X Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
&EE] PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248; Posted:10-08-2025
: &

Gangulappagari Usha Sree! , Mr. B.C. Vengamuni,M.Tech, (Ph.D)?, Dr. M Madhu Babu?

'M.Tech, Student, Department of ECE, JINTUCEA.ushasreeg2002@gmail.com
?Assistant Professor, Adhoc Department of ECE, INTUACEA. vengamuni.phd@gmail.com
3 Assistant Professor, Adhoc Department of ECE, INTUACEA. madhu07visi@gmail.com

Keywords: ABSTRACT:

Matrix : . . : » : . :
Transposition, An efﬁment algorithm 2.11’1d a.rchltecture for matrix transpos1.t10n using .reglsters is proposed,
Pipelined enabling parallel processing with reduced latency and complexity. The design supports K-parallel
Architecture, transposition, where K represents the level of parallelism, and achieves minimal latency and
Memory, memory usage. This architecture employs a sequence of uniform swap units arranged in a cascaded
Latency, manner, where the activation of each stage is algorithmically defined and driven by counter-based
Processing control logic. The design supports matrix transposition for dimensions that are integer multiples of
elements K, where K is not constrained to powers of two. As part of this study, a 3-parallel and a 4-parallel

architecture are implemented for transposing a 12x24 matrix. A performance comparison shows
that the 4-parallel architecture performs better in terms of processing efficiency and resource
utilization. The results also offer deeper insights into continuous-flow transposition for non-square
matrices.

1. INTRODUCTION:

Matrix transposition is a fundamental operation essential to numerous domains, including image signal processing [1],
artificial intelligence [2], and various engineering applications [3], [4]. It is a key element in matrix-based computations
and is widely applied in deep learning models, especially in computer vision [5] and natural language processing [6]. In
applications such as image compression and synthetic aperture radar (SAR) imaging [7], matrix transposition is crucial
for executing two-dimensional (2D) fast Fourier transforms (FFTs), typically implemented through successive one-
dimensional (1D) FFTs. It is essential in neural networks, notably in dense layers, convolutions, and attention modules.
Traditionally, zero-padding has been employed to reshape input data into square or rectangular formats, ensuring structural
consistency during the training phase [2].

Wang’s design is restricted to transposing square matrices, while Garrido and colleagues [8] developed a register-
based method that optimizes both memory consumption and latency—but it only applies to matrices whose dimensions
are powers of two. Later, Garrido and Pirsch [9] expanded this approach to handle non-square matrices using memory-
centric designs; however, these implementations do not meet the theoretical minimum requirements for memory usage.
In contrast, Zhang et al. [10] proposed an architecture capable of reaching the theoretical lower bounds for both memory
and latency in non-square matrix transpositions.

Zhang’s architecture is specifically designed for matrices where one dimension is an exact multiple of the other.
This restricts its applicability, as scientific computing often involves matrices with arbitrary sizes that do not conform to
fixed aspect ratios [11].

ID FET Matnx \D FFT Matrix

Transposition Iransposition

(row by row) . " |(Column by Column) -
(21x2¢) (2:x21)

Figure 1: Procedure for Computing 2D FFT Using Continuous-Flow Architecture
1|Page

mailto:vengamuni.phd@gmail.com
mailto:madhu07vlsi@gmail.com

X Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
&EEI PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248; Posted:10-08-2025
k &

To overcome these constraints, this paper presents a novel continuous-flow algorithm and corresponding hardware
architecture designed to transpose matrices where both dimensions are integer multiples of a specified parallelism factor,
K. The proposed approach achieves the theoretical lower bounds for latency and memory usage. Section 2 introduces the
foundational algorithm for 3-Parallel Architecture, while Section 3 focuses on the the foundational algorithm for 4-Parallel
Architecture. A detailed performance comparison with existing approaches is presented in Section 4, followed by
concluding observations in Section 5.

