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KEYWORDS ABSTRACT

Osteoarthritis, Cartilage degeneration causing functional incapacity and discomfort defines common joint
Recurrent condition Osteoarthritis (OA). Correct classification of OA severity from knee X-ray
Convolutional Neural 1mages determines diagnosis and treatment course. Conventional methods of OA severity
Networks, Medical classification rely on hand inspection or basic machine learning techniques, which could
not effectively capture the complex trends in imaging data. Using a dataset of 9,786 knee

Imaging, X-ray ) ) i .
Classification X-ray images, this work uses Recurrent Convolutional Neural Networks (RCNN) to project
Severity Grading OA severity. Combining recurrent layers in the RCNN architecture helps to capture

temporal correlations in spatial information, hence enhancing classification performance.
Defining the dataset are five KL grades: 0 (healthy) to 4 (severe). This beats by around 5%,
7%, and 3%, respectively standard CNN, Deep Neural Network (DNN), and Deep
Convolutional Neural Network (DCNN), with a precision of 87.2%, recall of 88.9%,
accuracy of 89.5%, and F1-score of 88.0%.

1. Introduction

Knee osteoarthritis (OA) is a common degenerative joint disease typified by progressive degradation
of the articular cartilage, which cushions and protects the bones in the knee joint [1]. When the cartilage
breaks down, bones start to rub together and cause discomfort, stiffness, and limited movement [2].
Moreover impacting the underlying bone and surrounding soft tissues is the condition [3]. Often called
knee arthritis, OA is the most common kind of arthritis affecting the knee and can adversely affect a
person's quality of life [4]. Early initial diagnosis of OA determines effective therapy and management
[5]. From O (healthy) to 4 (severe—medical imaging, especially X-rays, is vital in assessing the degree

of OA [using the Kellgren-Lawrence (KL) grading system splits the illness into five grades].
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The present challenge is to use sophisticated machine learning methods to create an automated system
employing X-ray pictures estimating the degree of knee osteoarthritis specifically, the aim is to use
deep learning models that can learn complex information from photos and generate consistent
predictions to increase the accuracy and efficiency of OA degree of classification. Integrating
convolutional and recurrent neural networks to properly manage the sequential character of features
and the unpredictable imaging data is a difficulty.

The primary objectives of this research are:

1. To create an automatic OA severity classification recurrent convolutional neural network
(RCNN) model knee X-ray image.

2. To evaluate the performance of the RCNN model.
3. To analyse the model will aid to evaluate its ability to raise by means of varying dataset sizes.

4. Toinvestigate the model's performance under several degrees of validation, testing, and training
data holistically.

The novelty of this research is the improvement of feature extracting and classification by use of
recurrent layers mixed with convolutional layers. Conventional CNNs can find sequential
dependencies and contextual information challenging even if they are good in capturing spatial
features. By incorporating recurrent layers, the RCNN model aims to identify temporal links and
sequential patterns in the data obtained from X-ray images, therefore enabling improved performance
in assessing the degree of osteoarthritis.

This research contributes to the field by:

1. The research develops novel RCNN architecture combining the strengths of convolutional and
recurrent layers to provide better feature learning and classification.

2. The research shows the benefit in handling varied and difficult datasets by providing a complete
evaluation of the performance of the RCNN model against more conventional methods.

3. The authors provide knowledge of how dataset size influences model performance, hence
directing data collecting and model training in applications of medical imaging.

4. Both doctors and patients will benefit from automated diagnostics technologies able to improve
OA degree of accuracy and efficiency.

Related Works

In medical imaging tasks, including the convolutional layers, CNNs automatically extract hierarchical
features from images, therefore enabling the identification of patterns and structures relevant for
classification tasks. Using Kellgren-Lawrence grading system to estimate the degree of osteoarthritis
using CNNs to analyse knee X-ray images, one well-known application of CNNs is osteoarthritis
identification in [11]. Their method shown that CNNs could effectively learn and categorise image
characteristics, so attaining great accuracy in diverse OA gradients. CNNs may thus be constrained in
challenging classification issues since they are basically geared to control spatial features and may not
effectively capture sequential dependencies or contextual information.

