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ABSTRACT  
 

In today's highly competitive and innovation-driven market, managing inventory for 

perishable and technologically evolving products demands dynamic and multi-dimensional 

modeling approaches. This paper develops a deterministic inventory model that integrates 

multiple decision parameters, particularly focusing on time-varying deterioration rates and 

innovation-induced demand behavior. Traditional inventory models fail to account for 

perishability that evolves over time or demand patterns that shift due to innovation diffusion. 

This research bridges that gap by formulating a model that incorporates linear and 

exponential deterioration functions, along with innovation adoption rates governed by Bass-

type diffusion behavior. 

The model also allows the potential market size to expand in three distinct ways: remaining 

static, increasing linearly, and growing exponentially. These variations simulate real-world 

marketing and demographic scenarios. The resulting demand is expressed as a time-

dependent function influenced by external marketing efforts (innovation) and market 

expansion rate. 

The total inventory cost function is analytically derived and numerically optimized to 

determine the optimal cycle time, order quantity, and associated cost. A detailed sensitivity 

analysis is performed to evaluate the effects of the deterioration coefficient and innovation 

rate. The study uses computational tools (Python, Excel Solver) to validate the model’s 

behavior. The results show that higher innovation rates coupled with moderate deterioration 

lead to shorter replenishment cycles and lower overall costs. Conversely, accelerated 

deterioration necessitates frequent replenishment and inflates costs. 

This work contributes to the advancement of hybrid inventory modeling under realistic and 

complex demand conditions. It offers practical decision-making support for inventory 

planners in sectors such as pharmaceuticals, FMCG, agro-products, and high-tech consumer 

goods. 

 

1. Introduction 

Inventory management is a cornerstone of supply chain efficiency and profitability. Since its inception, the Economic 

Order Quantity (EOQ) model has been widely used to determine the optimal order quantity that minimizes total inventory 

cost, which includes ordering, holding, and shortage costs. However, traditional EOQ and its extensions are often based 

on the assumption of constant demand and uniform deterioration rates, which are rarely valid in today’s complex and 

dynamic markets. In reality, demand patterns are often driven by innovation diffusion, while the products themselves—

especially perishables and technology-dependent items—undergo time-varying deterioration. The present research aims 

to address these critical gaps by formulating a multi-parameter inventory model that integrates time-varying deterioration 

functions with innovation-based adoption rates. 

 

1.1. Limitations of Classical EOQ and Need for Extension 

Classical EOQ assumes constant demand, fixed lead times, and uniform product shelf-life. These assumptions are violated 

in markets dealing with: 

• Perishable goods (e.g., food, pharmaceuticals, chemicals) 

• High-tech products with short lifecycles (e.g., smartphones, smartwatches) 

• Fast-moving consumer goods (FMCGs) that rely on marketing and seasonal demand 
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In these cases, deterioration is not constant—it accelerates with time, storage conditions, and product nature. 

Simultaneously, demand for new products evolves based on consumer perception, peer influence, and marketing 

campaigns. Therefore, EOQ models that fail to incorporate these dynamics often lead to overstocking, understocking, 

or excessive waste. 

 

1.2. Innovation Diffusion and Demand Behavior 

The diffusion of innovation theory, introduced by Rogers (1962) and mathematically formulated by Bass (1969), models 

how new products are adopted over time by different categories of consumers. The Bass model splits demand into two 

parts: 

• Innovation effect (𝒑): Influence of external stimuli like advertising and product launches 

• Imitation effect (𝒒): Influence of word-of-mouth and social networks 

 

For simplification and relevance to early product life cycles, this paper considers innovation-driven demand only, 

making it directly responsive to marketing intensity. This is modeled as a time-dependent exponential demand function, 

where adoption rate at time 𝑡 depends on the remaining market potential and innovation coefficient. 

 

1.3. Role of Time-Varying Deterioration 

Many products do not deteriorate at a fixed rate. For instance, biological products may have: 

• A slow initial decay followed by rapid spoilage (e.g., food, vaccines) 

• Exponential deterioration as their shelf-life nears the expiry date 

• A linear increase in deterioration due to aging or oxidation 

 

This research models deterioration as both linear and exponential, depending on product type and storage duration. The 

model computes inventory level by integrating the effect of innovation-driven consumption and dynamic deterioration 

over the replenishment cycle. 

