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ABSTRACT 

Background: Klebsiella pneumoniae is a pathogenic bacteria that can form biofilms on abiotic and biotic 

surfaces. The constraints of the therapeutic choices against K. pneumoniae arise from its innate capacity to 

develop biofilm and harboring determinants of multidrug resistance. Objective: The current study aimed to 

assess the prevalence of some fimbrial genes (type 1 and type 3) of K. pneumoniae strains in community-

acquired infections obtained from various clinical sources on their ability to produce biofilm. Methods: A total 

of 256 samples (106 male and 150 females) were taken from various clinical sources including Urine, wound 

swabs, sputum, burn swabs, bronchial wash, diabetic foot ulcer, and higher vaginal swabs) from outpatients in 

Kirkuk City hospitals. The isolates were identified on the Blood agar, MacConkey agar and Eosin Methylene 

Blue agar based on the cultural, morphological, in addition to biochemical assays, and confirmed using the 

automated VITEK 2 system. The Microtiter plate (MTP) method was employed to detect Biofilm formation. 

Subsequently, a polymerase chain reaction was performed to determine the presence of the T1 fim and mrkD 

genes. Result: Out of 256 only 38 (14.8%) isolates belonged to Klebsiella pneumoniae. Of all isolates, 

38(100%) were biofilm producers. The PCR results revealed that all 38 isolates showed positive (100%) for T1 

fim and 37 isolates (97.4%) for mrkD. 

 

1. Introduction 

A gram-negative, non-motile Klebsiella pneumoniae is an encapsulated, rod-shaped, and facultative 

anaerobic member of the family Enterobacteriaceae [1]. This bacterium is one of the most opportunistic 

microorganisms, which is frequently related to infections acquired in the community and healthcare 

settings. Additionally, it has been found to play a significant role in developing healthcare-related 

infections [2,3]. K. pneumoniae is a clinically significant species within the Klebsiella genus, 

accounting for approximately 86% of human infections. This makes it the most prominent pathogen 

within this genus [4]. This bacterium is the causative agent for various infections in human beings 

including urinary tract infections(UTIs), pneumonia, wound infections, pyogenic liver abscesses, burn 

infections, bacteremia, and meningitis [5,6,7]. Infections caused by K. pneumoniae primarily affect 

vulnerable populations such as newborns, the elderly, and persons with weakened immune systems. 

However, it is also responsible for a growing prevalence of infections acquired within the community 

[8]. Klebsiella species, found in various environments; can establish itself in the nasopharynx and 

gastrointestinal system, acting as an opportunistic pathogen in humans. Gastrointestinal colonization 

is probably a prevalent and significant reservoir regarding the risk of transmission and infection among 

body sites [9]. The pathogenicity of K. pneumonia principally comes from an array of virulence 

characteristics, which allow it to bypass the host's innate immune system and develop a persistent 

infection in the mammalian host [8]. These virulence factors including (fimbrial adhesions, capsule, 

lipopolysaccharides, biofilm formation, siderophores, hemolysis, gelatinase, protease, 

haemagglutination and hypermucoviscosity) contribute to its ability to survive in various 

environmental settings and hence facilitate the establishment of infection in the human body. Each of 

them can cause a diverse range of diseases in both hospitalized patients and individuals in the 

community [10,11,12]. 

K. pneumoniae exhibits significant virulence through biofilm formation, a polymerization process in 

which bacteria adhere to inert or active surfaces via extracellular polymeric substances [13]. The 

biofilms formation on the inner surfaces of catheters and other implanted devices are of medical 



183 | P a g 

e 

Assessment of mrkD and T1 fim Genes of K. pneumoniae and Their Association with Biofilm 

Formation in Community-Acquired Infections. 

Posted: 04-07-2024, Vol. (XXIV) 

  

 

significance, which can, also result in the colonization of the respiratory, urinary, and gastrointestinal 

tract, which in turn contributes to the occurrence of invasive diseases, especially in individuals with 

weakened immune systems [14]. This capability of K.. pneumoniae enables the protection of strains 

against the immune response of the hosts' and results in drug resistance. The development of biofilms 

is influenced by a variety of genes, such as mrk (which codes for type 3 fimbriae) and T1 fim (which 

codes for type 1 fimbrial adhesion) [15]. The T1 fim gene is responsible for bacterial adherence. 