Deep Neural Networks (DNNs) extend standard neural network models by include additional hidden
layers to capture more complex patterns and connections in data. Medical imaging has seen DNNs
applied for a range of diagnostic tasks including disease categorisation and prediction. For instance,
[12] looked at knee MRI data searching for osteoarthritis using DNNs. Their method was better than
traditional methods, thereby proving DNNs' ability to mimic intricate patterns in imaging data. DNNs
can thus represent complex features, but they also usually demand high computing resources and may
suffer from overfitting without suitable regularising.

48|Page



Predicting Severity Of Osteoarthritis Using Recurrent Convolutional Neural Networks (Rcnn) And

EE]M Medical Imaging Data.

SEEJPH 2024 Posted: 12-07-2024

Deep Convolutional Neural Networks (DCNNs) outperform more traditional CNNs by including
deeper architectures with additional convolutional and pooling layers. This depth increases image
classification job accuracy and allows DCNNs gather more complicated details. Learning more abstract
and high-level information from knee X-ray and MRI images has helped DCNNs to enhance
classification performance in osteoarthritis. [13] classified osteoarthritis degree using a DCNN-based
method and found appreciable accuracy gains over traditional CNN methods. Their model gathered
contextual information and finer details—qualities quite necessary for proper OA grading—using
deeper network architectures. DCNNs can be computationally demanding and need on large amounts
of labelled data to obtain maximum performance, though.

Combining convolutional and recurrent layers, recurrent convolutional neural networks (RCNNS) help
to alleviate CNN and DCNN restrictions in handling sequential and contextual data. RCNNs
significantly help when sequential dependencies and context are very crucial for feature extraction and
classification. Among the various image analysis uses for which current research have looked at RCNN
use is medical imaging. For cancer detection and classification in medical images, for example, [14]
proposed an RCNN-based model showing that recurrent layers could increase the model's capacity to
record temporal and contextual linkages inside the images. By aggregating recurrent layers to boost
the model's capacity to learn and classify difficult information from knee X-ray images, using RCNNs
to detect osteoarthritis tries to optimise these benefits.

From CNNs to DCNNs and with the incorporation of RCNNs, image analysis and classification have
made significant development. CNNs and DCNNs have demonstrated success in feature extraction and
classification; RCNNs have an enhanced capacity by integrating recurrent layers, which may record
sequential dependencies and contextual information even if they exhibit success in these aspects as
well. Extending these advances, the suggested use of RCNNs for osteoarthritis severity classification
aims to offer a more dependable and accurate approach for medical image analysis.

2. Methodology

In this section, combining convolutional and recurrent neural network components, the RCNN
improves feature extraction and classification performance especially appropriate for medical imaging
data where spatial and temporal information is critical as in Figure 1.
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Figure 1: Proposed RCNN Framework

1. Preprocessing:
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o Image Resizing: Resize all knee X-ray images.
o Normalization: Normalize pixel values to standardize input data.
2. Feature Extraction using Convolutional Layers:
o Input Layer: Feed the preprocessed images into the RCNN.
o Convolutional Layers: Each convolutional layer captures different aspects of the image.

o Activation Function: Use Rectified Linear Unit (ReLU) activation function to introduce non-
linearity.

o Pooling Layers: Apply max pooling to reduce the dimensionality of feature maps while
retaining essential features.

3. Feature Sequencing with Recurrent Layers:

o Flattening: Flatten the output from the convolutional layers to create a sequence of feature
vectors.

o Recurrent Layer: Feed the flattened features into a Recurrent Neural Network (RNN) layer,
typically an LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit),.

4. Classification:

o Fully Connected Layers: Pass the output of the recurrent layer through one or more fully
connected (dense) layers to map the extracted features to the final classification space.

o Softmax Activation: Apply a softmax function in the output layer to get probability scores for
each severity grade (0 to 4).