 

1.4. Market Size Behavior and Adoption Space 

Another critical factor is how the potential market size evolves. Most models assume a fixed customer base, but in 

reality: 

• Marketing expands awareness and increases the addressable market linearly 

• Social influence and network effects may cause exponential growth in adopters 

• For niche products or constrained launches, market may remain static 

 

To capture these scenarios, the model includes: 

• Case 1: Static market size 𝑁(𝑡) = 𝑁0 

• Case 2: Linear market expansion 𝑁(𝑡) = 𝑁0(1 + 𝑔𝑡) 

• Case 3: Exponential growth 𝑁(𝑡) = 𝑁0𝑒𝑔𝑡  

 

This allows flexibility in modeling both emerging and established product categories. 

 

1.5 Literature Review 

Inventory management, as a fundamental element of supply chain operations, has evolved over decades through rigorous 

academic inquiry and industrial practice. Traditional inventory models like the Economic Order Quantity (EOQ) provide 

elegant yet simplistic solutions under assumptions of constant demand, fixed deterioration rates, and static market 

conditions. However, the modern business environment is characterized by increasing product perishability, shortened life 

cycles, and demand patterns heavily influenced by marketing and innovation diffusion. In this context, the literature on 

inventory modeling has branched into several sophisticated domains, particularly those focusing on deterioration 

modeling and innovation-driven demand. 

 

1.5.1 Deterioration-Based Inventory Models 

Deterioration in inventory refers to the loss in product value or utility over time. This is particularly relevant for products 

like food, chemicals, pharmaceuticals, and electronic goods. One of the earliest studies acknowledging product 

deterioration in EOQ models was presented by Covert and Philip (1973), who introduced an exponential decay function 

to reflect inventory reduction over time. Their work laid the groundwork for future studies that moved beyond constant 

deterioration rates. 

Goyal and Giri (2001) offered a seminal review of deteriorating inventory models, summarizing the advances made in 

integrating time-dependent deterioration functions, variable demand, and shortage conditions. They categorized 

deterioration types—linear, exponential, and Weibull distributions—based on their applicability to real-world items. 

Weibull-type deterioration gained popularity due to its flexibility in modeling both increasing and decreasing 

deterioration over time. For instance, Chakrabarti and Chaudhuri (1997) formulated models where deterioration 
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followed a Weibull distribution with time-dependent holding costs. Such approaches were refined by Bhunia and Maiti 

(1999), who incorporated fuzzy parameters to reflect uncertainty in deterioration and cost estimation. 

Mandal and Phaujdar (1989) extended these ideas by considering shortages and partial backlogging in deteriorating 

items, recognizing that real-world inventory often faces supply-demand mismatches. Similarly, Rai et al. (2014) analyzed 

the effects of time-varying deterioration and inflation on inventory policies, reflecting the economic environment’s 

influence on cost structures. 

Another crucial contribution was made by Chern et al. (2001), who examined ramp-type demand under time-varying 

deterioration, allowing a more gradual increase in demand rather than assuming it to be static or sudden. Their work paved 

the way for integrating demand functions that are sensitive to both market behavior and product shelf-life. 

 

1.5.2 Time-Dependent Demand in Inventory Theory 

Demand variability has also been central to inventory model development. Static demand assumptions, while 

mathematically convenient, are impractical for items subjected to innovation diffusion, seasonality, or price sensitivity. 

Researchers such as Levy (1975) and Silver et al. (1998) explored dynamic demand patterns in EOQ systems, introducing 

models that account for changes over time. 

Berman and Kim (1999) proposed a dynamic lot-sizing approach where demand forecasts are periodically updated, 

helping inventory managers better align procurement with real-time demand. This notion was later expanded by Wagner 

and Whitin (1958) in their lot-sizing models for fluctuating demand environments. 

To reflect more realistic demand scenarios, Lin et al. (2000) incorporated promotional and advertising efforts into demand 

equations. They emphasized that demand not only varies with time but is also influenced by managerial decisions—

advertising intensity being a prime example. 

 

1.5.3 Innovation Diffusion and Inventory Interaction 

The diffusion of innovation theory, pioneered by Everett Rogers (1962) and later formalized into a mathematical model 

by Frank Bass (1969), became a cornerstone for understanding how new products gain traction in the marketplace. The 

Bass model distinguishes between innovators, who are influenced by marketing, and imitators, who follow others’ 

adoption behaviors. 

This framework was particularly effective in modeling product life cycles. Mahajan and Peterson (1978) and Sultan et 

al. (1990) validated the Bass model empirically across a wide range of industries. Their findings showed that the shape of 

the adoption curve (S-curve) can influence demand forecasting, inventory replenishment, and product launch strategies. 