Approximately 90% of K. pneumoniae express Type 1 fimbriae, they serve a key function in adhering 

to various types of epithelial cells, particularly those found in the bladder [16]. The gene MrkD acts as 

an adhesin and is located at the fimbrial tip. Studies have revealed that Type 3 fimbriae increases K. 

pneumoniae adherence to the extracellular matrix. 

Furthermore, they have the ability to adhere to human endothelium and bladder cells, as well as 

enhance the production of biofilms on both living and non-living surfaces [17].  These virulence genes, 

either individually or in combination, contribute to different extents to the initiation, invasion, spread, 

severity, and outcome of K. pneumoniae infection [16]. Therefore, the current study aimed to evaluate 

the occurrence of some fimbrial genes (namely type 1 and 3) in community-acquired strains of K. 

pneumoniae obtained from different clinical samples and identify their ability to produce biofilm. 

2. Methodology  

Study design and study period  

This cross-sectional study was carried out in Kirkuk City, focusing on four major hospitals: Kirkuk 

General Hospital, Azadi Teaching Hospital, AL-Naser Hospital and General Pediatrics Hospital, and 

was conducted between September 2023 and December 2023. 

Study subjects and collection of clinical samples 

The study included 256 outpatients from four main Hospitals. Those individuals had community-

acquired infections (CAIS). Thirty-eight (38) clinical isolates of K.  pneumoniae from 256 samples 

were taken from different body sites (urine, wound, sputum, burn, bronchial wash, diabetic foot ulcer, 

and vagina) of 256 outpatients. The patients were within the age range of less than 1-80 years for both 

genders (21 male and 17 female). The samples collected from outpatients were classified as infected 

based on the clinical manifestations in each patient. Urine and sputum samples were collected using a 

clean, sterile, well-labeled, and leak-proof container, without any apparent signs of contamination; 

other clinical samples were obtained using sterile transport swabs and then transferred to the 

Microbiology laboratory for additional processing. 

Identification of bacterial isolates  

All clinical samples were cultured on the Blood agar, Nutrient agar, and MacConkey agar (Scharlau, 

Barcelona, Spain), with incubation at 37◦C for 24 hours. Large, lactose fermenting mucoid colonies 

were then subcultured on Eosin methylene blue agar (Neogen, USA) for differentiation between K. 

pneumoniae and E.coli. The isolated colony was Gram-stained and biochemically characterized using 

oxidase, catalase, urease, indole, motility, kligler iron agar, methyl red, citrate utilization, and Vogues-

Proskauer. All 38 isolates of K. pneumoniae were confirmed using the Vitek 2 system (BioMeriux, 

France) following the manufacturer's recommendations. All isolates were stored in Brain heart infusion 

broth in a frozen state (Scharlau, Barcelona, Spain) supplemented with 20% glycerol at a temperature 

of -20◦C for further investigation [15]. 

Detection of the biofilm production  

The ability of K. pneumoniae isolates to produce biofilm was evaluated using the microtiter plate 

method (MTP). Thirty-eight K. pneumoniae isolates were inoculated in trypticase soy broth (TSB) 

supplemented with (1% glucose), incubated for 18-24 hours at 37 ˚C, and then diluted 1:100 in a new 

TSB medium. Every strain was tested three times. Three wells, one in each well of a 96-well flat-

bottomed microplate, were applied as a negative control (containing only 200 µl of sterile TSB). 
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Following 48 hours of incubation at a temperature of 37◦C, the plate was gently washed three times 

with phosphate buffer saline (PH=7.2) to remove planktonic cells. Subsequently200 µl of (0.1%) 

crystal violet was applied to all wells. Following incubation for 15 minutes at room temperature, then 

supernatant was discarded, and consequently, the MTP was rinsed three times with distilled water.  

After that, MTP was inverted for several hours to facilitate drying. The biofilm-bound dye was re-

solubilized by adding 200 µl of a 95% ethanol solution and covering  microtiter plate with the lid and 

kept at room temperature for 30 minutes. The optical densities (OD) of the stained films that adhered 

to the surface were quantified using an ELISA reader (BioTek, USA) at a wavelength of 630 nm[18]. 