2. BASIC PIPELINED ALGORITHM FOR 3-PARALLEL ARCHITECTURE
Matrix transposition is a core operation in linear algebra, formally expressed as:
Mij = (M)

wherei=0,1,2,..,R—1andj=0,1,2,..,C— 1. Here, A and B denote the number of rows and columns in the matrix,
respectively.

To simplify the description in the subsequent sections, we define:
A=R/K, B=C/K

where K denotes the level of parallelism applied in the architecture. Algorithm 1 outlines a structured Matrix transposition
requires K to be a common divisor of the matrix dimensions, enabling structured data exchange across three algorithmic
steps: within arrays (Step 1), within blocks (Step 2), and between arrays (Step 3). Each step comprises cascaded stages,
and use defined swap operations with calculated offsets and positions. For example, transposing a 12x24 matrix with K
= 3 involves two stages in Steps 1 and 2, and ten in Step 3, completing the full data rearrangement process. [12].

Algorithm 1: K-Parallel Matrix Transposition (K=3)
Input: R(rows), C(columns), K(Parallelism), and
matrix M

Output: Transposed matrix MT

Phase 1: Rearranging elements inside each array

1. Loop over each array index a from 0 to A — 1:

2. Loop throughsl =0to (K—1) x (A—-1)—1:

3. Compute range start and range size using;:

* row_start = [K — 1 —mod(s1, K — 1)][B — int(s1, K
- 1)]

*row_count = [mod(sl, K—1)+1][B—1—
int(stagel, K — 1)]

4. From r = row_start — 1 to row_start — 1 +
row_count — 1

5. For each column ¢ from 0 to K — 1:

6. Swap elements (M[r, c], M[r + 1, ¢]) using PEII
Phase 2: Reordering within blocks

7. Iterate over every block index 0 to A x B —1:

8. For s2 from 0 to K — 2:

9. LooprfromOQtoK—2—s2

10. Loopc froms2 + 1to K — 1

11. Swap (M[r, c] with M[r + 1, ¢ — 1]) possessed by
PEI

Phase 3: Itransferring elements across arrays

12. For each stage index s3 in 0 to (A — 1) x (BK —
-1

13. Determine the dynamic start and count of rows:

* row_start; = [A — 1 — mod(s3, A — 1)][BK — int(s3,
A-1)]

2|Page

N Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
SEE, PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248, Posted:10-08-2025
U3

* row_count; = [mod(s3,A— 1)+ 1][BK -1 -
int(s3, A — 1)]

14. From r =row_start;— 1 to row_start; — 1 +
row_count; —1

15. Loop over ¢c from O to K — 1

16. Swap M[r, ¢] with M[r + 1, c¢]) using PEII unit
Return:

* Final transposed matrix M "

2.1 PERFORMANCE OF CASCADED 3-PARALLEL ARCHITRCTURE:

Transposing a RxC matrix is carried out through multiple permutation stages, each governed by the logic of the core
algorithm.

A single-path swap circuit, as described in [14], enables the exchange of two data points separated by a defined offset.
The swap or pass-through operation within these circuits is controlled by signals that dynamically configure the internal
multiplexers.

The cascaded K-parallel matrix transposition architecture comprises two types of processing elements: PEI, which handles
data swaps across input ports (Step 2 of Algorithm 1), and PEII, which manages intra-port swaps across clock cycles
(Steps 1 and 2). The number of stages in each step is derived from Algorithm 1 based on matrix dimensions (R, C) and
parallelism K. Control is managed by three counters (Co, Ci, C,), each generating stage-specific signals (Sn) for different
transposition steps.

T
fraazr h ia - i

________________ I ———————

Figure 2: K-Paralle PE's for Algorithm 1

2.2 CONTRL STRATEGY:

The operation of the proposed architecture is governed by a set of counters that manage control signals across different
stages. The control signal corresponding to the n-th stage in Steps 1, 2, and 3 is represented as S, These signals are derived
from three dedicated counters Cy, Ci, and C; which count from 0 up to BK—1, K—1 and ABK—1, respectively. Each counter

increments its value on every clock cycle to ensure proper sequencing and timing across the architecture.