5. Training:
o Loss Function: Use categorical labels.
o Optimizer: Utilize the Adam optimizer to adjust weights during training.
o Evaluation: Validate the model.
6. Testing and Evaluation:
o Test Set: Evaluate the model’s performance on a held-out test set.

Pseudocode

Proposed Algorithm:

Step 1: Preprocessing

Step 2: Feature Extraction on convolutional, Pooling

Step 3: Feature Sequencing based on Shapes, Length, LSTM
Step 4: Classification on 5 Classes with 128 unit’s dense layer
Step 5: Training Model, epochs=50, batch size=32

Step 6: Testing and Evaluation

Pre-processing

In terms of determining the degree of osteoarthritis, pre-processing is a crucial initial step for producing
knee X-ray images for machine learning models analysis. Part of this phase are several crucial
operations aimed to assure the photos suit the format for the next phases of feature extraction and model
training and increase their quality.

First, image scaling brings all input image dimensions into line. This collection's every image is
reduced to 224 by 224 pixels. This homogeneity in size ensures that every image entered into the model
has the same spatial dimensions, therefore preventing discrepancies that may otherwise jeopardise the
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model's performance. Since constant size processing of images is more efficient, resizing also helps
effectively manage computer resources.

Normalising following scale helps to change the image pixel values. Usually working with division by
the highest feasible value—usually 255 for 8-bit images—normalization scales pixel values to a range
of [0, 1]. This stage helps to assure that the model is not biassed towards higher-intensity values in the
images and to improve the convergence speed of the learning technique. Normalised images most
certainly emerge from a more consistent and accurate training process.

Apart from resizing and normalising, other preparation tasks, so providing the model variations of the
training data and so boosting its generalising capacity. However, in this context scaling and normalising
as basic preprocessing techniques take front stage.

Pre-processing therefore turns unprocessed images into a consistent and normalised format, hence
improving their suitability for feature extraction and classification tasks. In machine learning models,
successful results depend on this preparation since it directly influences the accuracy and efficiency of
the subsequent analysis.

Feature Extraction Using Convolutional Layers

Feature extraction using convolutional layers forms a fundamental process in CNNs for visual analysis
and interpretation. It is designed to automatically recognise and learn spatial hierarchies of information
from the input image—including edges, textures, and patterns—convolutional layers. For duties like
image categorisation and object recognition, this capacity makes them rather valuable.

A convolutional layer operates mostly in which a kernel or filter slides across an image to create feature
maps. Regarding mathematics, one may define the convolution process as:

(4K (i) =Zmeo™ " Tn=o™ I(i+m,j+0)-K(m,n)
where:
| - input image,
K - convolutional kernel,
(i,j) - position of the kernel in the image,
M and N - dimensions of the kernel.

This process generates a feature map stressing specifically found objects by the kernel. An image's
edges will be highlighted in a feature map by an edge-detecting kernel, for example.

Activation functions then are used to give non-linearity to the output of the convolution procedure.
Usually used, the Rectified Linear Unit (ReLU) function has the definition:

ReLU(x)=max(0,x)
The research define a 2x2 max pooling operation:
P(i,j)=max o<m<2,0s<2 F(i-2+m,j-2+n)
where:
P(i,j) - output of the pooling operation,
F - feature map from the previous convolutional layer.

By means of convolution, activation, and pooling processes, convolutional layers extract hierarchical
information from an input image. As more layers are added, they first record low-level information
like edges and textures then they catch even more complex patterns and structures. Rich and detailed
representations of the image, which the network learns from this hierarchical feature extraction, enable
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accurate classification and analysis in applications including osteoarthritis diagnosis from knee X-ray
images.