Results were evaluated as in Stepanović et al., 2007[18]. 

Molecular method for detection of T1 fim and mrkD genes of K. pneumoniae isolates 

DNA extraction: Using FavorPrep™ Blood Genomic DNA Extraction Mini Kit (Favorgen 

FABGK100, Taiwan) for the  extraction of  K. pneumoniae genomic DNA (chromosomal and plasmid) 

from all isolates from overnight cultures. Each kit comes with enough supplies to perform 100 genomic 

DNA isolations. The Quantus fluorometer was employed to quantify the extracted DNA concentration, 

which was then used to assess the quality of the samples for further applications. A mixture was 

prepared by combining 1 μl of DNA with 200 μl of diluted Quantifluor dye. Following incubation for 

5 minutes at room temperature, the concentration of DNA was determined and ranged from 2.1 to 84 

ng/µl. Then DNA solution was kept at -20◦C until perform PCR assay.  

Primers for Genes Amplification: The researcher designed the primer dedicated to T1 fim and mrkD 

genes via NCBI web primer-designing tools, as listed in Table (1). To reconstitute the primers, a stock 

solution was made (Macrogen DNA Technologies, Korea) by adding 250 µl of ddH2O to each vial of 

lyophilized primers. This yielded a stock solution of 100 pmol, which was then diluted to 20 pmol/l 

and kept at (-20 °C) 

Table 1. Specific primers for type 1 and type 3 fimbriae 

Primer 

Name 

Primer sequence 

(5′ → 3′) 

Product Size 

(bp) 

T1 fim-F 
GCTGGTCGATGAACGCCTGG 458bp 

T1 fim-R 
GATGAACTGGAAGGAGTCGC 

mrkD-F 
CTGGGAACCACCTCGTCCTG 442bp 

mrkD-R 
CGTAGGAGGTGTACTTACCC 

To acquire the best PCR results, the temperature for the amplification technique was tuned. This was 

done by running the PCR on a gradient run until distinct bands were formed. 

PCR amplification and Agarose gel electrophoresis 

The Polymerase Chain Reaction was conducted with a Thermal Cycler to determine some virulence 

genes: fimbriae (T1fim, mrkD). The PCR reaction mixtures were prepared by combining 12.5 μl of 

GoTaq® G2 Green Master Mix 2X (Promega, USA), 5 μl of DNA template, 1 μl each of forward and 

reverse primers, and nuclease-free water to complete the volume of 25 μl. The thermal cycler was 

programmed under the optimum conditions as listed in Table (2). Note: The annealing temperature for 

the mrkD gene was set at 61°C, while the annealing temperature for the T1 fim gene was set at 56°C. 

Table 2.  The optimal condition to detect T1 fim and mrkD genes 

Amplification steps Temperature (ᵒC) Time(sec) Number of cycles 

Initial Denaturation 95 300 1 

Denaturation 95 30 
35 

Annealing 61,56 30 
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Extension 72 45 

Final extension 72 300 1 

Holding 4 300 1 

PCR product was running on the 1.5% agarose gels containing ethidium bromide stain and electric 

current was allowed at 80 volts for 45 minutes. DNA bands were observed using a UV-

Transilluminator system and photographed with a camera. The PCR product size was determined using 

a 100bp DNA ladder from Promega, USA. 

Statistical analysis: The present study’s data results were statistically analyzed using the Minitab 

program. Chi-square (X2) and probability (p-value) are utilized for data comparison. The probability 

level at (p-value) of 0.05 or less is referred to as statistically significant, a (p-value) of 0.01 or less is 

referred to as highly significant, whereas (p-value) greater than 0.05 is referred to as non-significant. 

3. Results and Dicussion 

Study samples: A total of 256 different clinical samples; 106 male samples and 150 females were 

collected at four main hospitals in Kirkuk City. All samples were cultured, of which 108 (42.2%) 

exhibited no bacterial growth and 148 (57%) exhibited bacterial growth. Among the total samples, K. 

pneumoniae accounted for 38 (14.8%) of them and was the most prevalent among other bacterial 

growth, which is highly significant (p value= 0.0009) (Table 3).  