For an R x C matrix, the number of stagel in step 1 is (A —1)x(K—1); the number of stage2 in step 2 is K — 1; the
number of stage3 in step 3 is (BK—1)x(A —1); so, the total size of the memory is as follows:

D=B-1)xK-1)xK+(K-1)xK+(BK-1)x(A-1)xK,
=(BK - 1)(AK- 1) +K - 1,

=(C-DHR-1)+K-1

3|Page

N Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
EEI PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248, Posted:10-08-2025
U3

and the total latency is as follows:
L= D/P,
=[(C-1DHR-1)+K-1JK.

As discussed in [15, Sec. 3.3] and [16], the K-path architecture achieves the theoretical minimum requirements for both
memory consumption and processing latency. Figures 3 and 4 illustrate the simulation outcomes and the architectural
design of the 3-parallel implementation for a 12x24 matrix, respectively.

Tef Cormzle

5 L n e i]

Tel Conucle

= ¢ I & ¥ 8®

Figure 3: Simulation results of 3-Parallel Architecture for 12x24 matrix

Figure 4: Schematic resukts of 3-parallel Architecture for 12x24 matrix

3. BASIC PIPELINED ALGORITHM FOR 3-PARALLEL ARCHITECTURE:
A =min(R;C) ; B =max(R;C);

Q=B/A

Algorithm 2: K-Parallel Matrix Transposition (K =
4)

Input: R, C and matrix M

Output: matrix M'

Phase 1: Internal element shifting within a block

1. For each pipeline step s from 0 to A — 1

2. Repeat for every processing segment p from 1 to
Q:
3. Compute start index: base_row = (p — 1)A

4. Iterate over row indices r from base row to

base row + pA—-2-—s

5. Loop over columns ¢ ranging froms+ 1 to A — 1

4|Page

X Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
&EEI PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248; Posted:10-08-2025
k &

6. Swap the pair of entries (M[row, 1], M[row + 1,
c])

Phase 2: Inter-block data exchanges

7. For each processing cycle s from 0 to (Q -1)(A —
1)-1:

8. Compute:

* base row =[Q — 1 —mod(s, Q — 1)][A — int(s1, Q
— 1]

* shift = [mod(s, K—1) + I]JA — 1 —int(sl, Q — 1)]
9. From base row — 1 up to base row — 1 + shift — 1
10. For each column index ¢ from 0 to A — 1

11. Swap M[row, c], M[row + 1, ¢ — 1]

Return:

M, the transpose of matrix M

Based on the stage-wise depiction in Algorithm 2, Steps A and B are amenable to pipelining within hardware circuits.
The overall transposition architecture remains structurally consistent for both C<R and C>R, with minor variations in
control logic and execution sequence. Specifically, Step A precedes Step B when R>C, while the order is reversed for
R<C; the architecture and control strategies for the R>C case are detailed in Section 3.2, and the alternative scenario
follows a similar design.

3.1 PERFORMANCE OF CASCADED 4-PARALLEL ARCHITRCTURE:

The proposed RxC matrix transposition architecture is composed of two main parts: A—1 cascaded basic permutation
units, and an additional (K—1)(A—1) cascaded stages, each incorporating a shift register of length A. In total, the
architecture integrates K(A-1) basic permutation units arranged in cascade.