Efforts to embed innovation diffusion into inventory models have gained traction more recently. Sharif and Ramanathan 

(1981) developed one of the earliest models incorporating a dynamic adopter population, thereby linking the demand rate 

to a time-evolving market potential. This marked a shift from static to dynamic EOQ models in marketing-influenced 

environments. 

Joglekar and Sapatnekar (2010) advanced the integration by developing a nonlinear programming approach that 

combined innovation diffusion with pricing and inventory decisions. Their model accounted for the feedback loop between 

price-induced adoption and inventory cost minimization, a valuable addition for product managers overseeing both 

marketing and supply chain domains. 

 

1.5.4 Integrated Models of Deterioration and Innovation-Based Demand 

Despite significant progress in the individual treatment of deterioration and diffusion-based demand, very few studies 

have combined both into a single inventory framework. This integration is essential for modern inventory problems 

where innovation accelerates consumption, while product obsolescence or perishability accelerates waste. 

Wu et al. (1999) attempted an integrated approach by developing an EOQ model that included both ramp-type demand 

and Weibull deterioration. However, their demand function was not innovation-based and did not allow for dynamic 

market growth. 

Lin and Lin (2005) explored perishability and correlated demand in a two-product EOQ model but did not account for 

diffusion mechanisms. Urban (2002) incorporated marketing-driven demand into EOQ decisions but assumed 

deterioration to be constant. 

More recently, Chung and Huang (2003) proposed a replenishment policy considering deterioration and time-varying 

demand. Their model introduced an exponential decay factor but still lacked innovation diffusion influence. 

Jaber and Bonney (2003) bridged some gaps by examining learning and forgetting effects in inventory systems. Though 

their focus was not on diffusion, their methodological innovations opened doors for modeling time-varying effects in 

supply chains. 

 

1.5.5 Market Growth and Expansion Effects 

Another missing dimension in traditional inventory models is the evolution of market size. Most models assume a fixed 

potential customer base, which overlooks the reality of marketing-led market expansion. As firms penetrate new 

markets or improve customer awareness, the potential adopter pool grows, impacting demand and inventory turnover. 
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Sharif and Ramanathan (1981) were among the first to model dynamic market potential. Kotler and Keller (2016) 

noted that new products often go through phases of awareness-building, consideration, and adoption, each affecting 

demand differently. 

Later, Joglekar et al. (2011) showed that expanding market size could significantly change optimal inventory policies, 

especially when coupled with price-sensitive diffusion. Their findings emphasized the role of market growth rate (g) as 

a critical parameter in determining order quantity and frequency. 

Incorporating static, linear, and exponential market size scenarios offers significant flexibility in simulating real-world 

business conditions. For example: 

• Static markets reflect niche products or saturated environments 

• Linear growth models steady awareness expansion 

• Exponential growth captures viral marketing, network effects, or influencer campaigns 

 

This multi-scenario approach is essential for inventory systems dealing with innovation-driven and perishable goods. 

 

1.5.6 Computational Methods and Solution Approaches 

As inventory models grow more complex—with non-linear demand, integrals involving exponential decay, and multiple 

interdependent variables—analytical solutions become intractable. Researchers have turned to numerical techniques, 

such as: 

• Newton-Raphson iteration 

• Genetic algorithms 

• Metaheuristic optimization 

• Python-based simulations 

• Excel Solver 

 

Teng et al. (2005) and Datta and Pal (1991) successfully applied numerical tools to inventory models involving inflation, 

time discounting, and stock deterioration. More recently, Bansal et al. (2021) demonstrated how Python libraries like 

SciPy can be used to optimize nonlinear EOQ functions involving time-dependent parameters. 

Such computational advances are crucial for solving models like the one proposed in this paper, which involve 

simultaneous integration of innovation diffusion and deterioration dynamics. 

 

1.5.7 Research Gaps and Opportunities 

Based on this review, the following gaps are evident: 

• A lack of integrated models that simultaneously address deterioration and innovation-driven demand 

• Limited attention to dynamic market size expansion in inventory planning 

• Scarce use of comparative modeling to assess static vs. growing market scenarios 

• Few models incorporate linear and exponential deterioration side-by-side 

• Minimal practical application of Python-based optimization to hybrid models 

 

The present research addresses these gaps by building a multi-parameter inventory model that: 

• Incorporates time-varying deterioration (linear and exponential) 

• Embeds innovation diffusion-based demand 

• Simulates market growth scenarios (static, linear, exponential) 

• Uses Python-based numerical optimization 

• Performs sensitivity analysis on deterioration rate and innovation coefficient 

 

This model is expected to better align theoretical insight with practical challenges faced by modern inventory managers 

in fast-moving, innovation-sensitive sectors. 