Table 3. Culture results of clinical samples 

Bacterial growth No. bacterial growth Total  P value 

k. pneumoniae Other bacteria 108 

(42.2%) 

256 

(100%) 

Chi-Square = 49.109   

P-Value = 0.0009 
38 (14.8%) 110 (43%) 

** represent p-value ≤ 0.01 highly significant; Number (No.) 

Isolation and Identification of K. pneumonia 

Among the 38 isolates of K. pneumoniae, 21 (55.3%) were detected in males and 17 (44.7%) were 

found in females. The prevalence of infection with K.. pneumoniae was highest in urine samples, 

followed by wound swabs, sputum, burn swabs, bronchial wash, diabetic foot ulcer swabs, and higher 

vaginal swabs (47.4%, 21.1%, 13.2%, 10.5%, 2.6%, 2.6%, and 2.6%, respectively). The isolation 

sources and the frequency of K. pneumoniae infections were significantly associated as listed in [Table 

4]. 

Table 4. Isolation sources and percentage of K. pneumoniae 

Isolation Sources No. of samples No. of K. pneumoniae Isolates % of K.. pneumoniae 

Urine 118 18 47.4% 

Wound swab 53 8 21.1% 

Sputum 26 5 13.2% 

Burn swab 39 4 10.5% 

Bronchial wash 2 1 2.6% 

Diabetic foot ulcer swab  13 1 2.6% 

Higher vaginal swab 5 1 2.6% 

Total number 256 38 100% 

Chi-Square = 28.509, P-Value = 0.0008** 

** represent p-value ≤ 0.01 highly significant;% (percentage) 



186 | P a g 

e 

Assessment of mrkD and T1 fim Genes of K. pneumoniae and Their Association with Biofilm 

Formation in Community-Acquired Infections. 

Posted: 04-07-2024, Vol. (XXIV) 

  

 

The K. pneumoniae colonies exhibited a prominent, viscous, and pink appearance on MacConkey agar 

due to lactose fermentation. Conversely, they exhibited white, large, and mucoid colonies on blood 

agar without any destruction of red blood cells. Eosin methylene blue agar is used frequently for 

distinguishing between Klebsiella species and E. coli bacteria [Figure 1]. Thus, Klebsiella colonies 

exhibit a pink to purple color, while colonies of E. coli are dark and surrounded by a green metallic 

shine. 

 

Figure 1. K. pneumoniae colonies on A: MacConkey agar, B: Eosin Methylene Blue agar, C: 

Metallic shine of E. coli colonies and pink to purple color of K. pneumoniae on Eosin Methylene 

Blue agar. 

Quantification of Biofilm Formation  

K.. pneumoniae have the ability to form biofilms, which is a complex process including adhesion to 

various surfaces such as plastics, metals, medical implant materials, and tissues. Biofilm development 

augments the viability of microorganisms, such as bacteria, and strengthens them against damage [19]. 

The microtiter plate method [MTP] assessed the biofilm production capability of K. pneumonia 

isolates, the results showed that all isolates produced 25 (65.8%), and 13 (34.2%) weak and moderate 

biofilms, weak biofilm is the most predominant and statistically high significance. There are no strong 

biofilms. The results obtained for biofilm production are listed in [Table 5]. 

Table 5. Detection of biofilm-producing K. pneumoniae 

 

Biofilm-forming ability NO. % Mean±SD 

Strongly adherent 0 0 0 

Moderately adherent 13 34.2 0.1196 ± 0.198 

Weakly adherent 25 65.8 0.0666 ± 0.0105 

Non-adherent 0 0 0 

Total 38 100  

Chi square = 60.772, P-value = 0.00003 **, SD= Standard 

deviation, ** represent p-value ≤ 0.01 highly significant  

Molecular method for detection of T1fim and MrkD genes of K. pneumoniae isolates  

PCR technique was used for amplification of genes for all K. pneumonia isolates to detect biofilm 

production-related genes: T1 Fim and mrkD. Results showed that all 38 isolates (100%) were positive 

for T1 Fim and 32 isolates (97.4%) to mrkD [Figure 2] 



187 | P a g 

e 

Assessment of mrkD and T1 fim Genes of K. pneumoniae and Their Association with Biofilm 

Formation in Community-Acquired Infections. 