Pseudocode for Feature Extraction Using Convolutional Layers
#Step 1: Define Convolutional Layer
def convolutional_layer(input_image, kernel, stride=1, padding=0):
# Initialize output feature map
feature_map = zeros(output_height, output_width, num_filters)

# Convolve each filter over the image
for filter_index in range(num_filters):

feature_maply, x, filter_index] = sum(region * kernel[:, :, filter_index])
return feature_map

# Step 2: Define Activation Function (ReLU)
def relu_activation(feature_map):
return max (0, feature_map)

# Step 3: Define Pooling Layer (Max Pooling)
def max_pooling(feature_map, pool_size=2, stride=2):
pooled _map = zeros(output_height, output_width, num_filters)

# Apply max pooling

for filter_index in range(num_filters):
pooled_maply, x, filter_index] = max(region)

return pooled_map

# Step 4: Process Input Image Through Convolutional Layers
def process_image(input_image, kernels):
# Apply multiple convolutional layers
convl = convolutional_layer(input_image, kernels[0])
relul = relu_activation(convl)
pooll = max_pooling(relul)

conv2 = convolutional_layer(pooll, kernels[1])
relu2 = relu_activation(conv2)
pool2 = max_pooling(relu2)
# Add more layers as needed
return pool2
# Example Usage
input_image = load_image('path_to_image') # Load image (224x224xchannels)

kernels = [initialize_kernels(filter_count) for _ in range(num_layers)] # Initialize kernels

feature_map = process_image(input_image, kernels)

Feature Sequencing with Recurrent Layers
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For RCNNSs, feature sequencing with recurrent layers is supposed to capture and explain sequential
dependencies inside feature data taken from images. This approach is especially useful when
appropriate classification depends on temporal or contextual linkages between features—as in medical
imaging where spatial patterns may alter throughout many parts of an image. The research is presented
as a sequence of feature vectors, once convolutional layers retrieve features from the images. Among
other recurrent layers, Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells handle
these sequences to find dependencies and patterns stretching across the feature vectors. A 3D tensor
(height x width x channels) for the convolutional layer output in an RCNN is first transformed to a 2D
matrix whereby each row indicates a feature vector matching a spatial point in the image. Later on, a
recurrent neural network (RNN) layer consumes this sequence of feature vectors. One can define the
mathematical form of an LSTM cell as follows:

Handling every feature vector in sequence, the LSTM maintains an internal state that catches long-
range correlations and temporal trends. This ability to recreate sequential relationships is quite crucial
for positions where the interpretation of current features depends on the context provided by past
features.

Feature sequencing enhances the comprehension and application of complex data relationships by
means of recurrent layers, therefore providing a richer representation for categorisation operations.
Applications like medical imaging, where spatial features from numerous sections of the image may
be related and demand contextual knowledge for effective diagnosis, find especially relevance for this
method.

Pseudocode for Feature Sequencing with Recurrent Layers
# Step 1: Define LSTM Cell
def Istm_cell(x_t, h_prev, C_prev, W, b):

# LSTM parameters

W f,W_ i,W CWo=W

b fbi,b C/bo=b

# Forget Gate
f_t =sigmoid(np.dot(W_f, np.concatenate([h_prev, x_t])) + b_f)

# Input Gate
i_t = sigmoid(np.dot(W_i, np.concatenate([h_prev, x_t])) + b_i)
C _tilde = tanh(np.dot(W_C, np.concatenate([h_prev, x_t])) + b_C)

# Update Cell State
Ct=ft*C_prev+i t*C_tilde

# Output Gate
o_t = sigmoid(np.dot(W_o, np.concatenate([h_prev, x_t])) + b_0)
h_t=o0_t*tanh(C_t)

returnh t, C t

# Step 2: Define the LSTM Layer

def Istm_layer(feature_sequences, W, b):
# Initialize hidden state and cell state
h_prev = np.zeros(hidden_units)
C_prev = np.zeros(hidden_units)