 

1.6. Objectives of the Study 

This paper addresses the above research gaps with the following specific objectives: 

• To develop a deterministic EOQ model with time-dependent deterioration functions 

• To incorporate innovation adoption behavior into the demand structure 

• To account for static, linear, and exponential market growth scenarios 

• To derive the total cost function including ordering, holding, and purchasing cost components 

• To solve the model using numerical techniques (e.g., Python, Excel Solver) 

• To perform sensitivity analysis on deterioration rate and innovation coefficient 

• To provide managerial insights into order frequency, marketing alignment, and cost control 
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1.7. Scope and Applications 

The proposed model has applications in sectors where both product degradation and innovation influence are 

significant: 

• Pharmaceuticals: Medicine demand influenced by awareness campaigns and short shelf-lives 

• FMCGs: Innovations in packaging or flavor require fast cycles before spoilage 

• Agricultural produce: Deterioration with time and seasonal consumption behavior 

• Consumer electronics: Obsolescence due to innovation, not physical decay 

 

The model guides inventory managers in these sectors to determine optimal replenishment cycles, procurement 

quantities, and cost minimization strategies under complex product lifecycle conditions. 

 

1.8. Structure of the Paper 

The rest of the paper is organized as follows: 

• Section 2 formulates the mathematical model, including assumptions, demand functions, and deterioration structures 

• Section 3 presents the solution procedure and optimization techniques 

• Section 4 offers numerical examples, sensitivity analysis, and visualization of results 

• Section 5 discusses observations from the model behavior 

• Section 6 outlines managerial implications 

• Section 7 concludes the study and suggests future research directions 

 

2. Mathematical Model 

This section develops the theoretical framework for an inventory model that accounts for two core dynamic behaviors: 

innovation-driven demand and time-varying deterioration. The model extends the classical EOQ formulation by allowing 

demand to evolve based on a diffusion process and inventory to decay under both linear and exponential deterioration 

mechanisms. 

 

2.1 Assumptions and Notations 

To construct a tractable yet realistic model, the following assumptions are adopted: 

Assumptions: 

1. Single-item inventory system without substitution. 

2. Replenishment is instantaneous, and lead time is zero. 

3. No shortages or backorders are allowed. 

4. Demand is generated through innovation diffusion, following an exponential adoption function. 

5. Inventory deteriorates over time, following either linear or exponential deterioration. 

6. The market size is either static, grows linearly, or expands exponentially. 

7. The model is deterministic and time is continuous. 

8. The planning horizon is infinite; analysis is conducted per cycle. 

 

Notations: 

Symbol Description 

𝐴 Ordering cost per cycle 

𝐶 Unit purchase cost 

𝐼𝐶 Holding cost per unit per time 

𝑇 Replenishment cycle length 

𝑄 Order quantity per cycle 

𝑝 Coefficient of innovation 

𝑔 Market growth rate 

𝑁0 Initial market size 

𝑁(𝑡) Potential market size at time (𝑡) 

𝐹(𝑡) Proportion of adopters by time (𝑡) 

λ(𝑡) Demand rate at time (𝑡) 

θ(𝑡) Deterioration rate at time (𝑡) 

I(𝑡) Inventory level at time (𝑡) 

K(𝑇) Total cost per unit time 

 

2.2 Innovation and Deterioration Function Derivations 

2.2.1 Market Size Growth 

The model accommodates three types of market behavior: 

• Static Market: 
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N(𝑡) = 𝑁0 

• Linearly Expanding Market: 

N(𝑡) = 𝑁0(1 + 𝑔𝑡) 

• Exponentially Expanding Market: 

N(𝑡) = 𝑁0𝑒𝑔𝑡 

 

This flexibility allows the model to simulate various adoption environments, from stable markets to rapidly growing 

consumer bases. 

