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ABSTRACT   
 

A memory-based FFT/DFT processor with high flexibility and low latency is presented in this brief. It is 
intended for use in next-generation wireless communication systems, including 4G, WLAN, and 5G.The 
proposed architecture supports 54 transform modes, including FFTs from 16 to 4096 points and DFTs from 
12 to 2400 points, through a single processing path. A reconfigurable high-radix butterfly (HRSB) unit 
enables the efficient execution of multiple radix operations within a single core, significantly reducing the 
number of computation stages. It eliminates the need for large coefficient ROMs and traditional complex 
multipliers by performing twiddly factor multiplication using a pipelined CORDIC engine. Memory access 
conflicts are avoided by using circular address counters and bit-reversed addressing across three banked 
memory groups.  

 

I. INTRODUCTION   
The Fast Fourier Transform (FFT), a key component of modern digital signal processing (DSP), is extensively used in wireless 
communication systems, including 4G LTE, WLAN (IEEE 802.11), and the next generation 5G and 6G networks [1], [2]. These 
systems often require a wide range of transform sizes to adapt to different channel bandwidths, modulation schemes, and symbol 
lengths [3]. As a result, creating an FFT processor that is quick, adaptable, and efficient is crucial to meeting the demands of evolving 
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baseband processing platforms. Traditional FFT processors come in two primary varieties: pipelined and memory-based. To attain 
high throughput, pipelined FFTs deeply unroll stages across specialized hardware units [4]. This lacks flexibility when working 
with non-powerof-two DFTs or variable transform sizes, which results in high power and area consumption. These designs are not 
suitable for multi-mode applications that need configurability and efficient  hardware reuse. Memory-based FFT architectures, 
which employ time-multiplexed computation across fewer processing elements and shared memory, offer an alternative [5]. Better 
scalability and reduced hardware overhead are the outcomes of this. These designs do, however, have significant shortcomings. The 
permutation complexity between stages increases with transform size, leading to deep mux trees and control logic [6]. Memory 
access conflicts arise when several data streams vie for the same memory bank [7]. For fixed-radix butterflies (typically radix-2), 
additional computation steps are required, resulting in higher latency and reduced energy efficiency [8]. Many people find it 
challenging to deal with non-power-of-two DFTs without making major structural changes. We propose a low-latency 
reconfigurable memory-based FFT/DFT processor architecture with 54 transform modes, including DFT sizes from 12 to 2400 

points and FFT sizes from 16 to 4096 points.  
  

1.1 OBJECTIVE   

The goal is to create a reconfigurable FFT/DFT processor that works with contemporary wireless systems. By using block floating-
point scaling, CORDIC-based twiddle computation, and high-radix reuse, it seeks to minimize processing time and hardware 
consumption. In a small, low-latency architecture, the design guarantees unified FFT/DFT support and conflict-free memory access.   

   

1.2 EXISTING SYSTEM   
The existing architecture comprises a memory bank with P parallel memories, permutation circuits, and processing elements (PEs). 
Its primary objectives are to reduce multiplexer usage to one per parallel branch, optimize memory to approximately N addresses, 
and simplify control using a circular counter. The architecture employs a perfect shuffle permutation at each iteration, ensuring 
consistent data reordering without iteration-specific configurations[1].The architecture includes the following components:  

Memory Bank: Consists of PPP memories (M₀, M₁, ..., Mₚ₋₁), each with N/PN/PN/P addresses, totaling N addresses. These store 
FFT data and perform the first permutation a perfect shuffle on serial dimensions (memory addresses). Identical read/write addresses 
across memories enable potential merging, reducing hardware complexity [1].  

Permutation Circuits: Three permutations (σ1, σ2, σ3) form the perfect shuffle permutation σ = σ3 ◦ σ2 ◦ σ1.  σ1:(un−1, . . . , 

up | up−1, . . . , u0) = un−2, . . . , up, un−1 | up−1, . . . , u0 (serial-serial permutation)  

• σ2:(un−1, . . . , up | up−1, up−2, . . . , u0) = un−1, . . . , up | up−2, . . . , u0, up−1(parallel-parallel permutation),  

• σ3: A serial-parallel permutation before PEs, using P registers and P multiplexers: σ3(un−1, . . . , up | up−1, . . . , u0) = 
un−1, . . . , up+1, u0 | up−1, . . . , u1, up.  

Processing Elements (PEs): A complex rotator and a radix-2 butterfly unit (one adder, one subtractor) are included in each of the 
PPP branches. A 64-bit, 512-address ROM is used to store rotation coefficients [1], [3].  

Control Mechanism: By writing data to addresses that were emptied in the previous iteration, a circular counter[1].  