# Process each feature vector in the sequence
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for x_t in feature_sequences:
h_prev, C_prev = Istm_cell(x_t, h_prev, C_prev, W, b)

return h_prev

# Step 3: Process Feature Map Through LSTM

def process_features_with_Istm(feature_map, Istm_weights, Istm_biases):
# Flatten the feature map into a sequence of feature vectors
feature_sequences = flatten_feature_map(feature_map)

# Pass the sequence through the LSTM layer
final_hidden_state = Istm_layer(feature_sequences, Istm_weights, Istm_biases)

return final_hidden_state

# Example Usage

feature_map = extract_features_from_image('path_to_image") # Output of convolutional

layers

Istm_weights = initialize_Istm_weights(hidden_units)

Istm_biases = initialize_Istm_biases(hidden_units)

final_hidden_state = process_features_with_Istm(feature_map, Istm_weights, Istm_biases)
Classification

Classification in neural networks is the process of assigning a label or category depending on the
characteristics of an input. This is critically essential for tasks like determining the degree of
osteoarthritis from knee X-ray images. Usually following feature extraction and feature sequencing,
classification uses the neural network learning to meaningfully represent the input data.

Following convolutional and recurrent layer extraction and sequencing, fully connected (dense) layers
bind these features to class labels following. Every neurone in a completely linked layer connects to
every neurone in the layer below, therefore enabling complex combinations of characteristics. The
output of a fully connected layer can be stated mathematically as:

zj = i WiiXithy
where:
zj - output of the j™ neuron in the fully connected layer,
wiji - weight connecting the i neuron in the previous layer to the j™ neuron,
xi - output of the i neuron in the previous layer,
bj - bias term for the j™" neuron.
Activation Function:

The non-linearity introduces by passing the output of the fully linked layer via an activation function.
In classification issues, the softmax activation function is very well-known. It converts the logit raw
output scores into probability. The softmax of the i class is defined as:

pi=e?/y)j e
where:
pi - probability of the input belonging to class i,

zi - raw score (logit) for class i,
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The denominator sums over all classes j to normalize the scores.
Loss Function:
To enable the model be trained, categorical cross-entropy loss comes out as follows:

Loss =31 yi log(pi)
where:
e Y- true label (one-hot encoded) for class i,
e pi- predicted probability for class i.

Training lets the weight and bias of the model be adjusted to lower the loss function. This is achieved
by computing gradients and changing the optimisation method settings, Adam included. Following
training, the model may project the class label for new input data by computing the class probabilities
and selecting the class with the highest probability. This is stated as:

y’ = arg max; pi
where:
y’ - predicted class label,
arg max; - selects the index of the maximum probability pi.

Pseudocode for Classification
# Step 1: Define Fully Connected Layer
def fully_connected_layer(input_vector, weights, biases):
output_vector = np.dot(weights, input_vector) + biases

return output_vector
# Step 2: Define Loss Function (Categorical Cross-Entropy)

# Calculate the loss for each class

loss = -np.sum(true_labels * np.log(predicted_probs + 1e-9)) # Adding epsilon for
numerical stability

return loss

# Step 3: Define Prediction Function
Apply the softmax activation function to get class probabilities
probabilities = softmax(logits)

# Predict the class with the highest probability
predicted_class = np.argmax(probabilities)

return predicted_class, probabilities
# Example Usage
# Assume feature_vector is the output from the LSTM or feature extractor
feature_vector = extract_features('path_to_image’) # Output from previous layers
# Initialize fully connected layer weights and biases
fc_weights = initialize_fc_weights(num_classes)
fc_biases = initialize_fc_biases(num_classes)

# Make predictions
predicted_class, predicted_probs = predict(feature_vector, fc_weights, fc_biases)
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# Compute the loss for training
true_labels = one_hot_encode(true_class_label, num_classes)
loss = categorical_cross_entropy_loss(predicted_probs, true_labels)

3. Results and discussion

This work implements the RCNN model with high-performance computation using TensorFlow. It is
evaluated against present techniques including CNN, DNN, and DCNN. The RCNN model far
outperformed CNN, DNN, and DCNN models across all three. Strong though they are, CNNs and
DNNs occasionally missed complex data patterns. DCNNs lagged behind in exactly grading OA degree
even if they outperformed RCNN in managing temporal dependencies and spatial feature correlations.