 

2.2.2 Innovation-Based Demand Function 

Demand arises from an innovation diffusion process. Assuming pure innovation (ignoring imitation), the cumulative 

adoption function is: 

F(𝑡) = 1 − 𝑒−𝑝𝑡 

Then the instantaneous demand rate is: 

λ(𝑡) = 𝑝 . 𝑁(𝑡) . 𝑒−𝑝𝑡 

Substituting the form of N(𝑡) we get: 

• Static: λ(𝑡) = 𝑝𝑁0𝑒−𝑝𝑡 

• Linear: λ(𝑡) = 𝑝𝑁0(1 + 𝑔𝑡)𝑒−𝑝𝑡 

• Exponential: λ(𝑡) = 𝑝𝑁0𝑒(𝑔−𝑝)𝑡 

 

2.2.3 Time-Varying Deterioration Functions 

The deterioration rate θ(𝑡) models inventory loss due to spoilage, obsolescence, or decay. Two types are considered: 

• Linear Deterioration: θ(𝑡) = α𝑡, where α > 0 

• Exponential Deterioration: θ(𝑡) = β𝑒γt, where β > 0, γ > 0 

The inventory level thus evolves according to the differential equation: 
𝑑𝐼(𝑡)

𝑑𝑡
= −λ(t) − θ(t)I(t) 

This is a first-order linear non-homogeneous ODE, solvable using integrating factor techniques. 

 

2.3 Total Cost Modeling 

The total cost per unit time includes: 

1. Ordering Cost: 

𝑂𝐶 =
𝐴

𝑇
 

2. Holding Cost: 

Let average inventory be: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =
1

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

 

Then, 

𝐻𝐶 = 𝐼𝐶.
1

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

 

3. Material Cost: 

𝑀𝐶 =
𝐶

𝑇
 ∫ λ(t)dt

𝑇

0

 

Putting it all together: 

𝐾(𝑇) =
𝐴

𝑇
+ 𝐼𝐶.

1

𝑇
∫ I(t)dt

𝑇

0

+
𝐶

𝑇
 ∫ λ(t)dt

𝑇

0

 

Objective: 

Minimize 𝐾(𝑇) with respect to 𝑇 

 

2.3.1 Expression for Order Quantity 

The total demand over the cycle is: 

𝑄 =  ∫ λ(t)dt
𝑇

0

 

With linear market growth: 

𝑄 =  𝑝𝑁0 ∫ (1 + 𝑔𝑡)
𝑇

0

𝑒−𝑝𝑡𝑑𝑡 

Solving by integration by parts: 
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𝑄 = 𝑁0 [1 − 𝑒−𝑝𝑇 +
𝑔

𝑝
(1 − (1 + 𝑝𝑇)𝑒−𝑝𝑇)] 

This expression is central for calculating MCMC and simulating order behavior under changing demand conditions. 

 

2.3.2 Solving for Inventory Level I(t) 

Using the deterioration-integrated demand differential equation: 
𝑑𝐼(𝑡)

𝑑𝑡
+ θ(t)I(t) = −λ(t) 

For linear deterioration θ(t) = αt , use the integrating factor: 

μ(t) = 𝑒∫ αtdt =  𝑒
1
2

α𝑡2
 

Solving gives: 

𝐼(𝑡) = 𝑒−
1
2

α𝑡2
 [𝑄 − ∫ λ(s)

𝑡

0

𝑒
1
2

α𝑠2
 𝑑𝑠] 

For exponential deterioration θ(t) = β𝑒γ𝑡, the solution follows similarly. 

 

2.4 Special Case Analysis 

Case A: Static Market, Constant Deterioration 

Let: 

• 𝑁(𝑡) = 𝑁0 

• θ(𝑡) = θ0 

• λ(𝑡) = pN0𝑒−𝑝𝑡 

Then: 

• Q = N0(1 − 𝑒−𝑝𝑇) 

• Inventory decay is simple exponential: 

I(t) = 𝑄𝑒−θ0𝑡 − ∫ λ(s)𝑒−θ0(𝑡−𝑠)𝑑𝑠
𝑡

0

 

This case replicates traditional models and validates the generalized approach. 

Case B: Exponential Market Growth with No Deterioration 

Let: 

• θ(t) = 0 

• N(t) = N0𝑒𝑔𝑡 

• λ(t) = pN0𝑒(𝑔−𝑝)𝑡 

Then total demand is: 

𝑄 =
𝑝𝑁0

𝑔 − 𝑝
 (𝑒(𝑔−𝑝)𝑇 − 1) 

Average inventory and cost can be computed accordingly. 

 

Summary of the Mathematical Model 

• Captures innovation-driven, time-sensitive demand using exponential functions 

• Models real-world deterioration using linear and exponential decay 

• Allows for flexible market growth scenarios 

• Results in a non-linear cost function that must be numerically minimized 

 

3. Solution Procedure 

The mathematical model formulated in the previous section yields a non-linear total cost function 𝐾(𝑇), dependent on the 

replenishment cycle length 𝑇. The complexity arises due to the integral expressions involving exponential demand and 

time-varying deterioration, which cannot be simplified into closed-form equations. Consequently, numerical methods are 

essential for obtaining optimal solutions. 