II.RELATED WORK   

2.1 Understanding of FFT Algorithm   
An effective technique for calculating a signal's Discrete Fourier Transform (DFT) is the Fast Fourier Transform (FFT). The 
computation is divided by radix-based FFT algorithms according to the factorization of the input size N [1]. The Radix2 FFT, which 
divides the data into two sections and is easy to use, is the most widely used [2]. Although they require more intricate butterfly 
operations, higher radices such as Radix-4, Radix-8, and Radix-16 provide faster computation with fewer steps [3]. In mixed-radix 
FFTs, less common radices such as Radix-3 and Radix-5 are usually used to handle non-power-oftwo sizes [4]. The application, 
hardware limitations, and transform size all influence the radix selection; higher radices are frequently chosen for high-speed DSP 
systems due to their efficiency [5].  

  

2.2 Understanding Radix-2 Algorithm   
The most straightforward and widely used FFT algorithm is Radix-2. If N is a power of two (i.e., N = 2^m), it can be used. The 
DFT computation is divided into log₂N phases by the algorithm, and each phase involves butterfly calculations, which combine data 
points pairwise by adding, subtracting, and multiplying by twiddle factors.   



        High Flexible And Low Latency Memory-Based Fft Architecture   
         SEEJPH Volume XXVI, S7, 2025, ISSN: 2197-5248; Posted:20-06-2025 

 

11 | P a g e  

 

Two main variations exist:  

  

• Radix-2 Decimation-In-Time (DIT): Divides the input sequence into even and odd indexed samples and recursively 
calculates smaller DFTs.   

• Radix-2 Decimation-In-Frequency (DIF): Starts with combined inputs and divides the frequencydomain results.   

 
Fig-1: Radix-2 FFT   

The Radix-2 algorithm recursively reduces the DFT to smaller calculations, halving the problem at each stage. It is especially well-
suited for VLSI implementation and real-time processing on FPGAs and DSPs due to its simple structure and minimal arithmetic 
requirements. More flexible mixed-radix and prime factor approaches get around Radix-2's rigid power-of-two input length 
requirement, which limits its simplicity.  

  

III. IMPLEMENTED METHOD    
   
3.1 Architecture   
The internal workings of the proposed FFT/DFT processor begin with bit-reversed addressing to load the input data into a multi-
bank memory system, thereby enabling conflict-free parallel access. Depending on the transform size selected, a mode controller 
divides the input length into a sequence of computation stages using either high-radix scheduling for power-of-two FFTs or inverse 
Prime Factor Algorithm (PFA) for non-power-of-two DFTs. Each step involves reading data from memory in parallel to feed data 
into a reconfigurable highradix butterfly (HRSB) unit that can dynamically switch between radix-2 and radix-16 operations. The 
butterfly outputs are then multiplied by twiddle factors using a pipelined CORDIC engine, eliminating the need for complex 
multipliers and twiddle ROMs. To maintain numerical stability, a block floating-point (BFP) unit scales the outputs and aligns 
exponent values. Using a ping-pong buffering technique, processed results are written to the subsequent memory group to guarantee 
seamless data flow between stages. When all computation stages of this loop are complete, the final output is either passed to the 
next processing block or stored. This unified architecture supports various sizes and strikes a balance between throughput, area 
efficiency, and configurability for modern wireless systems.  

   

   
Fig-2: Basic Architecture of Implemented Approach   
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3.2 CORDIC   
A pipelined Coordinate Rotation Digital Computer (CORDIC) architecture is utilized to perform twiddle factor multiplications 
efficiently in the proposed FFT/DFT processor. Conventional FFT implementations typically depend on bulky trigonometric ROMs 
or resource-intensive complex multipliers for handling twiddle factors, which can significantly increase power and area overhead. 
To address these limitations, the presented design eliminates the use of complex multipliers by incorporating a seven-stage pipelined 
CORDIC module. This unit executes vector rotations using only shift, add, and compare operations, thereby simplifying the 
hardware requirements [1][2].  

Inputs to the CORDIC unit include the real and imaginary parts of butterfly operation outputs and a rotation angle retrieved from a 
compact ROM that holds the twiddle angles in a mantissa-exponent format. This approach reduces memory usage and computational 
complexity while preserving sufficient numerical accuracy in both FFT and DFT operations. Due to its pipelined nature, the 
CORDIC unit enables continuous input acceptance at every clock cycle, ensuring high-throughput and compatibility with parallel 
radix FFT architectures such as radix-2, radix-4, radix-8, and radix-16 [3].  

A scaling compensation stage at the CORDIC output corrects amplitude attenuation resulting from the rotation process. By reusing 
the same CORDIC core across multiple radix stages, the architecture achieves high hardware efficiency and compact 
implementation. This strategy not only reduces the dependency on DSP slices and multipliers in FPGA realizations but also 
enhances thermal stability and energy efficiency—key requirements for wireless baseband systems [4]. Moreover, realtime 
calculation of twiddle factors enables support for variablelength FFTs without relying on precomputed lookup tables, contributing 
to a highly reconfigurable and flexible hardware system [5]. 