Table 1: Experimental Setup

Parameter Value

Dataset Size 9,786 images
Image Resolution 224 x 224 pixels
Train-Validation-Test Split = 70%/15%/15%
Model Architecture RCNN
Recurrent Layer Type LSTM
Convolutional Layer Type @ Standard 2D Convolution
Number of Epochs 50

Batch Size 32

Optimizer Adam

Learning Rate 0.001
Activation Function RelL U

Dropout Rate 0.5

Loss Function
Performance Metric
GPU Used

Dataset

Categorical Cross-Entropy
Accuracy, Precision, Recall, F1-score
NVIDIA Tesla V100

Usually affecting the knee joint, osteoarthritis is a condition defined by articular cartilage deterioration,
thereby usually shielding bones from impact and friction. The condition can damage the underlying
bone and surrounding soft tissues and present in varying degrees of severity.

Comprising 9,786 X-ray images, the dataset—organized by the Osteoarthritis Initiative (OAI)—is kept
on Kaggle and shows consistently 224 x 224 pixels every image in the set. The five degree of severity
the images fall into are guided by the KL grading system.

Table 2: Data Split and Distribution
Description

Severity Level Percentage of Dataset

Grade 0 Healthy knee ~40%
Grade 1 Doubtful joint narrowing with possible osteophytes = ~18%
Grade 2 Minimal osteophytes with possible joint narrowing = ~26%
Grade 3 Moderate osteoarthritis with mild sclerosis ~13%
Grade 4 Severe osteoarthritis with significant sclerosis ~3%
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The existing approaches—CNN, DNN, DCNN, and RCNN—across training, testing, and validation
datasets—have their performance compared in figure 2—6 using measures including accuracy,
precision, recall, F-measure, and cross-entropy loss.

Accuracy measures the relative correctness of the model for predictions. In the training phase the
RCNN technique achieves the best accuracy of 94.0% over DCNN (92.3%), DNN (89.0%), and CNN
(90.5%). This greater performance implies that RCNN learns and generalises from the training data
more successfully. In testing RCNN maintains its lead over DCNN (89.8%), DNN (85.7%), and CNN
(88.2%), with an accuracy of 91.5%. This suggests that RCNN's efficiency transcends unprocessed
data to training. Validation accuracy also shows RCNN at 90.2%, following the similar pattern,
therefore underlining its durability in many data contexts.

Precision reflects the ability of the model to among all the events it marks as positive precisely identify
positive examples. Starting at 93.5% in training and 90.8% in testing, RCNN demonstrates the best
precision across all datasets—above DCNN (91.0% and 88.5%), DNN (87.9% and 84.9%), and CNN
(89.7% and 87.5%. This implies that RCNN is more constant in lowering false positives. RCNN
maintains its edge at 89.4%, hence the validation dataset follows the same pattern. Applications where
false positives could have significant consequences depend on high accuracy.

Recall tests if the model can find every relevant positive case. Once more ranking first with a recall of
94.5% during training and 92.0% during testing, Outperforming DCNN (93.5% and 90.5%), DNN
(90.1% and 86.4%), and CNN (91.2% and 88.8%). RCNN In the validation phase, RCNN displays a
90.8% recall, therefore verifying its ability to identify genuine positives. In medical diagnostics, for
example, good recall is absolutely vital since failing to identify positives could lead to serious errors.

The F-Measure presents a harmonic view of accuracy and recall. With an F-measure of 94.0% in
training, 91.4% in testing, and 90.1% in validation RCNN excels. This implies that, in all phases,
RCNN provides a good compromise between recall and accuracy. DCNN follows with F-measure of
92.2% in training, 89.5% in testing, and 88.1% in validation. Reduced F-measure values of DNN and
CNN imply a compromise between recall and accuracy.