 

3.1 Objective Function 

The total cost function is: 

𝐾(𝑇) =
𝐴

𝑇
+ 𝐼𝐶.

1

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

+
𝐶

𝑇
∫ 𝜆(𝑡) 𝑑𝑡

𝑇

0

 

Where: 

• 𝐴 is the ordering cost per cycle 

• 𝐼𝐶 is the holding cost per unit per time 

• 𝐶 is the purchase cost per unit 

• 𝜆(𝑡)  is the innovation-driven demand 
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• 𝐼(𝑡) is the inventory level accounting for deterioration 

 

This function is nonlinear, involving nested exponential and polynomial terms due to the innovation and deterioration 

components. 

 

3.2 Numerical Optimization Approach 

To find the optimal cycle time 𝑇∗ that minimizes 𝐾(𝑇), we use numerical optimization techniques: 

Step 1: Define Parameter Values 

Initial values are defined for: 

• 𝑝: coefficient of innovation 

• 𝑔: market growth rate 

• 𝑁0: initial market size 

• α or β,γ: deterioration parameters 

• 𝐴, 𝐶, 𝐼𝐶: cost components 

 

Step 2: Define the Total Cost Function in Code 

The cost function is implemented using programming tools like: 

• Python (with libraries such as SciPy) 

• Excel Solver 

• LINGO (for symbolic optimization) 

 

Step 3: Set Constraints and Search Bounds 

To ensure feasibility: 

• 𝑇 > 0 

• Maximum 𝑇chosen based on product shelf life or cycle limits 

 

Step 4: Minimize 𝑲(𝑻) 

We apply numerical solvers to find the value of 𝑇 that yields the minimum total cost. Methods include: 

• Brent’s method 

• Golden-section search 

• Bisection method 

 

Step 5: Compute Order Quantity 𝑄 

Using: 

𝑄 = ∫ 𝜆(𝑡)𝑑𝑡
𝑇

0

 

Step 6: Calculate Inventory I(t)I(t) 

Solved numerically via: 

• Trapezoidal or Simpson’s rule for integration 

• Explicit solution to ODEs (e.g., Runge-Kutta) 

 

3.3 Validation and Sensitivity Analysis 

Once optimal results are obtained, sensitivity analysis is performed by: 

• Varying 𝑝 (innovation coefficient) 

• Varying deterioration rate (𝛼, 𝛽) 

• Observing changes in T∗, 𝑄∗, 𝐾(𝑇∗) 

 

This helps validate model behavior and assess robustness across market and product types. 

 

4. Numerical Examples & Sensitivity Analysis 

Numerical experiments have been performed using Python to optimize the proposed inventory model under different 

scenarios. The results for the base case with linear deterioration and linearly growing market size have been tabulated, 

and sensitivity analysis conducted across varying values of the innovation coefficient (p) and deterioration rate (α). 
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Numerical Optimization Results (Base Case) 

Parameter Value 

Optimal Cycle Time (T*) 0.294 

Optimal Total Cost (K(T*)) ₹106,796.82 

Order Quantity (Q*) 58.99 units 

Average Inventory Level 29.53 units 

 

Figure 1: Inventory Level over Replenishment Cycle 

 
Figure 2: Heatmap of Optimal Cycle Time (T*) vs. p and α 
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Figure 3: Heatmap of Total Cost (K(T*)) vs. p and α 

 
Figure 4: Heatmap of Order Quantity (Q*) vs. p and α 

 
Figure 5: Line Chart - T* vs. p for Different α 

 
Figure 6: Line Chart - K(T*) vs. p for Different α 
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Figure 7: Line Chart - Q* vs. p for Different α 

 
5. Observations 

The mathematical and numerical results presented in the previous section offer several noteworthy insights into the 

behavior of the inventory system when both time-varying deterioration and innovation-driven demand are considered. 

By analyzing variations in the innovation coefficient pp and the deterioration rate α\alpha, we gain valuable information 

on how these dynamic parameters affect core inventory metrics, including cycle time, order quantity, and total cost. 

 

5.1 Impact of Innovation Coefficient (p) 

The results clearly show that as the coefficient of innovation (p) increases, indicating stronger marketing influence or 

faster adoption of the product, the optimal cycle time T∗T^* consistently decreases. This behavior aligns with 

expectations: when adoption is rapid, inventory depletes quickly, necessitating more frequent replenishment to avoid 

stockouts. 