Figure 5: A two-path basic exchange circuit utilizing shift registers of length L

3.2 CONTROL STRATEGY:

We introduce a multi-path permutation circuit tailored for non-square matrices by building upon the foundational
exchange circuit proposed by Cheng and Yu [14], as well as the N-parallel permutation architecture developed by Wang
[15]. While the overall control approach remains consistent with that described in Section 2.2, the control signal generation
is simplified. Specifically, the counter Cy is no longer necessary in the multi-path configuration. As a result, control signals
are now driven by just two counters: C; and C,, which count from 0 to A—1 and 0 to QA—1, respectively.

the total memory size is as follows:

D=(A-1) X A+ (Q-1)(A-1) X A
= (R-1)(C-1)+A-1

and the total latency is as follows:

L=D/P,

5|Page

N Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
SEE, PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248, Posted:10-08-2025
U3

=[(C-1DHR-1)+K-1]/K

Consequently, validation results confirm that the design attains the theoretical minimums in both latency and memory
usage. Figures 6 and 7 illustrate the simulation outcomes and the architectural design of the 4-parallel implementation for
a 12x24 matrix, respectively.

Tel Convicde

¢ N & ¥ 8 ‘ ' « 2 2 |

Figure 6: Simulation results of 4-Parallel Architecture for 12x24 matrix

Figure 7:Schematic results of 4-Parallel Architecture for 12x24 matrix

4. COMPARISION AND RESULTS:

MATRIX |K | MEMORY LATENCY
(C-DHR-1)+]| [(C-DHR-1)
12X24 3Kk + K- 1)K
(R -)(C —)+ | [([C—)R -1)
12X24 4l A +A—- 1)K

This section presents a comparative analysis of the proposed matrix transposition architecture against several leading
designs. The architecture described in [16] supports both serial and parallel transposition for square matrices of size 2"x2",
achieving optimal memory and latency performance. Its multiplexer complexity is O(NlogzN). Similarly, the approach in
[15] also reaches these theoretical bounds for NxN square matrices but incurs higher multiplexer complexity, scaling as
O(N?). Notably, both of these designs are limited to square matrix configurations and cannot be directly applied to non-
square matrices.

In contrast, the design presented in [10] extends functionality to non-square matrices and lowers multiplexer
complexity back to O(Nlog>N); however, this comes at the cost of increased memory and latency, both growing as MN
for an MxN matrix—well above the theoretical minimum.

The architecture proposed in this work addresses these limitations by supporting both square and non-square
matrices, including those with row and column dimensions that are integer multiples. Although it introduces a slightly

6|Page

N Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
EEI PH SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248, Posted:10-08-2025
U3

higher multiplexer complexity of O(N?), it attains the theoretical lower bounds for both memory and latency, requiring
only (M—1)(N—1) registers and an equal number of clock cycles. Furthermore, the design supports scalability across serial
and K-parallel implementations, enhancing its applicability to a wide range of use cases.

To assess performance and hardware efficiency, the architecture was implemented on a Xilinx Zynq-7000 FPGA
(xc72020clg484-1) using the Vivado design suite. For consistency, Garrido’s architecture was also implemented using
equivalent register-based memory to ensure a fair comparison.

Compared to the solution in [10], While the proposed architecture incurs a modest increase in hardware resource
usage due to additional multiplexers, it achieves the theoretical minimum in latency and maintains competitive throughput.
Moreover, it provides greater flexibility by efficiently supporting a wider range of matrix dimensions, including those not
limited to fixed-size multiples. Power consumption is predominantly driven by flip-flops (FFs) and look-up tables (LUTs)
within the transposition modules, demonstrating an effective trade-off between performance and hardware cost.

Theoretical 12x24 (3-Parallel) 12x24 (4-Parallel)
minimums

Memory 255 265

Latency 85 64

5. CONCLUSION:

This paper introduces an efficient matrix transposition architecture using shift registers, optimized for K-parallel
iplementations. By leveraging cascaded swap units and a counter-based control mechanism, the design achieves minimal
latency and memory usage while supporting a broad range of non-square matrices with dimensions that are integer
multiples of K. The implemented 3-parallel and 4-parallel transposition architectures for a 12x24 matrix demonstrate the
scalability and effectiveness of the proposed approach. Notably, the 4-parallel design achieves improved processing
efficiency and better resource utilization, validating the practicality of the architecture for high-performance applications
in digital signal processing and beyond.

