number, reaction rate parameter and porous parameter. This phenomenon occurs due to the 

enhanced Lorentz force, which reduces the flow velocity and increases the residence time of 

the solute, leading to increased reaction and reduced mean concentration. Figure 14 and 15 

show the plots of time dependent mean concentration versus for different values of electric 

number and rheological parameter. It is observed that the mean concentration increases with 

increasing electric number and rheological parameter, but it is reverse while increasing time. 

Figures 16 to 18 depict the mean concentration
m with X

 
for different values of Hartmann 

number, rheological parameter and porous parameter.  

 
Figure 11: Impact of M on m  
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Figure 12: Impact of   on m  

 
Figure 13: Impact of   on m  

 
Figure 14: Impact of We on m  
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Figure 15: Impact of c  on m  

 
Figure 16: Impact of M on m  

 
Figure 17: Impact of  on m  
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Figure 18: Impact of c on m  

Figure 16 and 17 shows that decrease in peak of m with increasing the value of 

Hartmann number and porous parameter. This can lead to a more uniform distribution of 

solutes, resulting in a higher peak mean concentration.  From Figure 18 it is evident that 

increase in m with increasing the value of rheological parameter. When the breadth of the 

channel or rheological parameters (like viscosity) increase, the peak of mean concentration in 

blood flow increases. A wider channel allows for more dispersion of the solute, leading to a 

more uniform distribution and a lower peak concentration.  

5.Conclusion 

The generalised dispersion model of Sankarasubramanian and Gill (1973) is used to examine 

how a magnetic field affects a solute dispersion in a fluid flow with wavy boundary retention 

effects in a conduit. The three transport coefficients the exchange (absorption) coefficient, 

convection coefficient, and dispersion coefficient are used to characterise the dispersion 

process. It is observed that the absorption coefficient is unaffected by the rheological 

parameter, electric number, Hartmann number, and porous parameter. Both the electric 

number and the magnetic field affect the convection coefficient. It is found that as the electric 

number and magnetic field grow, the negative asymptotic convection coefficient drops, 

whereas as the wall absorption parameter increases, it increases. The boundary reaction 

dramatically reduces the axial dispersion.This results corresponds to those given by Ashis 

Kumar Roy et al., (2018). 

Table 1 Equation roots for  =nn tan   
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