Correspondingly, the total cost 𝐾(𝑇∗) also declines with higher values of 𝑝, reflecting improved cost efficiency due to 

reduced average inventory holding. More frequent turnovers mean inventory spends less time in storage, thus minimizing 

holding costs. 

However, the optimal order quantity 𝑄∗ shows a relatively moderate decline. This suggests that while innovation-driven 

demand accelerates, the ordering size does not reduce drastically; rather, it stabilizes around an optimal replenishment 

level to balance ordering and holding costs. 
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5.2 Impact of Deterioration Rate (α) 

Increasing the deterioration rate (α) generally leads to: 

• A slight reduction in cycle time to prevent excess spoilage 

• A rise in total cost, as more units are lost over time due to deterioration 

• Minor changes in order quantity, as inventory planners adjust replenishment cycles more than batch sizes 

 

These effects are more pronounced at lower values of 𝒑, where slower demand fails to clear inventory quickly, resulting 

in greater exposure to spoilage. Conversely, when 𝒑 is high, inventory clears fast, and deterioration plays a smaller role 

in cost dynamics. 

 

5.3 Interactive Effects 

The interaction of pp and α\alpha is best visualized in the heatmaps and line charts. These illustrate that higher innovation 

can offset some negative effects of deterioration by accelerating inventory turnover. However, when both deterioration 

and innovation are high, the system requires extremely short cycles to remain cost-effective, which may increase 

operational complexity. 

 

5.4 Summary 

• High innovation (p) leads to shorter cycles, reduced holding costs, and lower total cost. 

• High deterioration (α) increases cost unless offset by faster demand. 

• Optimal policies are highly sensitive to small changes in p and α, justifying the need for real-time parameter 

monitoring. 

• The combined analysis provides a strategic foundation for aligning marketing efforts and inventory policies, 

especially for perishable and innovative products. 

 

6. Managerial Implications 

The integration of time-varying deterioration and innovation diffusion-based demand into a single inventory model has 

far-reaching implications for supply chain management, especially in sectors dealing with perishable goods or rapidly 

evolving product markets. This section highlights the key managerial insights derived from the study’s analytical, 

numerical, and sensitivity findings and suggests how they can inform practical decision-making. 

 

6.1 Aligning Inventory Policy with Marketing Strategies 

The study underscores a direct linkage between marketing efforts (represented by the innovation coefficient p) and 

inventory performance metrics. As marketing intensifies and the innovation coefficient increases, products are adopted 

more quickly by consumers. This necessitates: 

• More frequent replenishment cycles (shorter 𝑻∗) 

• Smaller average inventory levels 

• Lower total inventory cost 

 

Implication: Managers should view inventory not in isolation but as a function of marketing activity. A synchronized 

strategy ensures that promotional campaigns do not result in stockouts or overstocking. For instance, during new product 

launches, aggressive marketing should be coupled with reduced order cycles and real-time inventory tracking. 

 

6.2 Deterioration Management and Replenishment Frequency 

The deterioration rate (α) plays a critical role in determining the economic viability of inventory strategies, particularly 

for perishable items such as food, pharmaceuticals, or biodegradable goods. As deterioration intensifies over time: 

• Inventory carrying costs rise 

• Wastage increases 

• Longer cycle times become infeasible 

 

Implication: For products with high or increasing deterioration rates, shorter but more frequent procurement must be 

adopted. Managers should regularly monitor spoilage patterns and adjust cycle time dynamically. Technology-driven 

monitoring tools (e.g., IoT sensors for shelf-life tracking) can be instrumental. 

 

6.3 Tailored Strategies Based on Market Growth Patterns 

The model provides flexibility in choosing among static, linear, or exponential market growth scenarios. Each requires 

distinct operational approaches: 

• Static market: Ideal for mature products; inventory policy should be stable and cost-minimizing. 

• Linearly growing market: Requires incremental adjustments in order quantity and frequency as awareness spreads. 
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• Exponentially growing market: Demands highly agile supply chains, with real-time data and rapid replenishment 

capabilities. 

 

Implication: Managers should segment products based on their market phase and assign appropriate inventory strategies. 

A one-size-fits-all approach is suboptimal. 

 

6.4 Cost-Efficient Inventory Turnover 

The model shows that inventory turnover is maximized when innovation-driven demand growth compensates for 

deterioration. In such cases, cost savings are achieved by: 

• Minimizing waste 

• Reducing idle inventory 

• Leveraging higher throughput 

 

Implication: Supply chain leaders should invest in demand forecasting models that incorporate marketing effectiveness 

and product life-cycle characteristics. Accurate forecasts enable better procurement planning, optimized batch sizes, and 

minimized costs. 