REFERENCES:

[1] F. B. a. F. L. M. Bian, "Matrix transpose methods for SAR imaging system," in Proc. IEEE 10th Int. Conf. Signal Process,
Beijing, China, Oct. 2010.

[2] D.H.S.C.S.K.a. H.-J. Y. D. Im, "DT-CNN: An energy efficient dilated and transposed convolutional neural network processor
for region of interest based image segmentation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. Oct. 2020, p. 3471—
3483, 2020.

[3] M. T. L-G. O. a. U. S. F. Mahmood, "2D discrete Fourier transform with simultaneous edge artifact removal for realtime
applications," in Proc. Int. Conf. Field Program. Technol. (FPT), Queenstown, New Zealand, 2015.

[4] S.M. a. K. Jayakumar, "A DSP based real-time 3D FFT system for analysis of dynamic parameters," in Proc. IEEE Int. Conf.
Adv. Commun. Control Comput. Technol.,, Ramanathapuram, India, 2014.

[5] H. Song, "The application of computer vision in responding to the emergencies of autonomous driving," in Proc. Int. Conf.
Comput. Vis. Image Deep Learn. (CVIDL), Chongqing, China, 2020.

[6] A. Barnard, "The nursing profession: Implications for Al and natural language processing," in Proc. Int. Conf. Natural Lang.
Process. Knowl. Eng, Beijing, China, 2007.

[7] C.C.C.D.D.S.F.P.Q.Q.F.C.X. W.a. X. Y. Z. K. Han, "An accurate 2D nonuniform fast Fourier transform method applied
to high resolution SAR image reconstruction," in 2012 International Workshop on Metamaterials (Meta). IEEE, 2012 .

[8] J. G. a. O. G. M. Garrido, "Optimum circuits for bitdimension permutations," IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 5, no. May 2019, p. 1148-1160, 2019.

7|Page

Design And Implementation Of A Parallel Pipelined Matrix Transposition Architecture Using Shift Registers
gEﬁ)H SEEJPH Volume XXVIII, 2025, ISSN: 2197-5248,; Posted:10-08-2025
: U3

[91 M. G. a. P. Pirsch, "Continuous-flow matrix transposition using memories," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. Sep. 2020., p. 3035-3046, 2020.

[10] Z. M. a. F. Y. B. Zhang, "A novel pipelined algorithm and modular architecture for non-square matrix transposition," IEEE
Trans. Circuits Syst. II, Exp. Briefs, Vols. 68, no. 4, no. Apr. 2021, p. 1423-1427, 2021..

[11] Z. Q. M. N. a. W. Y. S. Yang, "TransPose: Keypoint localization via transformer," in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2021, 2021.

[12] Z. M. ,. a. W. L. Bo Zhang, "Parallel Pipelined Architecture and Algorithm for Matrix Transposition Using Registers," IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, Vols. 69, no. 3, no. March 2022, pp. 1627-1631,
2022.

[13]J. G. a. O. G. M. Garrido, "Optimum circuits for bit reversal," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vols. 58, no. 10, no.
Oct. 2011, p. 657-661, 2011.

[14] C. C. a. F. Yu, "An optimum architecture for continuous-flow parallel bit reversal," IEEE Signal Processing Letters, Vols. vol.
22, no. 12, no. 2015, p. 2334-2338, 2015.

[15] Z. M. a. F. Y. Y. Wang, "Pipelined algorithm and modular architecture for matrix transposition," IEEE Transactions on Circuits
and Systems II: Express Briefs, Vols. vol. 66, no. 4, no. Apr. 2019, p. 652—656, 2019.

[16] P. S. H. S. a. J. T. T. Jarvinen, "Stride permutation networks for array processors," J. VLSI Signal Process. Syst. Signal Image
Video Technol., Vols. vol. 49, no. 1, no. 2007, p. 51-71, 2007.

8|Page