Loss gauges the change in predicted from actual likelihood. Reduced loss values point to better model
performance. RCNN scores lowest among the models with 0.22 in training, 0.30 in testing, and 0.32 in
validation; this implies that RCNN is not only generating more confident but also more accurate
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forecasts. Following with a loss of 0.28 (training), 0.35 (testing), and 0.38 (validation), DCNN comes
with Higher loss values of CNN and point to less confident predictions and less accuracy.

Table 3: Performance for RCNN over Training, testing and validation

Dataset Size Accuracy Precision Recall F-Measure Loss (Cross-
(Images) (%) (%) (%) (%) Entropy)
600 87.5 85.2 89.1 87.1 0.45
1200 89.2 87.8 90.3 89.0 0.38
Training 1800 90.8 88.5 91.2 89.8 0.33
2400 91.5 89.0 91.8 90.4 0.28
3000 92.0 89.7 92.1 90.9 0.22
250 84.0 82.5 85.0 83.7 0.52
500 86.7 84.5 87.1 85.8 0.45
Testing 750 88.1 85.5 88.3 86.9 0.40
1000 89.2 86.2 89.1 87.6 0.36
1250 89.8 87.0 89.8 88.4 0.33
250 83.5 81.8 84.2 82.9 0.55
500 85.0 83.2 86.0 84.6 0.50
Validation 750 86.4 84.0 87.2 85.6 0.46
1000 87.1 84.8 87.8 86.2 0.43
1250 87.8 85.5 88.4 86.9 0.40

Table 3 shows that the number of training images rises from 600 to 3000, accuracy climbs from 87.5%
to 92.0%, reflecting the improved capacity of the model to precisely classify images with extra data.
Likewise showing increases in accuracy and memory; accuracy increases from 85.2% to 89.7% and
remember from 89.1% to 92.1%. New data training allows the model to reduce false positives and
increase actual positive detection ability. Concurrently, the loss ranges from 0.45 to 0.22, suggesting
better model performance and a reduced prediction error. Test images grow and the accuracy of the
model rises from 84.0% to 89.8% and the precision rises from 82.5% to 87.0%. Recall also increases
from 85.0% to 89.8%, suggesting that additional testing data helps to fairly assess the model's
performance. From 0.52 to 0.33 the loss drops with more consistent forecasts and lower error rates
using larger test datasets. Validation data reveal similar trends. Accuracy increases from 83.5% to
87.8%; precision increases from 81.8% to 85.5%; recall increases from 84.2% to 88.4%. The model
generallyizes better to unseen data as the validation set size increases; the loss lowers from 0.55 to
0.40. Thus, the trends over training, testing, and validation datasets show that extending the dataset
size enhances the performance of the model, so demonstrating the efficacy of the RCNN method in
learning and generalising from larger datasets.

4. Conclusion and future scope

Analysing the performance of the RCNN model over several dataset sizes for training, testing, and
validation exposes many significant findings underlining the efficiency of the network. With 600 to
3000 as the count of training images, accuracy increases from 87.5% to 92.0%, precision from 85.2%
to 89.7%, and recall climbs from 89.1% to 92.1%. These results show the model's growing ability to
learn from more data, hence reducing cross-entropy loss from 0.45 to 0.22. More training examples
provide evidence that the RCNN method effectively detects complex patterns and generalises well to
new data. Accuracy increases from 84.0% to 89.8%, precision from 82.5% to 87.0%, recall from 85.0%
to 89.8%, loss running from 0.52 to 0.33. Since the RCNN model performs more consistently with
larger test datasets, these results imply improved generalisation and robustness in predicting unseen
data. From 83.5% to 87.8%, precision from 81.8% to 85.5%, recall from 84.2% to 88.4%, and loss
lowers from 0.55 to 0.40 in the validation phase as well. This consistency among many datasets
guarantees the ability of the model to maintain low error rates and high performance standards.
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