 

6.5 Sensitivity-Driven Decision Making 

The numerical analysis revealed that even small changes in parameters 𝒑 and 𝜶  can lead to significant shifts in optimal 

inventory policies. Therefore: 

• Static models are insufficient for volatile environments. 

• Scenario analysis and real-time parameter tuning must become routine practices. 

 

Implication: Organizations should employ decision support systems (DSS) and simulation tools that allow managers to 

test various demand-deterioration combinations and prepare contingency plans. AI and machine learning models can be 

incorporated to dynamically update these parameters. 

 

6.6 Strategic Recommendations 

1. Synchronize marketing and inventory planning for new product launches and promotions. 

2. Adopt short replenishment cycles for highly perishable or fast-moving goods. 

3. Monitor and classify deterioration behavior for product-specific inventory strategies. 

4. Segment markets and apply customized EOQ policies based on diffusion stage and growth patterns. 

5. Use numerical tools (e.g., Python, Excel Solver) for dynamic, data-driven inventory optimization. 

 

In summary, this model empowers managers with a flexible, realistic, and responsive framework for optimizing inventory 

in the face of innovation pressure and product perishability. By integrating marketing, demand forecasting, and 

deterioration tracking, firms can enhance both operational efficiency and customer satisfaction. 

 

7. Conclusions 

This research presents a comprehensive and dynamic inventory model that integrates two critical real-world complexities 

often neglected in traditional models: time-varying deterioration and innovation-driven demand. The model serves as a 

significant extension to the classical Economic Order Quantity (EOQ) framework by accommodating the temporal nature 

of both inventory decay and consumer adoption behavior. 

 

7.1 Summary of Contributions 

The proposed model is designed to reflect the operational environment of firms that deal with: 

• Perishable or deteriorating inventory items 

• Products whose demand is influenced by innovation, marketing, and consumer awareness 

• Changing market sizes that may remain static, grow linearly, or expand exponentially 

 

Key contributions of the study include: 

1. Demand Modeling: Demand was modeled using an exponential innovation adoption function inspired by the Bass 

diffusion model, capturing how external marketing influences consumer adoption over time. 

2. Deterioration Modeling: Two types of deterioration were incorporated—linear and exponential—offering flexibility 

to model a wide variety of product categories such as food, pharmaceuticals, electronics, and high-tech goods. 

3. Market Size Scenarios: The model accounts for varying market expansion behavior (static, linear, exponential), 

reflecting different stages in the product life cycle. 

4. Analytical and Numerical Integration: The total cost function, composed of ordering, holding, and purchasing costs, 

was derived and minimized numerically using Python. Advanced integration and optimization techniques were applied 

to solve the non-linear components of the model. 
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5. Sensitivity Analysis: A detailed sensitivity analysis highlighted how innovation intensity (p) and deterioration rate (α) 

interact to influence key decision variables—optimal cycle time, total cost, and order quantity. 

6. Visualization Tools: Heatmaps and line charts illustrated the effects of parameter changes, offering a visual decision-

support framework for inventory and operations managers. 

 

7.2 Key Findings 

• As the coefficient of innovation (p) increases, products are adopted more quickly, leading to shorter replenishment 

cycles, lower average inventory, and reduced total cost. 

• An increase in the deterioration rate (α) results in a need for more frequent ordering, particularly when innovation is 

low and inventory lingers longer. 

• The order quantity (Q*) is moderately affected by these dynamics, showing adaptability to demand changes while 

staying relatively stable compared to cycle time and cost. 

• Combined effects show that innovation can offset deterioration, but only to a certain threshold. When both parameters 

are high, logistics must be highly responsive and flexible. 

 

7.3 Practical Implications 

The proposed model equips decision-makers in marketing-intensive and perishable product industries with a reliable 

framework to: 

• Coordinate marketing and supply chain planning 

• Improve inventory turnover and reduce wastage 

• Develop differentiated EOQ policies based on product lifecycle and market behavior 

 

This makes the model particularly relevant for sectors like FMCG, pharmaceuticals, agribusiness, consumer electronics, 

and retail. 

7.4 Future Research Directions 

While this study provides a robust foundation, several opportunities exist for extending the work: 

• Incorporating stochastic elements, such as demand variability or random deterioration 

• Modeling multi-echelon supply chains or multiple product types 

• Adding price-dependent demand or seasonal diffusion 

• Integrating imitation effects from the full Bass model 

 

Additionally, future studies can validate the model empirically using real data from specific industries, thereby enhancing 

its applicability and generalizability. 
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