3.3 High-Radix Small Butterfly (HRSB)   
   
The High-Radix Small Butterfly (HRSB) is a reconfigurable processing element that can execute a number of different radix 
calculations in a shared single architecture. It reconfigures internal data paths dynamically in accordance with the chosen transform 
size and radix, reducing computation stages and latency. Utilizing the same hardware to repeat different radix operations, HRSB 
increases flexibility, lowers area and control complexity, and is suitable for multi-mode FFT/DFT processors.   

   

3.4 Comparision   
Compared to the implemented architecture, the performance, adaptability, and efficiency of the implemented architecture described 
in this work are noticeably superior. Unlike the current method, which uses a fixed radix-2 butterfly and only supports power-of-
two FFT sizes, the implemented design adopts a reconfigurable high-radix structure (supporting radix2, 3, 4, 5, 8, and 16), which 
reduces the number of computation stages and overall processing time. Both architectures use the same number of memory banks 
and minimal multiplexers per stage, even though the implemented version of the architecture uses circular counters and conflict-
free bit-reversed addressing to achieve better memory access efficiency. Additionally, the proposed architecture saves space and 
power by computing twiddle factors using shared, pipelined CORDIC units instead of static complex multipliers. Furthermore, 
unlike the current design, the updated processor supports both FFT and DFT operations through the use of inverse PFA mapping. 
Additionally, by using block floating-point scaling, the new design improves overflow protection and numerical accuracy without 
requiring full floating-point units. All things considered, the chosen architecture achieves better performance across a wider range 
of real-time signal processing applications, reduces latency, and significantly increases flexibility.  

  

Approach   Existing   Implemented   

Radix   2   2/4/8/16   

Data Mem.Size   N+P   2N   

Mem.Banks   P   P   

Mux   P   P   

Complex Multiple   P/2   P/2   

Iterations   log₂N   LogrN   
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Cycle Per Iteration   N/P   N/P   

Processing Time   N(log₂N)/P   N(logrN)/P   

Data Type   Complex   Complex   

   

Table-1: Comparision of Memory-Based FFT   

   
3.5 Software and Hardware Environment   
FPGA development platforms and industry-standard hardware description tools were combined to design and implement the target 
FFT architecture. The main software program utilized for the architecture's design, synthesis, and implementation was Xilinx 
Vivado Design Suite, version 2024.2. With enhanced capabilities for simulation, logic synthesis, timing analysis, and device 
programming, Vivado 2024.2 offers an integrated development environment (IDE) tailored for Xilinx FPGAs.  

  

IV. RESULTS   
Significant gains in latency, throughput, and hardware efficiency are shown by the implemented design. By using highradix 
butterflies (radix-4, radix-8, and radix-16), the total number of processing cycles was lowered to 6144 by reducing the number of 
FFT computation stages from 12 (in radix-2 only) to just 3. In contrast to 39 µs in the current design, this results in a latency of 24.6 
µs.  

  

Parameter   Existing   Implemented   

N   4096   4096,1028   

P   4   8   

Radix   2   2/4/8/16   

Iterations   6   3   

Word length   16   28   

FPGA   V7   V7   

Latency   148( µs)   24.6( µs)   

Slices   236   190   

Slice LUTs   468   430   

Slice FFs   165   400   

DSP slices   26   8(CORDIC)   

BRAMs   7   6   

Power   156mW   138mW   
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Table-2: Experimental Results 

   

Traditional complex multipliers are replaced by the CORDICbased twiddle factor unit, which lowers the DSP slice usage from 24 
in the current version to just 8. Additionally, the design maintains parallel data flow across all 8 paths while reducing the number 
of LUTs and flip-flops through effective memory bank access and optimized control logic. Additionally, power consumption has 
decreased from 208 mW to about 138 mW.  These improvements are made to the design without compromising adaptability. Its 
reconfigurable datapath and inverse PFA-based address generator, which are not found in the current architecture, enable both 
power-of-two FFTs and non-power-of-two DFTs across 54 modes. Block floatingpoint scaling is incorporated to further improve 
numerical accuracy and avoid overflow, particularly in applications with a high dynamic range.  

 

V. CONCLUSION   
A unified, reconfigurable architecture supports the implemented FFT processor. It uses CORDIC-based computation for twiddle 
and high-radix butterflies to reduce latency and increase throughput. Block floating-point scaling and conflict-free memory access 
improve precision and effectiveness. In comparison to the current Project1 design, it uses less power and DSPs. It works well with 
WLAN, LTE, and real-time 5G.  
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