Posted: 04-07-2024, Vol. (XXIV) 

  

 

 

Figure 2. The T1fim and mrkD gene amplification results of K. pneumoniae fractionated on 1.5% 

agarose gel electrophoresis stained with ethidium bromide. Ladder marker: 100bp. Lanes 1-38 

resemble 458 bp (T1fim) 442 bp (mrkD) PCR product size. 

Discussion 

This study included all Klebsiella pneumoniae isolates obtained from infections acquired in the 

community within the specified study period. The prevalence of K..pneumoniae among positive 

bacterial growth was 14.8%, which was similar to the results of [20] in which the distribution of K.. 

pneumoniae in clinical samples was 12.57% furthermore our results agree with [21] who mentioned 

that community-acquired infection accounted for 12% (15/125) of K.. pneumoniae clinical samples. 

The infected patients with K.. pneumoniae in this study involved 21 males (55.3%) and 17 females 

(44.7%); this result agreed with the study made by [22] who also stated that the distribution of K. 

pneumoniae was in the frequency of 53.23 % in males and 46.77% in females.  Another study done by 

[23] showed that K. pnemoniae infection prevalence was (53.6%) in males and 46.4% in females. In 

contrast, studies performed by [24, 25] revealed that females were more infected than males. 

The present study has shown that K. Pneumoniae infection was higher in urine samples followed by 

wound swabs, sputum, burn swabs, bronchial wash, diabetic foot ulcer swab, and high vaginal swabs 

(47.4%, 21.1%, 13.2%, 10.5%, 2.6%, 2.6%, and 2.6%, respectively). 

 Furthermore, our finding was similar to Garza-Ramos U et al. [25] study, which collected samples 

from patients who had infections acquired in the community and reported that K. pneumoniae isolates 

were taken from these sources: urine, 46.1%; vaginal secretion, 25.6%; sputum, 10.2%. In addition, 

the local study done in Diyala [26] in which most isolates were more prevalent in urine (32.31%; n=42) 

followed by sputum (20.5%; n=17), wounds (19.44%; n=7), burns (13.33%; n=2) respectively, also in 

line the results of our study. 

The dissemination of K.pneumoniae and its pathogenic significance is primarily associated with urina

ry and respiratory tract infections;this is likely due to these bacteria being part of the normal 

intestinal flora, making them opportunistic pathogens with the capability for adherence to the surface

s of epithelial cells [26].  

Regarding biofilm formation, the current study revealed that all isolates (100%) were able to form a 

biofilm of which 25 (60.5%) were weak and 13 (34.2%) were moderately biofilm-producing.  These 

results were similar to the results of the study conducted by Mohammed A [27] in Iraq, as well as with 

a study conducted by Ali et al. [28] in Iraq, which revealed that (100% of the isolates were capable of 

forming biofilm 40%  weakly biofilm former, 44% moderately and 16% strongly biofilm former). 

However, our study differs from [27, 28] in that we did not observe any strong biofilm-forming isolates. 

The observed disparity in the biofilm formation demonstration between the present findings and the 

earlier research could be attributed to variations in gene percentage levels, isolates' sites, and study 

settings. 
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The genes T1 fim and mrkD were present in almost all of our isolates. This finding is consistent with 

the numerous studies that have reported about the ubiquity of these fimbrial genes in K.. pneumoniae 

[29]. In the present study, the T1 fim gene was detected in all isolates (100%) while the mrkD gene 

was present in (97.4%) of isolates. 

Additionally, our results of fimbrial genes were in agree with a previous study conducted by Iman S et 

al  [30] were found that the T1 fim genes among different clinical samples were detected in (100%) of 

isolates and mrkD in (98%), also in line with another study done by Sara H et al [31]. In contrast, a 

local study in Baghdad done by Eman A et al [32] reported lower detection of T1 fim and mrkD genes 

in (90%) and (51.6%) of isolates respectively 

4. Conclusion and future scope 

In the current study, biofilm production was detected by microtiter plate revealing that all community-

acquired K.. pneumoniae isolates were 100% biofilm former, and molecular detection of some fimbrial 

genes was associated with the biofilm formation. To provide information on the distribution of these 

organisms in Iraq, large-scale studies involving the characterization of the community-acquired K. 

pneumoniae isolates from various regions of the country are required. 
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